test_pool2d_op.py 12.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
from __future__ import division
17

C
chengduoZH 已提交
18 19
import unittest
import numpy as np
20

21
import paddle.fluid.core as core
22
from op_test import OpTest
C
chengduoZH 已提交
23 24


25 26 27 28 29 30 31 32
def adaptive_start_index(index, input_size, output_size):
    return int(np.floor(index * input_size / output_size))


def adaptive_end_index(index, input_size, output_size):
    return int(np.ceil((index + 1) * input_size / output_size))


33 34 35 36 37
def max_pool2D_forward_naive(x,
                             ksize,
                             strides,
                             paddings,
                             global_pool=0,
38
                             ceil_mode=False,
39
                             exclusive=True,
40 41
                             adaptive=False,
                             data_type=np.float32):
C
chengduoZH 已提交
42
    N, C, H, W = x.shape
C
chengduoZH 已提交
43 44
    if global_pool == 1:
        ksize = [H, W]
45 46 47 48 49 50 51 52 53
    if adaptive:
        H_out, W_out = ksize
    else:
        H_out = (H - ksize[0] + 2 * paddings[0] + strides[0] - 1
                 ) // strides[0] + 1 if ceil_mode else (
                     H - ksize[0] + 2 * paddings[0]) // strides[0] + 1
        W_out = (W - ksize[1] + 2 * paddings[1] + strides[1] - 1
                 ) // strides[1] + 1 if ceil_mode else (
                     W - ksize[1] + 2 * paddings[1]) // strides[1] + 1
C
chengduoZH 已提交
54
    out = np.zeros((N, C, H_out, W_out))
55 56
    for i in range(H_out):
        for j in range(W_out):
57 58 59 60 61 62 63 64 65 66
            if adaptive:
                r_start = adaptive_start_index(i, H, ksize[0])
                r_end = adaptive_end_index(i, H, ksize[0])
                c_start = adaptive_start_index(j, W, ksize[1])
                c_end = adaptive_end_index(j, W, ksize[1])
            else:
                r_start = np.max((i * strides[0] - paddings[0], 0))
                r_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
                c_start = np.max((j * strides[1] - paddings[1], 0))
                c_end = np.min((j * strides[1] + ksize[1] - paddings[1], W))
C
chengduoZH 已提交
67 68 69 70 71 72
            x_masked = x[:, :, r_start:r_end, c_start:c_end]

            out[:, :, i, j] = np.max(x_masked, axis=(2, 3))
    return out


73 74 75 76 77
def avg_pool2D_forward_naive(x,
                             ksize,
                             strides,
                             paddings,
                             global_pool=0,
78
                             ceil_mode=False,
79
                             exclusive=True,
80 81
                             adaptive=False,
                             data_type=np.float32):
C
chengduoZH 已提交
82
    N, C, H, W = x.shape
C
chengduoZH 已提交
83 84
    if global_pool == 1:
        ksize = [H, W]
85 86 87 88 89 90 91 92 93
    if adaptive:
        H_out, W_out = ksize
    else:
        H_out = (H - ksize[0] + 2 * paddings[0] + strides[0] - 1
                 ) // strides[0] + 1 if ceil_mode else (
                     H - ksize[0] + 2 * paddings[0]) // strides[0] + 1
        W_out = (W - ksize[1] + 2 * paddings[1] + strides[1] - 1
                 ) // strides[1] + 1 if ceil_mode else (
                     W - ksize[1] + 2 * paddings[1]) // strides[1] + 1
C
chengduoZH 已提交
94
    out = np.zeros((N, C, H_out, W_out))
95 96
    for i in range(H_out):
        for j in range(W_out):
97 98 99 100 101 102 103 104 105 106
            if adaptive:
                r_start = adaptive_start_index(i, H, ksize[0])
                r_end = adaptive_end_index(i, H, ksize[0])
                c_start = adaptive_start_index(j, W, ksize[1])
                c_end = adaptive_end_index(j, W, ksize[1])
            else:
                r_start = np.max((i * strides[0] - paddings[0], 0))
                r_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
                c_start = np.max((j * strides[1] - paddings[1], 0))
                c_end = np.min((j * strides[1] + ksize[1] - paddings[1], W))
C
chengduoZH 已提交
107 108
            x_masked = x[:, :, r_start:r_end, c_start:c_end]

109 110
            field_size = ((r_end - r_start) * (c_end - c_start)) \
                        if (exclusive or adaptive) else (ksize[0] * ksize[1])
111 112 113 114 115 116 117
            if data_type == np.int8 or data_type == np.uint8:
                out[:, :, i, j] = (np.rint(
                    np.sum(x_masked, axis=(2, 3)) /
                    field_size)).astype(data_type)
            else:
                out[:, :, i, j] = (np.sum(x_masked, axis=(2, 3)) /
                                   field_size).astype(data_type)
C
chengduoZH 已提交
118 119 120
    return out


C
chengduo 已提交
121
class TestPool2D_Op(OpTest):
C
chengduoZH 已提交
122
    def setUp(self):
K
Kexin Zhao 已提交
123
        self.op_type = "pool2d"
124
        self.use_cudnn = False
125
        self.use_mkldnn = False
X
xiaolil1 已提交
126
        self.init_data_type()
C
chengduoZH 已提交
127
        self.init_test_case()
C
chengduoZH 已提交
128
        self.init_global_pool()
K
Kexin Zhao 已提交
129
        self.init_kernel_type()
C
chengduoZH 已提交
130
        self.init_pool_type()
131
        self.init_ceil_mode()
132
        self.init_exclusive()
133
        self.init_adaptive()
C
fix bug  
chengduoZH 已提交
134 135
        if self.global_pool:
            self.paddings = [0 for _ in range(len(self.paddings))]
K
Kexin Zhao 已提交
136
        input = np.random.random(self.shape).astype(self.dtype)
137
        output = (self.pool2D_forward_naive(
138
            input, self.ksize, self.strides, self.paddings, self.global_pool,
139 140
            self.ceil_mode, self.exclusive, self.adaptive,
            self.dtype)).astype(self.dtype)
K
Kexin Zhao 已提交
141
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(input)}
C
chengduoZH 已提交
142 143 144 145 146

        self.attrs = {
            'strides': self.strides,
            'paddings': self.paddings,
            'ksize': self.ksize,
C
chengduoZH 已提交
147 148
            'pooling_type': self.pool_type,
            'global_pooling': self.global_pool,
149
            'use_cudnn': self.use_cudnn,
150
            'use_mkldnn': self.use_mkldnn,
151
            'ceil_mode': self.ceil_mode,
152 153
            'data_format':
            'AnyLayout',  # TODO(dzhwinter) : should be fix latter
154 155
            'exclusive': self.exclusive,
            'adaptive': self.adaptive
C
chengduoZH 已提交
156 157
        }

K
Kexin Zhao 已提交
158
        self.outputs = {'Out': output}
C
chengduoZH 已提交
159

160
    def has_cudnn(self):
161 162
        return core.is_compiled_with_cuda() and self.use_cudnn

C
chengduoZH 已提交
163
    def test_check_output(self):
164
        if self.has_cudnn():
165 166 167 168
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-5)
        else:
            self.check_output()
C
chengduoZH 已提交
169 170

    def test_check_grad(self):
K
Kexin Zhao 已提交
171 172
        if self.dtype == np.float16:
            return
173
        if self.has_cudnn() and self.pool_type != "max":
174 175 176 177
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, set(['X']), 'Out', max_relative_error=0.07)
        elif self.pool_type != "max":
178
            self.check_grad(set(['X']), 'Out', max_relative_error=0.07)
C
chengduoZH 已提交
179

C
chengduoZH 已提交
180
    def init_test_case(self):
C
chengduoZH 已提交
181 182 183 184 185
        self.shape = [2, 3, 5, 5]
        self.ksize = [3, 3]
        self.strides = [1, 1]
        self.paddings = [0, 0]

K
Kexin Zhao 已提交
186 187
    def init_kernel_type(self):
        pass
C
chengduoZH 已提交
188

X
xiaolil1 已提交
189 190 191
    def init_data_type(self):
        self.dtype = np.float32

C
chengduoZH 已提交
192 193
    def init_pool_type(self):
        self.pool_type = "avg"
C
chengduoZH 已提交
194 195 196 197
        self.pool2D_forward_naive = avg_pool2D_forward_naive

    def init_global_pool(self):
        self.global_pool = True
C
chengduoZH 已提交
198

199 200 201
    def init_ceil_mode(self):
        self.ceil_mode = False

202 203 204
    def init_exclusive(self):
        self.exclusive = True

205 206 207
    def init_adaptive(self):
        self.adaptive = False

C
chengduoZH 已提交
208

C
chengduo 已提交
209
class TestCase1(TestPool2D_Op):
C
chengduoZH 已提交
210
    def init_test_case(self):
C
chengduoZH 已提交
211
        self.shape = [2, 3, 7, 7]
C
chengduoZH 已提交
212 213
        self.ksize = [3, 3]
        self.strides = [1, 1]
C
chengduoZH 已提交
214
        self.paddings = [0, 0]
C
chengduoZH 已提交
215

C
chengduoZH 已提交
216 217
    def init_pool_type(self):
        self.pool_type = "avg"
C
chengduoZH 已提交
218 219 220 221
        self.pool2D_forward_naive = avg_pool2D_forward_naive

    def init_global_pool(self):
        self.global_pool = False
C
chengduoZH 已提交
222

C
chengduoZH 已提交
223

C
chengduo 已提交
224
class TestCase2(TestPool2D_Op):
C
chengduoZH 已提交
225
    def init_test_case(self):
C
chengduoZH 已提交
226
        self.shape = [2, 3, 7, 7]
C
chengduoZH 已提交
227 228 229 230
        self.ksize = [3, 3]
        self.strides = [1, 1]
        self.paddings = [1, 1]

C
chengduoZH 已提交
231 232
    def init_pool_type(self):
        self.pool_type = "avg"
C
chengduoZH 已提交
233
        self.pool2D_forward_naive = avg_pool2D_forward_naive
C
chengduoZH 已提交
234

C
chengduoZH 已提交
235 236
    def init_global_pool(self):
        self.global_pool = False
C
chengduoZH 已提交
237

C
chengduoZH 已提交
238

C
chengduo 已提交
239
class TestCase3(TestPool2D_Op):
C
chengduoZH 已提交
240 241
    def init_pool_type(self):
        self.pool_type = "max"
C
chengduoZH 已提交
242
        self.pool2D_forward_naive = max_pool2D_forward_naive
C
chengduoZH 已提交
243

C
chengduoZH 已提交
244 245

class TestCase4(TestCase1):
C
chengduoZH 已提交
246 247 248 249
    def init_pool_type(self):
        self.pool_type = "max"
        self.pool2D_forward_naive = max_pool2D_forward_naive

C
chengduoZH 已提交
250 251

class TestCase5(TestCase2):
C
chengduoZH 已提交
252 253
    def init_pool_type(self):
        self.pool_type = "max"
C
chengduoZH 已提交
254
        self.pool2D_forward_naive = max_pool2D_forward_naive
C
chengduoZH 已提交
255 256


C
chengduo 已提交
257
#--------------------test pool2d cudnn--------------------
C
chengduoZH 已提交
258 259


C
chengduo 已提交
260 261 262 263 264 265
def create_test_cudnn_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
K
Kexin Zhao 已提交
266

C
chengduo 已提交
267 268 269
    cls_name = "{0}_{1}".format(parent.__name__, "CUDNNOp")
    TestCUDNNCase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNCase
K
Kexin Zhao 已提交
270 271


C
chengduo 已提交
272 273 274 275 276 277
create_test_cudnn_class(TestPool2D_Op)
create_test_cudnn_class(TestCase1)
create_test_cudnn_class(TestCase2)
create_test_cudnn_class(TestCase3)
create_test_cudnn_class(TestCase4)
create_test_cudnn_class(TestCase5)
C
chengduoZH 已提交
278

C
chengduo 已提交
279
#--------------------test pool2d cudnn_fp16--------------------
C
chengduoZH 已提交
280

K
Kexin Zhao 已提交
281

C
chengduo 已提交
282 283 284 285 286 287 288
def create_test_cudnn_fp16_class(parent, check_grad=True):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNFp16Case(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
            self.dtype = np.float16
K
Kexin Zhao 已提交
289

C
chengduo 已提交
290 291 292 293 294
        def test_check_output(self):
            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    self.check_output_with_place(place, atol=1e-3)
K
Kexin Zhao 已提交
295

C
chengduo 已提交
296
        def test_check_grad(self):
K
Kexin Zhao 已提交
297
            place = core.CUDAPlace(0)
C
chengduo 已提交
298 299 300 301
            if core.is_float16_supported(
                    place) and self.pool_type != "max" and check_grad:
                self.check_grad_with_place(
                    place, set(['X']), 'Out', max_relative_error=0.07)
K
Kexin Zhao 已提交
302

C
chengduo 已提交
303 304 305
    cls_name = "{0}_{1}".format(parent.__name__, "CUDNNFp16Op")
    TestCUDNNFp16Case.__name__ = cls_name
    globals()[cls_name] = TestCUDNNFp16Case
K
Kexin Zhao 已提交
306

C
chengduoZH 已提交
307

C
chengduo 已提交
308 309 310 311 312 313
create_test_cudnn_fp16_class(TestPool2D_Op)
create_test_cudnn_fp16_class(TestCase1, check_grad=False)
create_test_cudnn_fp16_class(TestCase2)
create_test_cudnn_fp16_class(TestCase3)
create_test_cudnn_fp16_class(TestCase4)
create_test_cudnn_fp16_class(TestCase5)
C
chengduoZH 已提交
314

C
chengduo 已提交
315
#--------------------test pool2d use ceil mode--------------------
K
Kexin Zhao 已提交
316 317


C
chengduo 已提交
318 319 320 321 322 323
def create_test_cudnn_use_ceil_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestPool2DUseCeilCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
K
Kexin Zhao 已提交
324

C
chengduo 已提交
325 326
        def init_ceil_mode(self):
            self.ceil_mode = True
C
chengduoZH 已提交
327

C
chengduo 已提交
328 329 330
    cls_name = "{0}_{1}".format(parent.__name__, "CUDNNOpCeilMode")
    TestPool2DUseCeilCase.__name__ = cls_name
    globals()[cls_name] = TestPool2DUseCeilCase
K
Kexin Zhao 已提交
331 332


C
chengduo 已提交
333 334
create_test_cudnn_use_ceil_class(TestPool2D_Op)
create_test_cudnn_use_ceil_class(TestCase1)
K
Kexin Zhao 已提交
335

336

C
chengduo 已提交
337 338 339 340
def create_test_use_ceil_class(parent):
    class TestPool2DUseCeilCase(parent):
        def init_ceil_mode(self):
            self.ceil_mode = True
341

C
chengduo 已提交
342 343 344
    cls_name = "{0}_{1}".format(parent.__name__, "CeilModeCast")
    TestPool2DUseCeilCase.__name__ = cls_name
    globals()[cls_name] = TestPool2DUseCeilCase
345 346


C
chengduo 已提交
347 348
create_test_use_ceil_class(TestCase1)
create_test_use_ceil_class(TestCase2)
349

350

351 352 353 354
class TestAvgInclude(TestCase2):
    def init_exclusive(self):
        self.exclusive = False

355

C
chengduo 已提交
356 357 358 359
class TestCUDNNAvgInclude(TestCase2):
    def init_kernel_type(self):
        self.use_cudnn = True

360 361 362
    def init_exclusive(self):
        self.exclusive = False

363

364 365 366 367 368
class TestAvgPoolAdaptive(TestCase1):
    def init_adaptive(self):
        self.adaptive = True


C
chengduoZH 已提交
369 370
if __name__ == '__main__':
    unittest.main()