test_pool2d_op.py 50.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

C
chengduoZH 已提交
15 16
import unittest
import numpy as np
17

18
import paddle.fluid.core as core
A
arlesniak 已提交
19
from paddle.fluid.tests.unittests.op_test import OpTest
20
import paddle.fluid as fluid
21
from paddle.fluid import Program, program_guard
C
chengduoZH 已提交
22 23


24 25 26 27 28 29 30 31
def adaptive_start_index(index, input_size, output_size):
    return int(np.floor(index * input_size / output_size))


def adaptive_end_index(index, input_size, output_size):
    return int(np.ceil((index + 1) * input_size / output_size))


32 33 34 35 36
def max_pool2D_forward_naive(x,
                             ksize,
                             strides,
                             paddings,
                             global_pool=0,
37
                             ceil_mode=False,
38
                             exclusive=True,
39
                             adaptive=False,
40
                             data_type=np.float64):
41 42
    if data_type == np.float64 and core.is_compiled_with_rocm():
        data_type = np.float32
C
chengduoZH 已提交
43
    N, C, H, W = x.shape
C
chengduoZH 已提交
44 45
    if global_pool == 1:
        ksize = [H, W]
46 47 48
    if adaptive:
        H_out, W_out = ksize
    else:
49 50
        H_out = (H - ksize[0] + 2 * paddings[0] + strides[0] -
                 1) // strides[0] + 1 if ceil_mode else (
51
                     H - ksize[0] + 2 * paddings[0]) // strides[0] + 1
52 53
        W_out = (W - ksize[1] + 2 * paddings[1] + strides[1] -
                 1) // strides[1] + 1 if ceil_mode else (
54
                     W - ksize[1] + 2 * paddings[1]) // strides[1] + 1
C
chengduoZH 已提交
55
    out = np.zeros((N, C, H_out, W_out))
56 57
    for i in range(H_out):
        for j in range(W_out):
58 59 60 61 62 63 64 65 66 67
            if adaptive:
                r_start = adaptive_start_index(i, H, ksize[0])
                r_end = adaptive_end_index(i, H, ksize[0])
                c_start = adaptive_start_index(j, W, ksize[1])
                c_end = adaptive_end_index(j, W, ksize[1])
            else:
                r_start = np.max((i * strides[0] - paddings[0], 0))
                r_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
                c_start = np.max((j * strides[1] - paddings[1], 0))
                c_end = np.min((j * strides[1] + ksize[1] - paddings[1], W))
C
chengduoZH 已提交
68 69 70 71 72 73
            x_masked = x[:, :, r_start:r_end, c_start:c_end]

            out[:, :, i, j] = np.max(x_masked, axis=(2, 3))
    return out


74 75 76 77 78
def avg_pool2D_forward_naive(x,
                             ksize,
                             strides,
                             paddings,
                             global_pool=0,
79
                             ceil_mode=False,
80
                             exclusive=True,
81
                             adaptive=False,
82
                             data_type=np.float64):
83 84
    if data_type == np.float64 and core.is_compiled_with_rocm():
        data_type = np.float32
C
chengduoZH 已提交
85
    N, C, H, W = x.shape
C
chengduoZH 已提交
86 87
    if global_pool == 1:
        ksize = [H, W]
88 89 90
    if adaptive:
        H_out, W_out = ksize
    else:
91 92
        H_out = (H - ksize[0] + 2 * paddings[0] + strides[0] -
                 1) // strides[0] + 1 if ceil_mode else (
93
                     H - ksize[0] + 2 * paddings[0]) // strides[0] + 1
94 95
        W_out = (W - ksize[1] + 2 * paddings[1] + strides[1] -
                 1) // strides[1] + 1 if ceil_mode else (
96
                     W - ksize[1] + 2 * paddings[1]) // strides[1] + 1
C
chengduoZH 已提交
97
    out = np.zeros((N, C, H_out, W_out))
98 99
    for i in range(H_out):
        for j in range(W_out):
100 101 102 103 104 105
            if adaptive:
                r_start = adaptive_start_index(i, H, ksize[0])
                r_end = adaptive_end_index(i, H, ksize[0])
                c_start = adaptive_start_index(j, W, ksize[1])
                c_end = adaptive_end_index(j, W, ksize[1])
            else:
D
Double_V 已提交
106 107 108 109 110 111 112 113 114 115
                r_start = i * strides[0] - paddings[0]
                r_end = i * strides[0] + ksize[0] - paddings[0]
                c_start = j * strides[1] - paddings[1]
                c_end = j * strides[1] + ksize[1] - paddings[1]
                field_size = (r_end - r_start) * (c_end - c_start)
                r_start = np.max((r_start, 0))
                r_end = np.min((r_end, H))
                c_start = np.max((c_start, 0))
                c_end = np.min((c_end, W))

C
chengduoZH 已提交
116 117
            x_masked = x[:, :, r_start:r_end, c_start:c_end]

D
Double_V 已提交
118 119 120
            if (exclusive or adaptive):
                field_size = (r_end - r_start) * (c_end - c_start)

121
            if data_type == np.int8 or data_type == np.uint8:
122 123 124
                out[:, :, i,
                    j] = (np.rint(np.sum(x_masked, axis=(2, 3)) /
                                  field_size)).astype(data_type)
125 126 127
            else:
                out[:, :, i, j] = (np.sum(x_masked, axis=(2, 3)) /
                                   field_size).astype(data_type)
C
chengduoZH 已提交
128 129 130
    return out


131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
def pool2D_forward_naive(x,
                         ksize,
                         strides,
                         paddings,
                         global_pool=0,
                         ceil_mode=False,
                         exclusive=True,
                         adaptive=False,
                         data_format='NCHW',
                         pool_type="max",
                         padding_algorithm="EXPLICIT"):

    # update paddings
    def _get_padding_with_SAME(input_shape, pool_size, pool_stride):
        padding = []
        for input_size, filter_size, stride_size in zip(input_shape, pool_size,
                                                        pool_stride):
            out_size = int((input_size + stride_size - 1) / stride_size)
149 150
            pad_sum = np.max(
                ((out_size - 1) * stride_size + filter_size - input_size, 0))
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
            pad_0 = int(pad_sum / 2)
            pad_1 = int(pad_sum - pad_0)
            padding.append(pad_0)
            padding.append(pad_1)
        return padding

    if isinstance(padding_algorithm, str):
        padding_algorithm = padding_algorithm.upper()
        if padding_algorithm not in ["SAME", "VALID", "EXPLICIT"]:
            raise ValueError("Unknown Attr(padding_algorithm): '%s'. "
                             "It can only be 'SAME' or 'VALID'." %
                             str(padding_algorithm))

        if padding_algorithm == "VALID":
            paddings = [0, 0, 0, 0]
            if ceil_mode != False:
                raise ValueError(
                    "When Attr(pool_padding) is \"VALID\", Attr(ceil_mode)"
                    " must be False. "
                    "Received ceil_mode: True.")
        elif padding_algorithm == "SAME":
            input_data_shape = []
            if data_format == "NCHW":
                input_data_shape = x.shape[2:4]
            elif data_format == "NHWC":
                input_data_shape = x.shape[1:3]
            paddings = _get_padding_with_SAME(input_data_shape, ksize, strides)

    assert len(paddings) == 2 or len(paddings) == 4
    is_sys = True if len(paddings) == 2 else False

    N = x.shape[0]
    C, H, W = [x.shape[1], x.shape[2], x.shape[3]] if data_format == 'NCHW' \
        else [x.shape[3], x.shape[1], x.shape[2]]

    if global_pool == 1:
        ksize = [H, W]
        paddings = [0 for _ in range(len(paddings))]

    pad_h_up = paddings[0] if is_sys else paddings[0]
    pad_h_down = paddings[0] if is_sys else paddings[1]
    pad_w_left = paddings[1] if is_sys else paddings[2]
    pad_w_right = paddings[1] if is_sys else paddings[3]

    if adaptive:
        H_out, W_out = ksize
    else:
        H_out = (H - ksize[0] + pad_h_up + pad_h_down + strides[0] - 1) // strides[0] + 1 \
            if ceil_mode else (H - ksize[0] + pad_h_up + pad_h_down) // strides[0] + 1
        W_out = (W - ksize[1] + pad_w_left + pad_w_right + strides[1] - 1) // strides[1] + 1 \
            if ceil_mode else (W - ksize[1] + pad_w_left + pad_w_right) // strides[1] + 1

    out = np.zeros((N, C, H_out, W_out)) if data_format=='NCHW' \
        else np.zeros((N, H_out, W_out, C))
    for i in range(H_out):
        if adaptive:
            in_h_start = adaptive_start_index(i, H, ksize[0])
            in_h_end = adaptive_end_index(i, H, ksize[0])
        else:
            in_h_start = np.max((i * strides[0] - pad_h_up, 0))
            in_h_end = np.min((i * strides[0] + ksize[0] - pad_h_up, H))

        for j in range(W_out):
            if adaptive:
                in_w_start = adaptive_start_index(j, W, ksize[1])
                in_w_end = adaptive_end_index(j, W, ksize[1])
            else:
D
Double_V 已提交
218 219 220 221 222 223 224 225 226 227
                in_h_start = i * strides[0] - pad_h_up
                in_w_start = j * strides[1] - pad_w_left
                in_h_end = i * strides[0] + ksize[0] - pad_h_up
                in_w_end = j * strides[1] + ksize[1] - pad_w_left

                field_size = (in_h_end - in_h_start) * (in_w_end - in_w_start)
                in_h_start = np.max((in_h_start, 0))
                in_w_start = np.max((in_w_start, 0))
                in_h_end = np.min((in_h_end, H))
                in_w_end = np.min((in_w_end, W))
228 229 230 231

            if data_format == 'NCHW':
                x_masked = x[:, :, in_h_start:in_h_end, in_w_start:in_w_end]
                if pool_type == 'avg':
D
Double_V 已提交
232
                    if (exclusive or adaptive):
233 234 235
                        field_size = (in_h_end - in_h_start) * (in_w_end -
                                                                in_w_start)

D
Double_V 已提交
236 237

#                         if (exclusive or adaptive) else (ksize[0] * ksize[1])
238 239 240 241 242 243
                    out[:, :, i, j] = np.sum(x_masked, axis=(2, 3)) / field_size
                elif pool_type == 'max':
                    out[:, :, i, j] = np.max(x_masked, axis=(2, 3))
            elif data_format == 'NHWC':
                x_masked = x[:, in_h_start:in_h_end, in_w_start:in_w_end, :]
                if pool_type == 'avg':
D
Double_V 已提交
244
                    if (exclusive or adaptive):
245 246
                        field_size = (in_h_end - in_h_start) * (in_w_end -
                                                                in_w_start)
247 248 249 250 251 252
                    out[:, i, j, :] = np.sum(x_masked, axis=(1, 2)) / field_size
                elif pool_type == 'max':
                    out[:, i, j, :] = np.max(x_masked, axis=(1, 2))
    return out


A
arlesniak 已提交
253
class TestPool2D_Op_Mixin(object):
254

C
chengduoZH 已提交
255
    def setUp(self):
K
Kexin Zhao 已提交
256
        self.op_type = "pool2d"
257
        self.use_cudnn = False
258
        self.init_kernel_type()
259
        self.use_mkldnn = False
X
xiaolil1 已提交
260
        self.init_data_type()
C
chengduoZH 已提交
261
        self.init_test_case()
262 263
        self.padding_algorithm = "EXPLICIT"
        self.init_paddings()
C
chengduoZH 已提交
264
        self.init_global_pool()
K
Kexin Zhao 已提交
265
        self.init_kernel_type()
C
chengduoZH 已提交
266
        self.init_pool_type()
267
        self.init_ceil_mode()
268
        self.init_exclusive()
269
        self.init_adaptive()
270 271 272
        self.init_data_format()
        self.init_shape()

K
Kexin Zhao 已提交
273
        input = np.random.random(self.shape).astype(self.dtype)
274 275 276 277 278 279
        output = pool2D_forward_naive(input, self.ksize, self.strides,
                                      self.paddings, self.global_pool,
                                      self.ceil_mode, self.exclusive,
                                      self.adaptive, self.data_format,
                                      self.pool_type,
                                      self.padding_algorithm).astype(self.dtype)
K
Kexin Zhao 已提交
280
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(input)}
C
chengduoZH 已提交
281 282 283 284 285

        self.attrs = {
            'strides': self.strides,
            'paddings': self.paddings,
            'ksize': self.ksize,
C
chengduoZH 已提交
286 287
            'pooling_type': self.pool_type,
            'global_pooling': self.global_pool,
288
            'use_cudnn': self.use_cudnn,
289
            'use_mkldnn': self.use_mkldnn,
290
            'ceil_mode': self.ceil_mode,
291
            'data_format': self.data_format,
292
            'exclusive': self.exclusive,
293 294
            'adaptive': self.adaptive,
            "padding_algorithm": self.padding_algorithm,
C
chengduoZH 已提交
295 296
        }

K
Kexin Zhao 已提交
297
        self.outputs = {'Out': output}
C
chengduoZH 已提交
298

299
    def has_cudnn(self):
300 301
        return core.is_compiled_with_cuda() and self.use_cudnn

C
chengduoZH 已提交
302
    def test_check_output(self):
303
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
304
        if self.has_cudnn():
305
            place = core.CUDAPlace(0)
306 307
            self.check_output_with_place(
                place, atol=1e-5, check_dygraph=(self.use_mkldnn == False))
308
        else:
309
            self.check_output(check_dygraph=(self.use_mkldnn == False))
C
chengduoZH 已提交
310 311

    def test_check_grad(self):
K
Kexin Zhao 已提交
312 313
        if self.dtype == np.float16:
            return
314
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
315
        if self.has_cudnn() and self.pool_type != "max":
316
            place = core.CUDAPlace(0)
317 318 319 320 321
            self.check_grad_with_place(place,
                                       set(['X']),
                                       'Out',
                                       max_relative_error=0.07,
                                       check_dygraph=(self.use_mkldnn == False))
322
        elif self.pool_type != "max":
323 324 325 326
            self.check_grad(set(['X']),
                            'Out',
                            max_relative_error=0.07,
                            check_dygraph=(self.use_mkldnn == False))
C
chengduoZH 已提交
327

328 329 330 331
    def init_data_format(self):
        self.data_format = "NCHW"

    def init_shape(self):
C
chengduoZH 已提交
332
        self.shape = [2, 3, 5, 5]
333 334

    def init_test_case(self):
C
chengduoZH 已提交
335 336
        self.ksize = [3, 3]
        self.strides = [1, 1]
337 338

    def init_paddings(self):
C
chengduoZH 已提交
339
        self.paddings = [0, 0]
340
        self.padding_algorithm = "EXPLICIT"
C
chengduoZH 已提交
341

K
Kexin Zhao 已提交
342
    def init_kernel_type(self):
343
        self.use_cudnn = False
C
chengduoZH 已提交
344

X
xiaolil1 已提交
345
    def init_data_type(self):
346
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64
X
xiaolil1 已提交
347

C
chengduoZH 已提交
348 349
    def init_pool_type(self):
        self.pool_type = "avg"
C
chengduoZH 已提交
350 351 352 353
        self.pool2D_forward_naive = avg_pool2D_forward_naive

    def init_global_pool(self):
        self.global_pool = True
C
chengduoZH 已提交
354

355 356 357
    def init_ceil_mode(self):
        self.ceil_mode = False

358 359 360
    def init_exclusive(self):
        self.exclusive = True

361 362 363
    def init_adaptive(self):
        self.adaptive = False

C
chengduoZH 已提交
364

A
arlesniak 已提交
365 366 367 368
class TestPool2D_Op(TestPool2D_Op_Mixin, OpTest):
    pass


C
chengduo 已提交
369
class TestCase1(TestPool2D_Op):
370

C
chengduoZH 已提交
371
    def init_test_case(self):
C
chengduoZH 已提交
372 373
        self.ksize = [3, 3]
        self.strides = [1, 1]
374 375

    def init_paddings(self):
C
chengduoZH 已提交
376
        self.paddings = [0, 0]
C
chengduoZH 已提交
377

C
chengduoZH 已提交
378 379
    def init_pool_type(self):
        self.pool_type = "avg"
C
chengduoZH 已提交
380 381 382 383
        self.pool2D_forward_naive = avg_pool2D_forward_naive

    def init_global_pool(self):
        self.global_pool = False
C
chengduoZH 已提交
384

385 386 387
    def init_shape(self):
        self.shape = [2, 3, 7, 7]

C
chengduoZH 已提交
388

C
chengduo 已提交
389
class TestCase2(TestPool2D_Op):
390

C
chengduoZH 已提交
391
    def init_test_case(self):
C
chengduoZH 已提交
392 393
        self.ksize = [3, 3]
        self.strides = [1, 1]
394 395

    def init_paddings(self):
C
chengduoZH 已提交
396 397
        self.paddings = [1, 1]

C
chengduoZH 已提交
398 399
    def init_pool_type(self):
        self.pool_type = "avg"
C
chengduoZH 已提交
400
        self.pool2D_forward_naive = avg_pool2D_forward_naive
C
chengduoZH 已提交
401

C
chengduoZH 已提交
402 403
    def init_global_pool(self):
        self.global_pool = False
C
chengduoZH 已提交
404

405 406 407
    def init_shape(self):
        self.shape = [2, 3, 7, 7]

C
chengduoZH 已提交
408

C
chengduo 已提交
409
class TestCase3(TestPool2D_Op):
410

C
chengduoZH 已提交
411 412
    def init_pool_type(self):
        self.pool_type = "max"
C
chengduoZH 已提交
413
        self.pool2D_forward_naive = max_pool2D_forward_naive
C
chengduoZH 已提交
414

C
chengduoZH 已提交
415 416

class TestCase4(TestCase1):
417

C
chengduoZH 已提交
418 419 420 421
    def init_pool_type(self):
        self.pool_type = "max"
        self.pool2D_forward_naive = max_pool2D_forward_naive

C
chengduoZH 已提交
422 423

class TestCase5(TestCase2):
424

C
chengduoZH 已提交
425 426
    def init_pool_type(self):
        self.pool_type = "max"
C
chengduoZH 已提交
427
        self.pool2D_forward_naive = max_pool2D_forward_naive
C
chengduoZH 已提交
428 429


C
chengduo 已提交
430
#--------------------test pool2d cudnn--------------------
C
chengduoZH 已提交
431 432


C
chengduo 已提交
433
def create_test_cudnn_class(parent):
434

C
chengduo 已提交
435 436 437
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNCase(parent):
438

C
chengduo 已提交
439 440
        def init_kernel_type(self):
            self.use_cudnn = True
K
Kexin Zhao 已提交
441

C
chengduo 已提交
442 443 444
    cls_name = "{0}_{1}".format(parent.__name__, "CUDNNOp")
    TestCUDNNCase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNCase
K
Kexin Zhao 已提交
445 446


C
chengduo 已提交
447 448 449 450 451 452
create_test_cudnn_class(TestPool2D_Op)
create_test_cudnn_class(TestCase1)
create_test_cudnn_class(TestCase2)
create_test_cudnn_class(TestCase3)
create_test_cudnn_class(TestCase4)
create_test_cudnn_class(TestCase5)
C
chengduoZH 已提交
453

C
chengduo 已提交
454
#--------------------test pool2d cudnn_fp16--------------------
C
chengduoZH 已提交
455

K
Kexin Zhao 已提交
456

C
chengduo 已提交
457
def create_test_cudnn_fp16_class(parent, check_grad=True):
458

C
chengduo 已提交
459 460 461
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNFp16Case(parent):
462

C
chengduo 已提交
463 464 465
        def init_kernel_type(self):
            self.use_cudnn = True
            self.dtype = np.float16
K
Kexin Zhao 已提交
466

C
chengduo 已提交
467
        def test_check_output(self):
468
            # TODO(wangzhongpu): support mkldnn op in dygraph mode
C
chengduo 已提交
469 470 471
            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
472 473 474 475
                    self.check_output_with_place(
                        place,
                        atol=1e-3,
                        check_dygraph=(self.use_mkldnn == False))
K
Kexin Zhao 已提交
476

C
chengduo 已提交
477
        def test_check_grad(self):
478
            # TODO(wangzhongpu): support mkldnn op in dygraph mode
K
Kexin Zhao 已提交
479
            place = core.CUDAPlace(0)
C
chengduo 已提交
480 481 482
            if core.is_float16_supported(
                    place) and self.pool_type != "max" and check_grad:
                self.check_grad_with_place(
483 484 485 486 487
                    place,
                    set(['X']),
                    'Out',
                    max_relative_error=0.07,
                    check_dygraph=(self.use_mkldnn == False))
K
Kexin Zhao 已提交
488

C
chengduo 已提交
489 490 491
    cls_name = "{0}_{1}".format(parent.__name__, "CUDNNFp16Op")
    TestCUDNNFp16Case.__name__ = cls_name
    globals()[cls_name] = TestCUDNNFp16Case
K
Kexin Zhao 已提交
492

C
chengduoZH 已提交
493

494
def create_test_fp16_class(parent, check_grad=True):
495

496 497 498
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestFp16Case(parent):
499

500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
        def init_kernel_type(self):
            self.use_cudnn = False
            self.dtype = np.float16

        def test_check_output(self):
            # TODO(wangzhongpu): support mkldnn op in dygraph mode
            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    self.check_output_with_place(
                        place,
                        atol=1e-3,
                        check_dygraph=(self.use_mkldnn == False))

        def test_check_grad(self):
            # TODO(wangzhongpu): support mkldnn op in dygraph mode
            place = core.CUDAPlace(0)
            if core.is_float16_supported(
                    place) and self.pool_type != "max" and check_grad:
                self.check_grad_with_place(
                    place,
                    set(['X']),
                    'Out',
                    max_relative_error=0.07,
                    check_dygraph=(self.use_mkldnn == False))

    cls_name = "{0}_{1}".format(parent.__name__, "Fp16Op")
    TestFp16Case.__name__ = cls_name
    globals()[cls_name] = TestFp16Case


C
chengduo 已提交
531 532 533 534 535 536
create_test_cudnn_fp16_class(TestPool2D_Op)
create_test_cudnn_fp16_class(TestCase1, check_grad=False)
create_test_cudnn_fp16_class(TestCase2)
create_test_cudnn_fp16_class(TestCase3)
create_test_cudnn_fp16_class(TestCase4)
create_test_cudnn_fp16_class(TestCase5)
C
chengduoZH 已提交
537

538 539 540 541 542 543 544
create_test_fp16_class(TestPool2D_Op)
create_test_fp16_class(TestCase1, check_grad=False)
create_test_fp16_class(TestCase2)
create_test_fp16_class(TestCase3)
create_test_fp16_class(TestCase4)
create_test_fp16_class(TestCase5)

C
chengduo 已提交
545
#--------------------test pool2d use ceil mode--------------------
K
Kexin Zhao 已提交
546 547


C
chengduo 已提交
548
def create_test_cudnn_use_ceil_class(parent):
549

C
chengduo 已提交
550 551 552
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestPool2DUseCeilCase(parent):
553

C
chengduo 已提交
554 555
        def init_kernel_type(self):
            self.use_cudnn = True
K
Kexin Zhao 已提交
556

C
chengduo 已提交
557 558
        def init_ceil_mode(self):
            self.ceil_mode = True
C
chengduoZH 已提交
559

C
chengduo 已提交
560 561 562
    cls_name = "{0}_{1}".format(parent.__name__, "CUDNNOpCeilMode")
    TestPool2DUseCeilCase.__name__ = cls_name
    globals()[cls_name] = TestPool2DUseCeilCase
K
Kexin Zhao 已提交
563 564


C
chengduo 已提交
565 566
create_test_cudnn_use_ceil_class(TestPool2D_Op)
create_test_cudnn_use_ceil_class(TestCase1)
K
Kexin Zhao 已提交
567

568

C
chengduo 已提交
569
def create_test_use_ceil_class(parent):
570

C
chengduo 已提交
571
    class TestPool2DUseCeilCase(parent):
572

C
chengduo 已提交
573 574
        def init_ceil_mode(self):
            self.ceil_mode = True
575

C
chengduo 已提交
576 577 578
    cls_name = "{0}_{1}".format(parent.__name__, "CeilModeCast")
    TestPool2DUseCeilCase.__name__ = cls_name
    globals()[cls_name] = TestPool2DUseCeilCase
579 580


C
chengduo 已提交
581 582
create_test_use_ceil_class(TestCase1)
create_test_use_ceil_class(TestCase2)
583

584

585
class TestAvgInclude(TestCase2):
586

587 588 589
    def init_exclusive(self):
        self.exclusive = False

590

C
chengduo 已提交
591
class TestCUDNNAvgInclude(TestCase2):
592

C
chengduo 已提交
593 594 595
    def init_kernel_type(self):
        self.use_cudnn = True

596 597 598
    def init_exclusive(self):
        self.exclusive = False

599

600
class TestAvgPoolAdaptive(TestCase1):
601

602 603 604 605
    def init_adaptive(self):
        self.adaptive = True


606
class TestAvgPoolAdaptiveAsyOutSize(TestCase1):
607

608 609 610 611 612 613 614 615 616 617 618 619
    def init_adaptive(self):
        self.adaptive = True

    def init_shape(self):
        self.shape = [8, 3, 6, 6]

    def init_test_case(self):
        self.ksize = [2, 3]
        self.strides = [1, 1]
        self.paddings = [0, 0, 0, 0]


620 621 622 623
#-------test pool2d with asymmetric padding-----


class TestPool2D_AsyPadding(TestPool2D_Op):
624

625 626 627 628 629 630 631 632 633 634
    def init_test_case(self):
        self.ksize = [3, 3]
        self.strides = [1, 1]
        self.paddings = [1, 0, 1, 2]

    def init_shape(self):
        self.shape = [2, 3, 5, 5]


class TestCase1_AsyPadding(TestCase1):
635

636 637 638 639 640 641 642 643 644 645
    def init_test_case(self):
        self.ksize = [3, 3]
        self.strides = [1, 1]
        self.paddings = [1, 0, 1, 0]

    def init_shape(self):
        self.shape = [2, 3, 7, 7]


class TestCase2_AsyPadding(TestCase2):
646

647 648 649 650 651 652 653 654 655 656
    def init_test_case(self):
        self.ksize = [3, 3]
        self.strides = [1, 1]
        self.paddings = [1, 2, 1, 2]

    def init_shape(self):
        self.shape = [2, 3, 7, 7]


class TestCase3_AsyPadding(TestCase3):
657

658 659 660 661 662 663 664 665 666 667
    def init_test_case(self):
        self.ksize = [3, 3]
        self.strides = [1, 1]
        self.paddings = [1, 0, 1, 2]

    def init_shape(self):
        self.shape = [2, 3, 5, 5]


class TestCase4_AsyPadding(TestCase4):
668

669 670 671 672 673 674 675 676 677 678
    def init_test_case(self):
        self.ksize = [3, 3]
        self.strides = [1, 1]
        self.paddings = [1, 0, 1, 0]

    def init_shape(self):
        self.shape = [2, 3, 7, 7]


class TestCase5_AsyPadding((TestCase5)):
679

680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
    def init_test_case(self):
        self.ksize = [3, 3]
        self.strides = [1, 1]
        self.paddings = [2, 2, 1, 2]

    def init_shape(self):
        self.shape = [2, 3, 7, 7]


create_test_cudnn_class(TestPool2D_AsyPadding)
create_test_cudnn_class(TestCase1_AsyPadding)
create_test_cudnn_class(TestCase2_AsyPadding)
create_test_cudnn_class(TestCase3_AsyPadding)
create_test_cudnn_class(TestCase4_AsyPadding)
create_test_cudnn_class(TestCase5_AsyPadding)

create_test_cudnn_fp16_class(TestPool2D_AsyPadding)
create_test_cudnn_fp16_class(TestCase1_AsyPadding, check_grad=False)
create_test_cudnn_fp16_class(TestCase2_AsyPadding)
create_test_cudnn_fp16_class(TestCase3_AsyPadding)
create_test_cudnn_fp16_class(TestCase4_AsyPadding)
create_test_cudnn_fp16_class(TestCase5_AsyPadding)

create_test_cudnn_use_ceil_class(TestPool2D_AsyPadding)
create_test_cudnn_use_ceil_class(TestCase1_AsyPadding)

create_test_use_ceil_class(TestCase1_AsyPadding)
create_test_use_ceil_class(TestCase2_AsyPadding)


class TestAvgInclude_AsyPadding(TestCase2):
711

712 713 714 715 716 717 718 719 720 721 722 723 724
    def init_exclusive(self):
        self.exclusive = False

    def init_test_case(self):
        self.ksize = [3, 3]
        self.strides = [1, 1]
        self.paddings = [1, 2, 1, 2]

    def init_shape(self):
        self.shape = [2, 3, 7, 7]


class TestCUDNNAvgInclude_AsyPadding(TestCase2):
725

726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
    def init_kernel_type(self):
        self.use_cudnn = True

    def init_exclusive(self):
        self.exclusive = False

    def init_test_case(self):
        self.ksize = [3, 3]
        self.strides = [1, 1]
        self.paddings = [2, 1, 1, 1]

    def init_shape(self):
        self.shape = [2, 3, 7, 7]


class TestAvgPoolAdaptive_AsyPadding(TestCase1):
742

743 744 745 746 747 748 749 750 751 752 753 754 755 756
    def init_adaptive(self):
        self.adaptive = True

    def init_test_case(self):
        self.ksize = [3, 3]
        self.strides = [1, 1]
        self.paddings = [1, 1, 0, 2]

    def init_shape(self):
        self.shape = [2, 3, 7, 7]


#----------- test channel_last --------------
class TestPool2D_channel_last(TestPool2D_Op):
757

758 759 760 761 762 763 764 765
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 5, 5, 3]


class TestCase1_channel_last(TestCase1):
766

767 768 769 770 771 772 773 774
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 3]


class TestCase2_channel_last(TestCase2):
775

776 777 778 779 780 781 782 783
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 3]


class TestCase3_channel_last(TestCase3):
784

785 786 787 788 789 790 791 792
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 5, 5, 3]


class TestCase4_channel_last(TestCase4):
793

794 795 796 797 798 799 800 801
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 3]


class TestCase5_channel_last(TestCase5):
802

803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 3]


create_test_cudnn_class(TestPool2D_channel_last)
create_test_cudnn_class(TestCase1_channel_last)
create_test_cudnn_class(TestCase2_channel_last)
create_test_cudnn_class(TestCase3_channel_last)
create_test_cudnn_class(TestCase4_channel_last)
create_test_cudnn_class(TestCase5_channel_last)

create_test_cudnn_fp16_class(TestPool2D_channel_last)
create_test_cudnn_fp16_class(TestCase1_channel_last, check_grad=False)
create_test_cudnn_fp16_class(TestCase2_channel_last)
create_test_cudnn_fp16_class(TestCase3_channel_last)
create_test_cudnn_fp16_class(TestCase4_channel_last)
create_test_cudnn_fp16_class(TestCase5_channel_last)

create_test_cudnn_use_ceil_class(TestPool2D_channel_last)
create_test_cudnn_use_ceil_class(TestCase1_channel_last)

create_test_use_ceil_class(TestCase1_channel_last)
create_test_use_ceil_class(TestCase2_channel_last)


class TestCase5_Max(TestCase2):
832

833 834 835 836 837 838 839 840
    def init_pool_type(self):
        self.pool_type = "max"

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        if self.has_cudnn() and self.pool_type == "max":
            place = core.CUDAPlace(0)
841 842 843 844
            self.check_grad_with_place(place,
                                       set(['X']),
                                       'Out',
                                       max_relative_error=1.00)
845 846 847 848 849
        elif self.pool_type == "max":
            self.check_grad(set(['X']), 'Out', max_relative_error=1.00)


class TestCase5_channel_last_Max(TestCase5_Max):
850

851 852 853 854 855 856 857 858 859 860 861 862
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 3]


create_test_cudnn_class(TestCase5_Max)
create_test_cudnn_class(TestCase5_channel_last_Max)


class TestAvgInclude_channel_last(TestCase2_channel_last):
863

864 865 866 867 868
    def init_exclusive(self):
        self.exclusive = False


class TestCUDNNAvgInclude_channel_last(TestCase2_channel_last):
869

870 871 872 873 874 875 876 877
    def init_kernel_type(self):
        self.use_cudnn = True

    def init_exclusive(self):
        self.exclusive = False


class TestAvgPoolAdaptive_channel_last(TestCase1_channel_last):
878

879 880 881 882 883
    def init_adaptive(self):
        self.adaptive = True


class TestPool2D_AsyPadding_channel_last(TestPool2D_AsyPadding):
884

885 886 887 888 889 890 891 892
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 5, 5, 3]


class TestCase1_AsyPadding_channel_last(TestCase1_AsyPadding):
893

894 895 896 897 898 899 900 901
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 3]


class TestCase2_AsyPadding_channel_last(TestCase2_AsyPadding):
902

903 904 905 906 907 908 909 910
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 3]


class TestCase3_AsyPadding_channel_last(TestCase3_AsyPadding):
911

912 913 914 915 916 917 918 919
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 5, 5, 3]


class TestCase4_AsyPadding_channel_last(TestCase4_AsyPadding):
920

921 922 923 924 925 926 927 928
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 3]


class TestCase5_AsyPadding_channel_last(TestCase5_AsyPadding):
929

930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 3]


create_test_cudnn_class(TestPool2D_AsyPadding_channel_last)
create_test_cudnn_class(TestCase1_AsyPadding_channel_last)
create_test_cudnn_class(TestCase2_AsyPadding_channel_last)
create_test_cudnn_class(TestCase3_AsyPadding_channel_last)
create_test_cudnn_class(TestCase4_AsyPadding_channel_last)
create_test_cudnn_class(TestCase5_AsyPadding_channel_last)

create_test_cudnn_fp16_class(TestPool2D_AsyPadding_channel_last)
945 946
create_test_cudnn_fp16_class(TestCase1_AsyPadding_channel_last,
                             check_grad=False)
947 948 949 950 951 952 953 954 955 956 957 958 959
create_test_cudnn_fp16_class(TestCase2_AsyPadding_channel_last)
create_test_cudnn_fp16_class(TestCase3_AsyPadding_channel_last)
create_test_cudnn_fp16_class(TestCase4_AsyPadding_channel_last)
create_test_cudnn_fp16_class(TestCase5_AsyPadding_channel_last)

create_test_cudnn_use_ceil_class(TestPool2D_AsyPadding_channel_last)
create_test_cudnn_use_ceil_class(TestCase1_AsyPadding_channel_last)

create_test_use_ceil_class(TestCase1_AsyPadding_channel_last)
create_test_use_ceil_class(TestCase2_AsyPadding_channel_last)


class TestAvgInclude_AsyPadding_channel_last(TestAvgInclude_AsyPadding):
960

961 962 963 964 965 966 967
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 3]


968 969 970
class TestCUDNNAvgInclude_AsyPadding_channel_last(TestCUDNNAvgInclude_AsyPadding
                                                  ):

971 972 973 974 975 976 977
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 3]


978 979 980
class TestAvgPoolAdaptive_AsyPadding_channel_last(TestAvgPoolAdaptive_AsyPadding
                                                  ):

981 982 983 984 985 986 987 988 989 990 991
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 3]


# test paddings: SAME VALID


def create_test_padding_SAME_class(parent):
992

993
    class TestPaddingSMAECase(parent):
994

995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
        def init_paddings(self):
            self.paddings = [0, 0]
            self.padding_algorithm = "SAME"

    cls_name = "{0}_{1}".format(parent.__name__, "PaddingSAMEOp")
    TestPaddingSMAECase.__name__ = cls_name
    globals()[cls_name] = TestPaddingSMAECase


create_test_padding_SAME_class(TestPool2D_Op)
create_test_padding_SAME_class(TestCase1)
create_test_padding_SAME_class(TestCase2)
create_test_padding_SAME_class(TestCase3)
create_test_padding_SAME_class(TestCase4)
create_test_padding_SAME_class(TestCase5)

create_test_padding_SAME_class(TestPool2D_channel_last)
create_test_padding_SAME_class(TestCase1_channel_last)
create_test_padding_SAME_class(TestCase2_channel_last)
create_test_padding_SAME_class(TestCase3_channel_last)
create_test_padding_SAME_class(TestCase4_channel_last)
create_test_padding_SAME_class(TestCase5_channel_last)


def create_test_cudnn_padding_SAME_class(parent):
1020

1021 1022 1023
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNPaddingSMAECase(parent):
1024

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
        def init_kernel_type(self):
            self.use_cudnn = True

        def init_paddings(self):
            self.paddings = [1, 1]
            self.padding_algorithm = "SAME"

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnPaddingSAMEOp")
    TestCUDNNPaddingSMAECase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNPaddingSMAECase


create_test_cudnn_padding_SAME_class(TestPool2D_Op)
create_test_cudnn_padding_SAME_class(TestCase1)
create_test_cudnn_padding_SAME_class(TestCase2)
create_test_cudnn_padding_SAME_class(TestCase3)
create_test_cudnn_padding_SAME_class(TestCase4)
create_test_cudnn_padding_SAME_class(TestCase5)

create_test_cudnn_padding_SAME_class(TestPool2D_channel_last)
create_test_cudnn_padding_SAME_class(TestCase1_channel_last)
create_test_cudnn_padding_SAME_class(TestCase2_channel_last)
create_test_cudnn_padding_SAME_class(TestCase3_channel_last)
create_test_cudnn_padding_SAME_class(TestCase4_channel_last)
create_test_cudnn_padding_SAME_class(TestCase5_channel_last)


def create_test_padding_VALID_class(parent):
1053

1054
    class TestPaddingVALIDCase(parent):
1055

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
        def init_paddings(self):
            self.paddings = [1, 1]
            self.padding_algorithm = "VALID"

    cls_name = "{0}_{1}".format(parent.__name__, "PaddingVALIDOp")
    TestPaddingVALIDCase.__name__ = cls_name
    globals()[cls_name] = TestPaddingVALIDCase


create_test_padding_VALID_class(TestPool2D_Op)
create_test_padding_VALID_class(TestCase1)
create_test_padding_VALID_class(TestCase2)
create_test_padding_VALID_class(TestCase3)
create_test_padding_VALID_class(TestCase4)
create_test_padding_VALID_class(TestCase5)

create_test_padding_VALID_class(TestPool2D_channel_last)
create_test_padding_VALID_class(TestCase1_channel_last)
create_test_padding_VALID_class(TestCase2_channel_last)
create_test_padding_VALID_class(TestCase3_channel_last)
create_test_padding_VALID_class(TestCase4_channel_last)
create_test_padding_VALID_class(TestCase5_channel_last)


def create_test_cudnn_padding_VALID_class(parent):
1081

1082 1083 1084
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNPaddingVALIDCase(parent):
1085

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
        def init_kernel_type(self):
            self.use_cudnn = True

        def init_paddings(self):
            self.paddings = [1, 1]
            self.padding_algorithm = "VALID"

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnPaddingVALIDOp")
    TestCUDNNPaddingVALIDCase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNPaddingVALIDCase


create_test_cudnn_padding_VALID_class(TestPool2D_Op)
create_test_cudnn_padding_VALID_class(TestCase1)
create_test_cudnn_padding_VALID_class(TestCase2)
create_test_cudnn_padding_VALID_class(TestCase3)
create_test_cudnn_padding_VALID_class(TestCase4)
create_test_cudnn_padding_VALID_class(TestCase5)

create_test_cudnn_padding_VALID_class(TestPool2D_channel_last)
create_test_cudnn_padding_VALID_class(TestCase1_channel_last)
create_test_cudnn_padding_VALID_class(TestCase2_channel_last)
create_test_cudnn_padding_VALID_class(TestCase3_channel_last)
create_test_cudnn_padding_VALID_class(TestCase4_channel_last)
create_test_cudnn_padding_VALID_class(TestCase5_channel_last)


1113
class TestCase1_strides(TestCase1):
1114

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
    def init_test_case(self):
        self.ksize = [3, 3]
        self.strides = [1, 2]

    def init_shape(self):
        self.shape = [2, 3, 4, 5]


create_test_cudnn_class(TestCase1_strides)
create_test_padding_SAME_class(TestCase1_strides)
create_test_cudnn_padding_SAME_class(TestCase1_strides)


1128
# ----- test API
C
cnn 已提交
1129
class TestPool2DAPI(unittest.TestCase):
1130

1131 1132 1133 1134
    def test_api(self):
        x_NHWC = np.random.random([2, 5, 5, 3]).astype("float32")
        x_NCHW = np.random.random([2, 3, 5, 5]).astype("float32")

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
        input_NHWC = fluid.layers.data(name="input_NHWC",
                                       shape=[2, 5, 5, 3],
                                       append_batch_size=False,
                                       dtype="float32")

        input_NCHW = fluid.layers.data(name="input_NCHW",
                                       shape=[2, 3, 5, 5],
                                       append_batch_size=False,
                                       dtype="float32")

        input_NHWC_negetive = fluid.layers.data(name="input_NHWC_negetive",
                                                shape=[2, -1, 5, 3],
                                                append_batch_size=False,
                                                dtype="float32")

        input_NCHW_negetive = fluid.layers.data(name="input_NCHW_negetive",
                                                shape=[2, 3, -1, -1],
                                                append_batch_size=False,
                                                dtype="float32")
1154

1155
        ksize = [3, 3]
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
        out_1 = fluid.layers.pool2d(input=input_NHWC,
                                    pool_size=ksize,
                                    pool_type="max",
                                    pool_padding=[1, 1],
                                    use_cudnn=False,
                                    data_format="NHWC")

        out_2 = fluid.layers.pool2d(input=input_NHWC,
                                    pool_size=ksize,
                                    pool_type="avg",
                                    pool_padding=[[0, 0], [1, 1], [1, 1],
                                                  [0, 0]],
                                    use_cudnn=False,
                                    data_format="NHWC")

        out_3 = fluid.layers.pool2d(input=input_NCHW,
                                    pool_size=ksize,
                                    pool_type="avg",
                                    pool_padding=[[0, 0], [0, 0], [1, 1],
                                                  [1, 1]],
                                    use_cudnn=False,
                                    data_format="NCHW")

        out_4 = fluid.layers.pool2d(input=input_NCHW,
                                    pool_size=ksize,
                                    pool_type="avg",
                                    pool_padding=[1, 2, 1, 0],
                                    use_cudnn=False,
                                    data_format="NCHW")
1185
        # test VALID
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
        out_5 = fluid.layers.pool2d(input=input_NCHW,
                                    pool_size=ksize,
                                    pool_type="avg",
                                    pool_padding="VALID",
                                    use_cudnn=False,
                                    data_format="NCHW")

        out_6 = fluid.layers.pool2d(input=input_NHWC,
                                    pool_size=ksize,
                                    pool_type="max",
                                    pool_padding="VALID",
                                    use_cudnn=False,
                                    data_format="NHWC")
1199 1200

        # test SAME
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
        out_7 = fluid.layers.pool2d(input=input_NCHW,
                                    pool_size=[4, 4],
                                    pool_type="avg",
                                    pool_padding="SAME",
                                    use_cudnn=False,
                                    data_format="NCHW")

        out_8 = fluid.layers.pool2d(input=input_NHWC,
                                    pool_size=[4, 4],
                                    pool_type="max",
                                    pool_padding="SAME",
                                    use_cudnn=False,
                                    data_format="NHWC")
1214

1215
        # test negetive
1216 1217 1218 1219 1220 1221
        out_9 = fluid.layers.pool2d(input=input_NHWC_negetive,
                                    pool_size=ksize,
                                    pool_type="avg",
                                    pool_padding=[0, 0],
                                    use_cudnn=False,
                                    data_format="NHWC")
1222 1223
        assert out_9.shape == (2, -1, 3, 3)

1224 1225 1226 1227 1228 1229
        out_10 = fluid.layers.pool2d(input=input_NCHW_negetive,
                                     pool_size=ksize,
                                     pool_type="avg",
                                     pool_padding=[0, 0],
                                     use_cudnn=False,
                                     data_format="NCHW")
1230 1231
        assert out_10.shape == (2, 3, -1, -1)

1232 1233 1234
        exe = fluid.Executor(place=fluid.CPUPlace())
        [res_1, res_2, res_3, res_4, res_5, res_6, res_7, res_8] = exe.run(
            fluid.default_main_program(),
1235 1236 1237 1238 1239 1240
            feed={
                "input_NHWC": x_NHWC,
                "input_NCHW": x_NCHW,
                "input_NHWC_negetive": x_NHWC,
                "input_NCHW_negetive": x_NCHW
            },
1241
            fetch_list=[out_1, out_2, out_3, out_4, out_5, out_6, out_7, out_8])
1242 1243 1244

        assert np.allclose(
            res_1,
1245 1246 1247 1248 1249 1250
            pool2D_forward_naive(x=x_NHWC,
                                 ksize=ksize,
                                 pool_type="max",
                                 strides=[1, 1],
                                 paddings=[1, 1],
                                 data_format="NHWC"))
1251 1252 1253

        assert np.allclose(
            res_2,
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
            pool2D_forward_naive(x=x_NHWC,
                                 ksize=ksize,
                                 pool_type="avg",
                                 strides=[1, 1],
                                 paddings=[1, 1, 1, 1],
                                 data_format="NHWC"))
        assert np.allclose(res_3,
                           pool2D_forward_naive(x=x_NCHW,
                                                ksize=ksize,
                                                pool_type="avg",
                                                strides=[1, 1],
                                                paddings=[1, 1, 1, 1],
                                                data_format="NCHW"),
                           rtol=0.07,
                           atol=1e-05)

        assert np.allclose(res_4,
                           pool2D_forward_naive(x=x_NCHW,
                                                ksize=ksize,
                                                pool_type="avg",
                                                strides=[1, 1],
                                                paddings=[1, 2, 1, 0],
                                                data_format="NCHW"),
                           rtol=0.07,
                           atol=1e-05)
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294

        # VALID
        assert np.allclose(
            res_5,
            pool2D_forward_naive(
                x=x_NCHW,
                ksize=ksize,
                pool_type="avg",
                strides=[1, 1],
                paddings=[10, 20],  # any ele is ok
                padding_algorithm="VALID",
                data_format="NCHW"),
            rtol=0.07,
            atol=1e-05)
        assert np.allclose(
            res_6,
1295 1296 1297 1298 1299 1300 1301
            pool2D_forward_naive(x=x_NHWC,
                                 ksize=ksize,
                                 pool_type="max",
                                 strides=[1, 1],
                                 paddings=[10, 20],
                                 padding_algorithm="VALID",
                                 data_format="NHWC"))
1302
        # SAME
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
        assert np.allclose(res_7,
                           pool2D_forward_naive(x=x_NCHW,
                                                ksize=[4, 4],
                                                pool_type="avg",
                                                strides=[1, 1],
                                                paddings=[10, 20],
                                                padding_algorithm="SAME",
                                                data_format="NCHW"),
                           rtol=0.07,
                           atol=1e-05)
1313 1314 1315

        assert np.allclose(
            res_8,
1316 1317 1318 1319 1320 1321 1322
            pool2D_forward_naive(x=x_NHWC,
                                 ksize=[4, 4],
                                 pool_type="max",
                                 strides=[1, 1],
                                 paddings=[10, 20],
                                 padding_algorithm="SAME",
                                 data_format="NHWC"))
1323 1324


C
cnn 已提交
1325
class TestPool2DAPI_Error(unittest.TestCase):
1326

1327
    def test_api(self):
1328 1329 1330 1331
        input_NHWC = fluid.layers.data(name="input_NHWC",
                                       shape=[2, 5, 5, 3],
                                       append_batch_size=False,
                                       dtype="float32")
1332 1333
        ksize = [3, 3]

1334
        # cudnn type error
1335
        def run_1():
1336 1337 1338 1339 1340 1341
            out_1 = fluid.layers.pool2d(input=input_NHWC,
                                        pool_size=ksize,
                                        pool_type="max",
                                        pool_padding=[1, 1],
                                        use_cudnn=[0],
                                        data_format="NHWC")
1342

1343
        self.assertRaises(TypeError, run_1)
1344 1345 1346

        # data_format value error
        def run_2():
1347 1348 1349 1350 1351 1352
            out_2 = fluid.layers.pool2d(input=input_NHWC,
                                        pool_size=ksize,
                                        pool_type="max",
                                        pool_padding=[1, 1],
                                        use_cudnn=False,
                                        data_format="NHWCC")
1353 1354 1355 1356 1357

        self.assertRaises(ValueError, run_2)

        # padding str value error
        def run_3():
1358 1359 1360 1361 1362 1363
            out_3 = fluid.layers.pool2d(input=input_NHWC,
                                        pool_size=ksize,
                                        pool_type="max",
                                        pool_padding="VALIDSAME",
                                        use_cudnn=False,
                                        data_format="NHWC")
1364 1365 1366 1367 1368

        self.assertRaises(ValueError, run_3)

        # padding str valid and ceil_mode value error
        def run_4():
1369 1370 1371 1372 1373 1374 1375
            out_4 = fluid.layers.pool2d(input=input_NHWC,
                                        pool_size=ksize,
                                        pool_type="max",
                                        pool_padding="VALID",
                                        use_cudnn=False,
                                        ceil_mode=True,
                                        data_format="NHWC")
1376 1377 1378 1379 1380

        self.assertRaises(ValueError, run_4)

        # padding with 8 ele. value error
        def run_5():
1381 1382 1383 1384 1385 1386 1387
            out_5 = fluid.layers.pool2d(input=input_NHWC,
                                        pool_size=ksize,
                                        pool_type="max",
                                        pool_padding=[[1, 1], [0, 0], [0, 0],
                                                      [1, 1]],
                                        use_cudnn=False,
                                        data_format="NHWC")
1388 1389 1390 1391

        self.assertRaises(ValueError, run_5)


1392
class TestDygraphPool2DAPIError(unittest.TestCase):
1393

1394 1395 1396 1397
    def test_errors(self):
        with program_guard(Program(), Program()):
            # the input of Pool2D must be Variable.
            data1 = np.random.random((3, 32, 32, 5)).astype('float32')
1398 1399 1400 1401
            pool2d = fluid.dygraph.Pool2D(pool_size=2,
                                          pool_type='max',
                                          pool_stride=1,
                                          global_pooling=False)
1402 1403 1404 1405 1406
            self.assertRaises(TypeError, pool2d, data1)

            # the input dtype of Pool2D must be uint8 or int8 or float16 or float32 or float64
            # uint8 and int8 only can be set on mkldnn
            # float16 only can be set on GPU place
1407 1408 1409
            data2 = fluid.layers.data(name='x1',
                                      shape=[3, 32, 32, 5],
                                      dtype="int32")
1410 1411
            self.assertRaises(TypeError, pool2d, data2)

1412 1413 1414 1415
    def test_data_format_error(self):
        with program_guard(Program(), Program()):
            # the data_format must be 'NCHW' or 'NHWC'
            data1 = np.random.random((3, 32, 32, 5)).astype('float32')
1416 1417 1418 1419 1420 1421 1422
            self.assertRaises(ValueError,
                              fluid.dygraph.Pool2D,
                              pool_size=2,
                              pool_type='max',
                              pool_stride=1,
                              global_pooling=False,
                              data_format='NWHC')
1423 1424 1425


class TestDygraphPool2DAPI(unittest.TestCase):
1426

1427 1428 1429 1430
    def test_nhwc(self):
        with fluid.dygraph.guard():
            data = np.random.random((3, 32, 32, 5)).astype('float32')
            x = fluid.dygraph.to_variable(data)
1431 1432 1433 1434 1435 1436
            pool2d = fluid.dygraph.Pool2D(pool_size=2,
                                          pool_type='max',
                                          pool_stride=1,
                                          pool_padding=[0, 0],
                                          global_pooling=False,
                                          data_format='NHWC')
1437
            out1 = pool2d(x)
1438 1439 1440 1441
            out2 = pool2D_forward_naive(data, [2, 2], [1, 1],
                                        paddings=[0, 0],
                                        pool_type='max',
                                        data_format='NHWC')
1442
            np.testing.assert_allclose(out1.numpy(), out2, rtol=1e-05)
1443 1444 1445 1446 1447

    def test_lower_case(self):
        with fluid.dygraph.guard():
            data = np.random.random((3, 32, 32, 5)).astype('float32')
            x = fluid.dygraph.to_variable(data)
1448 1449 1450 1451 1452 1453
            pool2d = fluid.dygraph.Pool2D(pool_size=2,
                                          pool_type='max',
                                          pool_stride=1,
                                          pool_padding=[0, 0],
                                          global_pooling=False,
                                          data_format='nhwc')
1454
            out1 = pool2d(x)
1455 1456 1457 1458
            out2 = pool2D_forward_naive(data, [2, 2], [1, 1],
                                        paddings=[0, 0],
                                        pool_type='max',
                                        data_format='NHWC')
1459
            np.testing.assert_allclose(out1.numpy(), out2, rtol=1e-05)
1460 1461 1462 1463 1464

    def test_upper_case(self):
        with fluid.dygraph.guard():
            data = np.random.random((3, 32, 32, 5)).astype('float32')
            x = fluid.dygraph.to_variable(data)
1465 1466 1467 1468 1469 1470
            pool2d = fluid.dygraph.Pool2D(pool_size=2,
                                          pool_type='MAX',
                                          pool_stride=1,
                                          pool_padding=[0, 0],
                                          global_pooling=False,
                                          data_format='nhwc')
1471
            out1 = pool2d(x)
1472 1473 1474 1475
            out2 = pool2D_forward_naive(data, [2, 2], [1, 1],
                                        paddings=[0, 0],
                                        pool_type='max',
                                        data_format='NHWC')
1476
            np.testing.assert_allclose(out1.numpy(), out2, rtol=1e-05)
1477

1478

C
chengduoZH 已提交
1479 1480
if __name__ == '__main__':
    unittest.main()