test_pool2d_op.py 10.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

C
chengduoZH 已提交
17 18
import unittest
import numpy as np
19

20
import paddle.fluid.core as core
21
from op_test import OpTest
C
chengduoZH 已提交
22 23


24 25 26 27 28
def max_pool2D_forward_naive(x,
                             ksize,
                             strides,
                             paddings,
                             global_pool=0,
29 30
                             ceil_mode=False,
                             exclusive=True):
C
chengduoZH 已提交
31
    N, C, H, W = x.shape
C
chengduoZH 已提交
32 33
    if global_pool == 1:
        ksize = [H, W]
34
    H_out = (H - ksize[0] + 2 * paddings[0] + strides[0] - 1
M
minqiyang 已提交
35 36
             ) // strides[0] + 1 if ceil_mode else (
                 H - ksize[0] + 2 * paddings[0]) // strides[0] + 1
37
    W_out = (W - ksize[1] + 2 * paddings[1] + strides[1] - 1
M
minqiyang 已提交
38 39
             ) // strides[1] + 1 if ceil_mode else (
                 W - ksize[1] + 2 * paddings[1]) // strides[1] + 1
C
chengduoZH 已提交
40
    out = np.zeros((N, C, H_out, W_out))
41 42
    for i in range(H_out):
        for j in range(W_out):
C
chengduoZH 已提交
43 44 45 46 47 48 49 50 51 52
            r_start = np.max((i * strides[0] - paddings[0], 0))
            r_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
            c_start = np.max((j * strides[1] - paddings[1], 0))
            c_end = np.min((j * strides[1] + ksize[1] - paddings[1], W))
            x_masked = x[:, :, r_start:r_end, c_start:c_end]

            out[:, :, i, j] = np.max(x_masked, axis=(2, 3))
    return out


53 54 55 56 57
def avg_pool2D_forward_naive(x,
                             ksize,
                             strides,
                             paddings,
                             global_pool=0,
58 59
                             ceil_mode=False,
                             exclusive=True):
C
chengduoZH 已提交
60
    N, C, H, W = x.shape
C
chengduoZH 已提交
61 62
    if global_pool == 1:
        ksize = [H, W]
63
    H_out = (H - ksize[0] + 2 * paddings[0] + strides[0] - 1
M
minqiyang 已提交
64 65
             ) // strides[0] + 1 if ceil_mode else (
                 H - ksize[0] + 2 * paddings[0]) // strides[0] + 1
66
    W_out = (W - ksize[1] + 2 * paddings[1] + strides[1] - 1
M
minqiyang 已提交
67 68
             ) // strides[1] + 1 if ceil_mode else (
                 W - ksize[1] + 2 * paddings[1]) // strides[1] + 1
C
chengduoZH 已提交
69
    out = np.zeros((N, C, H_out, W_out))
70 71
    for i in range(H_out):
        for j in range(W_out):
C
chengduoZH 已提交
72 73 74 75 76 77
            r_start = np.max((i * strides[0] - paddings[0], 0))
            r_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
            c_start = np.max((j * strides[1] - paddings[1], 0))
            c_end = np.min((j * strides[1] + ksize[1] - paddings[1], W))
            x_masked = x[:, :, r_start:r_end, c_start:c_end]

78 79 80
            field_size = ((r_end - r_start) * (c_end - c_start)) if exclusive \
                            else (ksize[0] * ksize[1])
            out[:, :, i, j] = np.sum(x_masked, axis=(2, 3)) / field_size
C
chengduoZH 已提交
81 82 83
    return out


C
chengduo 已提交
84
class TestPool2D_Op(OpTest):
C
chengduoZH 已提交
85
    def setUp(self):
K
Kexin Zhao 已提交
86
        self.op_type = "pool2d"
87
        self.use_cudnn = False
88
        self.use_mkldnn = False
K
Kexin Zhao 已提交
89
        self.dtype = np.float32
C
chengduoZH 已提交
90
        self.init_test_case()
C
chengduoZH 已提交
91
        self.init_global_pool()
K
Kexin Zhao 已提交
92
        self.init_kernel_type()
C
chengduoZH 已提交
93
        self.init_pool_type()
94
        self.init_ceil_mode()
95
        self.init_exclusive()
C
fix bug  
chengduoZH 已提交
96 97
        if self.global_pool:
            self.paddings = [0 for _ in range(len(self.paddings))]
K
Kexin Zhao 已提交
98
        input = np.random.random(self.shape).astype(self.dtype)
99 100 101
        output = self.pool2D_forward_naive(
            input, self.ksize, self.strides, self.paddings, self.global_pool,
            self.ceil_mode, self.exclusive).astype(self.dtype)
K
Kexin Zhao 已提交
102
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(input)}
C
chengduoZH 已提交
103 104 105 106 107

        self.attrs = {
            'strides': self.strides,
            'paddings': self.paddings,
            'ksize': self.ksize,
C
chengduoZH 已提交
108 109
            'pooling_type': self.pool_type,
            'global_pooling': self.global_pool,
110
            'use_cudnn': self.use_cudnn,
111
            'use_mkldnn': self.use_mkldnn,
112
            'ceil_mode': self.ceil_mode,
113 114
            'data_format':
            'AnyLayout',  # TODO(dzhwinter) : should be fix latter
115
            'exclusive': self.exclusive
C
chengduoZH 已提交
116 117
        }

K
Kexin Zhao 已提交
118
        self.outputs = {'Out': output}
C
chengduoZH 已提交
119

120 121 122
    def testcudnn(self):
        return core.is_compiled_with_cuda() and self.use_cudnn

C
chengduoZH 已提交
123
    def test_check_output(self):
124
        if self.testcudnn():
125 126 127 128
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-5)
        else:
            self.check_output()
C
chengduoZH 已提交
129 130

    def test_check_grad(self):
K
Kexin Zhao 已提交
131 132
        if self.dtype == np.float16:
            return
133
        if self.testcudnn() and self.pool_type != "max":
134 135 136 137
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, set(['X']), 'Out', max_relative_error=0.07)
        elif self.pool_type != "max":
138
            self.check_grad(set(['X']), 'Out', max_relative_error=0.07)
C
chengduoZH 已提交
139

C
chengduoZH 已提交
140
    def init_test_case(self):
C
chengduoZH 已提交
141 142 143 144 145
        self.shape = [2, 3, 5, 5]
        self.ksize = [3, 3]
        self.strides = [1, 1]
        self.paddings = [0, 0]

K
Kexin Zhao 已提交
146 147
    def init_kernel_type(self):
        pass
C
chengduoZH 已提交
148 149 150

    def init_pool_type(self):
        self.pool_type = "avg"
C
chengduoZH 已提交
151 152 153 154
        self.pool2D_forward_naive = avg_pool2D_forward_naive

    def init_global_pool(self):
        self.global_pool = True
C
chengduoZH 已提交
155

156 157 158
    def init_ceil_mode(self):
        self.ceil_mode = False

159 160 161
    def init_exclusive(self):
        self.exclusive = True

C
chengduoZH 已提交
162

C
chengduo 已提交
163
class TestCase1(TestPool2D_Op):
C
chengduoZH 已提交
164
    def init_test_case(self):
C
chengduoZH 已提交
165
        self.shape = [2, 3, 7, 7]
C
chengduoZH 已提交
166 167
        self.ksize = [3, 3]
        self.strides = [1, 1]
C
chengduoZH 已提交
168
        self.paddings = [0, 0]
C
chengduoZH 已提交
169

C
chengduoZH 已提交
170 171
    def init_pool_type(self):
        self.pool_type = "avg"
C
chengduoZH 已提交
172 173 174 175
        self.pool2D_forward_naive = avg_pool2D_forward_naive

    def init_global_pool(self):
        self.global_pool = False
C
chengduoZH 已提交
176

C
chengduoZH 已提交
177

C
chengduo 已提交
178
class TestCase2(TestPool2D_Op):
C
chengduoZH 已提交
179
    def init_test_case(self):
C
chengduoZH 已提交
180
        self.shape = [2, 3, 7, 7]
C
chengduoZH 已提交
181 182 183 184
        self.ksize = [3, 3]
        self.strides = [1, 1]
        self.paddings = [1, 1]

C
chengduoZH 已提交
185 186
    def init_pool_type(self):
        self.pool_type = "avg"
C
chengduoZH 已提交
187
        self.pool2D_forward_naive = avg_pool2D_forward_naive
C
chengduoZH 已提交
188

C
chengduoZH 已提交
189 190
    def init_global_pool(self):
        self.global_pool = False
C
chengduoZH 已提交
191

C
chengduoZH 已提交
192

C
chengduo 已提交
193
class TestCase3(TestPool2D_Op):
C
chengduoZH 已提交
194 195
    def init_pool_type(self):
        self.pool_type = "max"
C
chengduoZH 已提交
196
        self.pool2D_forward_naive = max_pool2D_forward_naive
C
chengduoZH 已提交
197

C
chengduoZH 已提交
198 199

class TestCase4(TestCase1):
C
chengduoZH 已提交
200 201 202 203
    def init_pool_type(self):
        self.pool_type = "max"
        self.pool2D_forward_naive = max_pool2D_forward_naive

C
chengduoZH 已提交
204 205

class TestCase5(TestCase2):
C
chengduoZH 已提交
206 207
    def init_pool_type(self):
        self.pool_type = "max"
C
chengduoZH 已提交
208
        self.pool2D_forward_naive = max_pool2D_forward_naive
C
chengduoZH 已提交
209 210


C
chengduo 已提交
211
#--------------------test pool2d cudnn--------------------
C
chengduoZH 已提交
212 213


C
chengduo 已提交
214 215 216 217 218 219
def create_test_cudnn_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
K
Kexin Zhao 已提交
220

C
chengduo 已提交
221 222 223
    cls_name = "{0}_{1}".format(parent.__name__, "CUDNNOp")
    TestCUDNNCase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNCase
K
Kexin Zhao 已提交
224 225


C
chengduo 已提交
226 227 228 229 230 231
create_test_cudnn_class(TestPool2D_Op)
create_test_cudnn_class(TestCase1)
create_test_cudnn_class(TestCase2)
create_test_cudnn_class(TestCase3)
create_test_cudnn_class(TestCase4)
create_test_cudnn_class(TestCase5)
C
chengduoZH 已提交
232

C
chengduo 已提交
233
#--------------------test pool2d cudnn_fp16--------------------
C
chengduoZH 已提交
234

K
Kexin Zhao 已提交
235

C
chengduo 已提交
236 237 238 239 240 241 242
def create_test_cudnn_fp16_class(parent, check_grad=True):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNFp16Case(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
            self.dtype = np.float16
K
Kexin Zhao 已提交
243

C
chengduo 已提交
244 245 246 247 248
        def test_check_output(self):
            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    self.check_output_with_place(place, atol=1e-3)
K
Kexin Zhao 已提交
249

C
chengduo 已提交
250
        def test_check_grad(self):
K
Kexin Zhao 已提交
251
            place = core.CUDAPlace(0)
C
chengduo 已提交
252 253 254 255
            if core.is_float16_supported(
                    place) and self.pool_type != "max" and check_grad:
                self.check_grad_with_place(
                    place, set(['X']), 'Out', max_relative_error=0.07)
K
Kexin Zhao 已提交
256

C
chengduo 已提交
257 258 259
    cls_name = "{0}_{1}".format(parent.__name__, "CUDNNFp16Op")
    TestCUDNNFp16Case.__name__ = cls_name
    globals()[cls_name] = TestCUDNNFp16Case
K
Kexin Zhao 已提交
260

C
chengduoZH 已提交
261

C
chengduo 已提交
262 263 264 265 266 267
create_test_cudnn_fp16_class(TestPool2D_Op)
create_test_cudnn_fp16_class(TestCase1, check_grad=False)
create_test_cudnn_fp16_class(TestCase2)
create_test_cudnn_fp16_class(TestCase3)
create_test_cudnn_fp16_class(TestCase4)
create_test_cudnn_fp16_class(TestCase5)
C
chengduoZH 已提交
268

C
chengduo 已提交
269
#--------------------test pool2d use ceil mode--------------------
K
Kexin Zhao 已提交
270 271


C
chengduo 已提交
272 273 274 275 276 277
def create_test_cudnn_use_ceil_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestPool2DUseCeilCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
K
Kexin Zhao 已提交
278

C
chengduo 已提交
279 280
        def init_ceil_mode(self):
            self.ceil_mode = True
C
chengduoZH 已提交
281

C
chengduo 已提交
282 283 284
    cls_name = "{0}_{1}".format(parent.__name__, "CUDNNOpCeilMode")
    TestPool2DUseCeilCase.__name__ = cls_name
    globals()[cls_name] = TestPool2DUseCeilCase
K
Kexin Zhao 已提交
285 286


C
chengduo 已提交
287 288
create_test_cudnn_use_ceil_class(TestPool2D_Op)
create_test_cudnn_use_ceil_class(TestCase1)
K
Kexin Zhao 已提交
289

290

C
chengduo 已提交
291 292 293 294
def create_test_use_ceil_class(parent):
    class TestPool2DUseCeilCase(parent):
        def init_ceil_mode(self):
            self.ceil_mode = True
295

C
chengduo 已提交
296 297 298
    cls_name = "{0}_{1}".format(parent.__name__, "CeilModeCast")
    TestPool2DUseCeilCase.__name__ = cls_name
    globals()[cls_name] = TestPool2DUseCeilCase
299 300


C
chengduo 已提交
301 302
create_test_use_ceil_class(TestCase1)
create_test_use_ceil_class(TestCase2)
303

304

305 306 307 308
class TestAvgInclude(TestCase2):
    def init_exclusive(self):
        self.exclusive = False

309

C
chengduo 已提交
310 311 312 313
class TestCUDNNAvgInclude(TestCase2):
    def init_kernel_type(self):
        self.use_cudnn = True

314 315 316
    def init_exclusive(self):
        self.exclusive = False

317

C
chengduoZH 已提交
318 319
if __name__ == '__main__':
    unittest.main()