“af4ef80e5b53fb44fa8dab4e857b796e2705c27c”上不存在“paddle/fluid/git@gitcode.net:BaiXuePrincess/Paddle.git”
test_pool2d_op.py 38.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
from __future__ import division
17

C
chengduoZH 已提交
18 19
import unittest
import numpy as np
20

21
import paddle.fluid.core as core
22
from op_test import OpTest
23
import paddle.fluid as fluid
C
chengduoZH 已提交
24 25


26 27 28 29 30 31 32 33
def adaptive_start_index(index, input_size, output_size):
    return int(np.floor(index * input_size / output_size))


def adaptive_end_index(index, input_size, output_size):
    return int(np.ceil((index + 1) * input_size / output_size))


34 35 36 37 38
def max_pool2D_forward_naive(x,
                             ksize,
                             strides,
                             paddings,
                             global_pool=0,
39
                             ceil_mode=False,
40
                             exclusive=True,
41 42
                             adaptive=False,
                             data_type=np.float32):
C
chengduoZH 已提交
43
    N, C, H, W = x.shape
C
chengduoZH 已提交
44 45
    if global_pool == 1:
        ksize = [H, W]
46 47 48 49 50 51 52 53 54
    if adaptive:
        H_out, W_out = ksize
    else:
        H_out = (H - ksize[0] + 2 * paddings[0] + strides[0] - 1
                 ) // strides[0] + 1 if ceil_mode else (
                     H - ksize[0] + 2 * paddings[0]) // strides[0] + 1
        W_out = (W - ksize[1] + 2 * paddings[1] + strides[1] - 1
                 ) // strides[1] + 1 if ceil_mode else (
                     W - ksize[1] + 2 * paddings[1]) // strides[1] + 1
C
chengduoZH 已提交
55
    out = np.zeros((N, C, H_out, W_out))
56 57
    for i in range(H_out):
        for j in range(W_out):
58 59 60 61 62 63 64 65 66 67
            if adaptive:
                r_start = adaptive_start_index(i, H, ksize[0])
                r_end = adaptive_end_index(i, H, ksize[0])
                c_start = adaptive_start_index(j, W, ksize[1])
                c_end = adaptive_end_index(j, W, ksize[1])
            else:
                r_start = np.max((i * strides[0] - paddings[0], 0))
                r_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
                c_start = np.max((j * strides[1] - paddings[1], 0))
                c_end = np.min((j * strides[1] + ksize[1] - paddings[1], W))
C
chengduoZH 已提交
68 69 70 71 72 73
            x_masked = x[:, :, r_start:r_end, c_start:c_end]

            out[:, :, i, j] = np.max(x_masked, axis=(2, 3))
    return out


74 75 76 77 78
def avg_pool2D_forward_naive(x,
                             ksize,
                             strides,
                             paddings,
                             global_pool=0,
79
                             ceil_mode=False,
80
                             exclusive=True,
81 82
                             adaptive=False,
                             data_type=np.float32):
C
chengduoZH 已提交
83
    N, C, H, W = x.shape
C
chengduoZH 已提交
84 85
    if global_pool == 1:
        ksize = [H, W]
86 87 88 89 90 91 92 93 94
    if adaptive:
        H_out, W_out = ksize
    else:
        H_out = (H - ksize[0] + 2 * paddings[0] + strides[0] - 1
                 ) // strides[0] + 1 if ceil_mode else (
                     H - ksize[0] + 2 * paddings[0]) // strides[0] + 1
        W_out = (W - ksize[1] + 2 * paddings[1] + strides[1] - 1
                 ) // strides[1] + 1 if ceil_mode else (
                     W - ksize[1] + 2 * paddings[1]) // strides[1] + 1
C
chengduoZH 已提交
95
    out = np.zeros((N, C, H_out, W_out))
96 97
    for i in range(H_out):
        for j in range(W_out):
98 99 100 101 102 103 104 105 106 107
            if adaptive:
                r_start = adaptive_start_index(i, H, ksize[0])
                r_end = adaptive_end_index(i, H, ksize[0])
                c_start = adaptive_start_index(j, W, ksize[1])
                c_end = adaptive_end_index(j, W, ksize[1])
            else:
                r_start = np.max((i * strides[0] - paddings[0], 0))
                r_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
                c_start = np.max((j * strides[1] - paddings[1], 0))
                c_end = np.min((j * strides[1] + ksize[1] - paddings[1], W))
C
chengduoZH 已提交
108 109
            x_masked = x[:, :, r_start:r_end, c_start:c_end]

110
            field_size = ((r_end - r_start) * (c_end - c_start)) \
111
                if (exclusive or adaptive) else (ksize[0] * ksize[1])
112 113 114 115 116 117 118
            if data_type == np.int8 or data_type == np.uint8:
                out[:, :, i, j] = (np.rint(
                    np.sum(x_masked, axis=(2, 3)) /
                    field_size)).astype(data_type)
            else:
                out[:, :, i, j] = (np.sum(x_masked, axis=(2, 3)) /
                                   field_size).astype(data_type)
C
chengduoZH 已提交
119 120 121
    return out


122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
def pool2D_forward_naive(x,
                         ksize,
                         strides,
                         paddings,
                         global_pool=0,
                         ceil_mode=False,
                         exclusive=True,
                         adaptive=False,
                         data_format='NCHW',
                         pool_type="max",
                         padding_algorithm="EXPLICIT"):

    # update paddings
    def _get_padding_with_SAME(input_shape, pool_size, pool_stride):
        padding = []
        for input_size, filter_size, stride_size in zip(input_shape, pool_size,
                                                        pool_stride):
            out_size = int((input_size + stride_size - 1) / stride_size)
            pad_sum = np.max((
                (out_size - 1) * stride_size + filter_size - input_size, 0))
            pad_0 = int(pad_sum / 2)
            pad_1 = int(pad_sum - pad_0)
            padding.append(pad_0)
            padding.append(pad_1)
        return padding

    if isinstance(padding_algorithm, str):
        padding_algorithm = padding_algorithm.upper()
        if padding_algorithm not in ["SAME", "VALID", "EXPLICIT"]:
            raise ValueError("Unknown Attr(padding_algorithm): '%s'. "
                             "It can only be 'SAME' or 'VALID'." %
                             str(padding_algorithm))

        if padding_algorithm == "VALID":
            paddings = [0, 0, 0, 0]
            if ceil_mode != False:
                raise ValueError(
                    "When Attr(pool_padding) is \"VALID\", Attr(ceil_mode)"
                    " must be False. "
                    "Received ceil_mode: True.")
        elif padding_algorithm == "SAME":
            input_data_shape = []
            if data_format == "NCHW":
                input_data_shape = x.shape[2:4]
            elif data_format == "NHWC":
                input_data_shape = x.shape[1:3]
            paddings = _get_padding_with_SAME(input_data_shape, ksize, strides)

    assert len(paddings) == 2 or len(paddings) == 4
    is_sys = True if len(paddings) == 2 else False

    N = x.shape[0]
    C, H, W = [x.shape[1], x.shape[2], x.shape[3]] if data_format == 'NCHW' \
        else [x.shape[3], x.shape[1], x.shape[2]]

    if global_pool == 1:
        ksize = [H, W]
        paddings = [0 for _ in range(len(paddings))]

    pad_h_up = paddings[0] if is_sys else paddings[0]
    pad_h_down = paddings[0] if is_sys else paddings[1]
    pad_w_left = paddings[1] if is_sys else paddings[2]
    pad_w_right = paddings[1] if is_sys else paddings[3]

    if adaptive:
        H_out, W_out = ksize
    else:
        H_out = (H - ksize[0] + pad_h_up + pad_h_down + strides[0] - 1) // strides[0] + 1 \
            if ceil_mode else (H - ksize[0] + pad_h_up + pad_h_down) // strides[0] + 1
        W_out = (W - ksize[1] + pad_w_left + pad_w_right + strides[1] - 1) // strides[1] + 1 \
            if ceil_mode else (W - ksize[1] + pad_w_left + pad_w_right) // strides[1] + 1

    out = np.zeros((N, C, H_out, W_out)) if data_format=='NCHW' \
        else np.zeros((N, H_out, W_out, C))
    for i in range(H_out):
        if adaptive:
            in_h_start = adaptive_start_index(i, H, ksize[0])
            in_h_end = adaptive_end_index(i, H, ksize[0])
        else:
            in_h_start = np.max((i * strides[0] - pad_h_up, 0))
            in_h_end = np.min((i * strides[0] + ksize[0] - pad_h_up, H))

        for j in range(W_out):
            if adaptive:
                in_w_start = adaptive_start_index(j, W, ksize[1])
                in_w_end = adaptive_end_index(j, W, ksize[1])
            else:
                in_w_start = np.max((j * strides[1] - pad_w_left, 0))
                in_w_end = np.min((j * strides[1] + ksize[1] - pad_w_left, W))

            if data_format == 'NCHW':
                x_masked = x[:, :, in_h_start:in_h_end, in_w_start:in_w_end]
                if pool_type == 'avg':
                    field_size = ((in_h_end - in_h_start) * (in_w_end - in_w_start)) \
                        if (exclusive or adaptive) else (ksize[0] * ksize[1])
                    out[:, :, i, j] = np.sum(x_masked, axis=(2, 3)) / field_size
                elif pool_type == 'max':
                    out[:, :, i, j] = np.max(x_masked, axis=(2, 3))
            elif data_format == 'NHWC':
                x_masked = x[:, in_h_start:in_h_end, in_w_start:in_w_end, :]
                if pool_type == 'avg':
                    field_size = ((in_h_end - in_h_start) * (in_w_end - in_w_start)) \
                        if (exclusive or adaptive) else (ksize[0] * ksize[1])
                    out[:, i, j, :] = np.sum(x_masked, axis=(1, 2)) / field_size
                elif pool_type == 'max':
                    out[:, i, j, :] = np.max(x_masked, axis=(1, 2))
    return out


C
chengduo 已提交
231
class TestPool2D_Op(OpTest):
C
chengduoZH 已提交
232
    def setUp(self):
K
Kexin Zhao 已提交
233
        self.op_type = "pool2d"
234
        self.use_cudnn = False
235
        self.init_kernel_type()
236
        self.use_mkldnn = False
X
xiaolil1 已提交
237
        self.init_data_type()
C
chengduoZH 已提交
238
        self.init_test_case()
239 240
        self.padding_algorithm = "EXPLICIT"
        self.init_paddings()
C
chengduoZH 已提交
241
        self.init_global_pool()
K
Kexin Zhao 已提交
242
        self.init_kernel_type()
C
chengduoZH 已提交
243
        self.init_pool_type()
244
        self.init_ceil_mode()
245
        self.init_exclusive()
246
        self.init_adaptive()
247 248 249
        self.init_data_format()
        self.init_shape()

K
Kexin Zhao 已提交
250
        input = np.random.random(self.shape).astype(self.dtype)
251
        output = pool2D_forward_naive(
252
            input, self.ksize, self.strides, self.paddings, self.global_pool,
253 254
            self.ceil_mode, self.exclusive, self.adaptive, self.data_format,
            self.pool_type, self.padding_algorithm).astype(self.dtype)
K
Kexin Zhao 已提交
255
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(input)}
C
chengduoZH 已提交
256 257 258 259 260

        self.attrs = {
            'strides': self.strides,
            'paddings': self.paddings,
            'ksize': self.ksize,
C
chengduoZH 已提交
261 262
            'pooling_type': self.pool_type,
            'global_pooling': self.global_pool,
263
            'use_cudnn': self.use_cudnn,
264
            'use_mkldnn': self.use_mkldnn,
265
            'ceil_mode': self.ceil_mode,
266
            'data_format': self.data_format,
267
            'exclusive': self.exclusive,
268 269
            'adaptive': self.adaptive,
            "padding_algorithm": self.padding_algorithm,
C
chengduoZH 已提交
270 271
        }

K
Kexin Zhao 已提交
272
        self.outputs = {'Out': output}
C
chengduoZH 已提交
273

274
    def has_cudnn(self):
275 276
        return core.is_compiled_with_cuda() and self.use_cudnn

C
chengduoZH 已提交
277
    def test_check_output(self):
278
        if self.has_cudnn():
279 280 281 282
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-5)
        else:
            self.check_output()
C
chengduoZH 已提交
283 284

    def test_check_grad(self):
K
Kexin Zhao 已提交
285 286
        if self.dtype == np.float16:
            return
287
        if self.has_cudnn() and self.pool_type != "max":
288 289 290 291
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, set(['X']), 'Out', max_relative_error=0.07)
        elif self.pool_type != "max":
292
            self.check_grad(set(['X']), 'Out', max_relative_error=0.07)
C
chengduoZH 已提交
293

294 295 296 297
    def init_data_format(self):
        self.data_format = "NCHW"

    def init_shape(self):
C
chengduoZH 已提交
298
        self.shape = [2, 3, 5, 5]
299 300

    def init_test_case(self):
C
chengduoZH 已提交
301 302
        self.ksize = [3, 3]
        self.strides = [1, 1]
303 304

    def init_paddings(self):
C
chengduoZH 已提交
305
        self.paddings = [0, 0]
306
        self.padding_algorithm = "EXPLICIT"
C
chengduoZH 已提交
307

K
Kexin Zhao 已提交
308
    def init_kernel_type(self):
309
        self.use_cudnn = False
C
chengduoZH 已提交
310

X
xiaolil1 已提交
311 312 313
    def init_data_type(self):
        self.dtype = np.float32

C
chengduoZH 已提交
314 315
    def init_pool_type(self):
        self.pool_type = "avg"
C
chengduoZH 已提交
316 317 318 319
        self.pool2D_forward_naive = avg_pool2D_forward_naive

    def init_global_pool(self):
        self.global_pool = True
C
chengduoZH 已提交
320

321 322 323
    def init_ceil_mode(self):
        self.ceil_mode = False

324 325 326
    def init_exclusive(self):
        self.exclusive = True

327 328 329
    def init_adaptive(self):
        self.adaptive = False

C
chengduoZH 已提交
330

C
chengduo 已提交
331
class TestCase1(TestPool2D_Op):
C
chengduoZH 已提交
332
    def init_test_case(self):
C
chengduoZH 已提交
333 334
        self.ksize = [3, 3]
        self.strides = [1, 1]
335 336

    def init_paddings(self):
C
chengduoZH 已提交
337
        self.paddings = [0, 0]
C
chengduoZH 已提交
338

C
chengduoZH 已提交
339 340
    def init_pool_type(self):
        self.pool_type = "avg"
C
chengduoZH 已提交
341 342 343 344
        self.pool2D_forward_naive = avg_pool2D_forward_naive

    def init_global_pool(self):
        self.global_pool = False
C
chengduoZH 已提交
345

346 347 348
    def init_shape(self):
        self.shape = [2, 3, 7, 7]

C
chengduoZH 已提交
349

C
chengduo 已提交
350
class TestCase2(TestPool2D_Op):
C
chengduoZH 已提交
351
    def init_test_case(self):
C
chengduoZH 已提交
352 353
        self.ksize = [3, 3]
        self.strides = [1, 1]
354 355

    def init_paddings(self):
C
chengduoZH 已提交
356 357
        self.paddings = [1, 1]

C
chengduoZH 已提交
358 359
    def init_pool_type(self):
        self.pool_type = "avg"
C
chengduoZH 已提交
360
        self.pool2D_forward_naive = avg_pool2D_forward_naive
C
chengduoZH 已提交
361

C
chengduoZH 已提交
362 363
    def init_global_pool(self):
        self.global_pool = False
C
chengduoZH 已提交
364

365 366 367
    def init_shape(self):
        self.shape = [2, 3, 7, 7]

C
chengduoZH 已提交
368

C
chengduo 已提交
369
class TestCase3(TestPool2D_Op):
C
chengduoZH 已提交
370 371
    def init_pool_type(self):
        self.pool_type = "max"
C
chengduoZH 已提交
372
        self.pool2D_forward_naive = max_pool2D_forward_naive
C
chengduoZH 已提交
373

C
chengduoZH 已提交
374 375

class TestCase4(TestCase1):
C
chengduoZH 已提交
376 377 378 379
    def init_pool_type(self):
        self.pool_type = "max"
        self.pool2D_forward_naive = max_pool2D_forward_naive

C
chengduoZH 已提交
380 381

class TestCase5(TestCase2):
C
chengduoZH 已提交
382 383
    def init_pool_type(self):
        self.pool_type = "max"
C
chengduoZH 已提交
384
        self.pool2D_forward_naive = max_pool2D_forward_naive
C
chengduoZH 已提交
385 386


C
chengduo 已提交
387
#--------------------test pool2d cudnn--------------------
C
chengduoZH 已提交
388 389


C
chengduo 已提交
390 391 392 393 394 395
def create_test_cudnn_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
K
Kexin Zhao 已提交
396

C
chengduo 已提交
397 398 399
    cls_name = "{0}_{1}".format(parent.__name__, "CUDNNOp")
    TestCUDNNCase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNCase
K
Kexin Zhao 已提交
400 401


C
chengduo 已提交
402 403 404 405 406 407
create_test_cudnn_class(TestPool2D_Op)
create_test_cudnn_class(TestCase1)
create_test_cudnn_class(TestCase2)
create_test_cudnn_class(TestCase3)
create_test_cudnn_class(TestCase4)
create_test_cudnn_class(TestCase5)
C
chengduoZH 已提交
408

C
chengduo 已提交
409
#--------------------test pool2d cudnn_fp16--------------------
C
chengduoZH 已提交
410

K
Kexin Zhao 已提交
411

C
chengduo 已提交
412 413 414 415 416 417 418
def create_test_cudnn_fp16_class(parent, check_grad=True):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNFp16Case(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
            self.dtype = np.float16
K
Kexin Zhao 已提交
419

C
chengduo 已提交
420 421 422 423 424
        def test_check_output(self):
            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    self.check_output_with_place(place, atol=1e-3)
K
Kexin Zhao 已提交
425

C
chengduo 已提交
426
        def test_check_grad(self):
K
Kexin Zhao 已提交
427
            place = core.CUDAPlace(0)
C
chengduo 已提交
428 429 430 431
            if core.is_float16_supported(
                    place) and self.pool_type != "max" and check_grad:
                self.check_grad_with_place(
                    place, set(['X']), 'Out', max_relative_error=0.07)
K
Kexin Zhao 已提交
432

C
chengduo 已提交
433 434 435
    cls_name = "{0}_{1}".format(parent.__name__, "CUDNNFp16Op")
    TestCUDNNFp16Case.__name__ = cls_name
    globals()[cls_name] = TestCUDNNFp16Case
K
Kexin Zhao 已提交
436

C
chengduoZH 已提交
437

C
chengduo 已提交
438 439 440 441 442 443
create_test_cudnn_fp16_class(TestPool2D_Op)
create_test_cudnn_fp16_class(TestCase1, check_grad=False)
create_test_cudnn_fp16_class(TestCase2)
create_test_cudnn_fp16_class(TestCase3)
create_test_cudnn_fp16_class(TestCase4)
create_test_cudnn_fp16_class(TestCase5)
C
chengduoZH 已提交
444

C
chengduo 已提交
445
#--------------------test pool2d use ceil mode--------------------
K
Kexin Zhao 已提交
446 447


C
chengduo 已提交
448 449 450 451 452 453
def create_test_cudnn_use_ceil_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestPool2DUseCeilCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
K
Kexin Zhao 已提交
454

C
chengduo 已提交
455 456
        def init_ceil_mode(self):
            self.ceil_mode = True
C
chengduoZH 已提交
457

C
chengduo 已提交
458 459 460
    cls_name = "{0}_{1}".format(parent.__name__, "CUDNNOpCeilMode")
    TestPool2DUseCeilCase.__name__ = cls_name
    globals()[cls_name] = TestPool2DUseCeilCase
K
Kexin Zhao 已提交
461 462


C
chengduo 已提交
463 464
create_test_cudnn_use_ceil_class(TestPool2D_Op)
create_test_cudnn_use_ceil_class(TestCase1)
K
Kexin Zhao 已提交
465

466

C
chengduo 已提交
467 468 469 470
def create_test_use_ceil_class(parent):
    class TestPool2DUseCeilCase(parent):
        def init_ceil_mode(self):
            self.ceil_mode = True
471

C
chengduo 已提交
472 473 474
    cls_name = "{0}_{1}".format(parent.__name__, "CeilModeCast")
    TestPool2DUseCeilCase.__name__ = cls_name
    globals()[cls_name] = TestPool2DUseCeilCase
475 476


C
chengduo 已提交
477 478
create_test_use_ceil_class(TestCase1)
create_test_use_ceil_class(TestCase2)
479

480

481 482 483 484
class TestAvgInclude(TestCase2):
    def init_exclusive(self):
        self.exclusive = False

485

C
chengduo 已提交
486 487 488 489
class TestCUDNNAvgInclude(TestCase2):
    def init_kernel_type(self):
        self.use_cudnn = True

490 491 492
    def init_exclusive(self):
        self.exclusive = False

493

494 495 496 497 498
class TestAvgPoolAdaptive(TestCase1):
    def init_adaptive(self):
        self.adaptive = True


499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
#-------test pool2d with asymmetric padding-----


class TestPool2D_AsyPadding(TestPool2D_Op):
    def init_test_case(self):
        self.ksize = [3, 3]
        self.strides = [1, 1]
        self.paddings = [1, 0, 1, 2]

    def init_shape(self):
        self.shape = [2, 3, 5, 5]


class TestCase1_AsyPadding(TestCase1):
    def init_test_case(self):
        self.ksize = [3, 3]
        self.strides = [1, 1]
        self.paddings = [1, 0, 1, 0]

    def init_shape(self):
        self.shape = [2, 3, 7, 7]


class TestCase2_AsyPadding(TestCase2):
    def init_test_case(self):
        self.ksize = [3, 3]
        self.strides = [1, 1]
        self.paddings = [1, 2, 1, 2]

    def init_shape(self):
        self.shape = [2, 3, 7, 7]


class TestCase3_AsyPadding(TestCase3):
    def init_test_case(self):
        self.ksize = [3, 3]
        self.strides = [1, 1]
        self.paddings = [1, 0, 1, 2]

    def init_shape(self):
        self.shape = [2, 3, 5, 5]


class TestCase4_AsyPadding(TestCase4):
    def init_test_case(self):
        self.ksize = [3, 3]
        self.strides = [1, 1]
        self.paddings = [1, 0, 1, 0]

    def init_shape(self):
        self.shape = [2, 3, 7, 7]


class TestCase5_AsyPadding((TestCase5)):
    def init_test_case(self):
        self.ksize = [3, 3]
        self.strides = [1, 1]
        self.paddings = [2, 2, 1, 2]

    def init_shape(self):
        self.shape = [2, 3, 7, 7]


create_test_cudnn_class(TestPool2D_AsyPadding)
create_test_cudnn_class(TestCase1_AsyPadding)
create_test_cudnn_class(TestCase2_AsyPadding)
create_test_cudnn_class(TestCase3_AsyPadding)
create_test_cudnn_class(TestCase4_AsyPadding)
create_test_cudnn_class(TestCase5_AsyPadding)

create_test_cudnn_fp16_class(TestPool2D_AsyPadding)
create_test_cudnn_fp16_class(TestCase1_AsyPadding, check_grad=False)
create_test_cudnn_fp16_class(TestCase2_AsyPadding)
create_test_cudnn_fp16_class(TestCase3_AsyPadding)
create_test_cudnn_fp16_class(TestCase4_AsyPadding)
create_test_cudnn_fp16_class(TestCase5_AsyPadding)

create_test_cudnn_use_ceil_class(TestPool2D_AsyPadding)
create_test_cudnn_use_ceil_class(TestCase1_AsyPadding)

create_test_use_ceil_class(TestCase1_AsyPadding)
create_test_use_ceil_class(TestCase2_AsyPadding)


class TestAvgInclude_AsyPadding(TestCase2):
    def init_exclusive(self):
        self.exclusive = False

    def init_test_case(self):
        self.ksize = [3, 3]
        self.strides = [1, 1]
        self.paddings = [1, 2, 1, 2]

    def init_shape(self):
        self.shape = [2, 3, 7, 7]


class TestCUDNNAvgInclude_AsyPadding(TestCase2):
    def init_kernel_type(self):
        self.use_cudnn = True

    def init_exclusive(self):
        self.exclusive = False

    def init_test_case(self):
        self.ksize = [3, 3]
        self.strides = [1, 1]
        self.paddings = [2, 1, 1, 1]

    def init_shape(self):
        self.shape = [2, 3, 7, 7]


class TestAvgPoolAdaptive_AsyPadding(TestCase1):
    def init_adaptive(self):
        self.adaptive = True

    def init_test_case(self):
        self.ksize = [3, 3]
        self.strides = [1, 1]
        self.paddings = [1, 1, 0, 2]

    def init_shape(self):
        self.shape = [2, 3, 7, 7]


#----------- test channel_last --------------
class TestPool2D_channel_last(TestPool2D_Op):
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 5, 5, 3]


class TestCase1_channel_last(TestCase1):
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 3]


class TestCase2_channel_last(TestCase2):
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 3]


class TestCase3_channel_last(TestCase3):
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 5, 5, 3]


class TestCase4_channel_last(TestCase4):
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 3]


class TestCase5_channel_last(TestCase5):
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 3]


create_test_cudnn_class(TestPool2D_channel_last)
create_test_cudnn_class(TestCase1_channel_last)
create_test_cudnn_class(TestCase2_channel_last)
create_test_cudnn_class(TestCase3_channel_last)
create_test_cudnn_class(TestCase4_channel_last)
create_test_cudnn_class(TestCase5_channel_last)

create_test_cudnn_fp16_class(TestPool2D_channel_last)
create_test_cudnn_fp16_class(TestCase1_channel_last, check_grad=False)
create_test_cudnn_fp16_class(TestCase2_channel_last)
create_test_cudnn_fp16_class(TestCase3_channel_last)
create_test_cudnn_fp16_class(TestCase4_channel_last)
create_test_cudnn_fp16_class(TestCase5_channel_last)

create_test_cudnn_use_ceil_class(TestPool2D_channel_last)
create_test_cudnn_use_ceil_class(TestCase1_channel_last)

create_test_use_ceil_class(TestCase1_channel_last)
create_test_use_ceil_class(TestCase2_channel_last)


class TestCase5_Max(TestCase2):
    def init_pool_type(self):
        self.pool_type = "max"

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        if self.has_cudnn() and self.pool_type == "max":
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, set(['X']), 'Out', max_relative_error=1.00)
        elif self.pool_type == "max":
            self.check_grad(set(['X']), 'Out', max_relative_error=1.00)


class TestCase5_channel_last_Max(TestCase5_Max):
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 3]


create_test_cudnn_class(TestCase5_Max)
create_test_cudnn_class(TestCase5_channel_last_Max)


class TestAvgInclude_channel_last(TestCase2_channel_last):
    def init_exclusive(self):
        self.exclusive = False


class TestCUDNNAvgInclude_channel_last(TestCase2_channel_last):
    def init_kernel_type(self):
        self.use_cudnn = True

    def init_exclusive(self):
        self.exclusive = False


class TestAvgPoolAdaptive_channel_last(TestCase1_channel_last):
    def init_adaptive(self):
        self.adaptive = True


class TestPool2D_AsyPadding_channel_last(TestPool2D_AsyPadding):
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 5, 5, 3]


class TestCase1_AsyPadding_channel_last(TestCase1_AsyPadding):
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 3]


class TestCase2_AsyPadding_channel_last(TestCase2_AsyPadding):
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 3]


class TestCase3_AsyPadding_channel_last(TestCase3_AsyPadding):
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 5, 5, 3]


class TestCase4_AsyPadding_channel_last(TestCase4_AsyPadding):
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 3]


class TestCase5_AsyPadding_channel_last(TestCase5_AsyPadding):
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 3]


create_test_cudnn_class(TestPool2D_AsyPadding_channel_last)
create_test_cudnn_class(TestCase1_AsyPadding_channel_last)
create_test_cudnn_class(TestCase2_AsyPadding_channel_last)
create_test_cudnn_class(TestCase3_AsyPadding_channel_last)
create_test_cudnn_class(TestCase4_AsyPadding_channel_last)
create_test_cudnn_class(TestCase5_AsyPadding_channel_last)

create_test_cudnn_fp16_class(TestPool2D_AsyPadding_channel_last)
create_test_cudnn_fp16_class(
    TestCase1_AsyPadding_channel_last, check_grad=False)
create_test_cudnn_fp16_class(TestCase2_AsyPadding_channel_last)
create_test_cudnn_fp16_class(TestCase3_AsyPadding_channel_last)
create_test_cudnn_fp16_class(TestCase4_AsyPadding_channel_last)
create_test_cudnn_fp16_class(TestCase5_AsyPadding_channel_last)

create_test_cudnn_use_ceil_class(TestPool2D_AsyPadding_channel_last)
create_test_cudnn_use_ceil_class(TestCase1_AsyPadding_channel_last)

create_test_use_ceil_class(TestCase1_AsyPadding_channel_last)
create_test_use_ceil_class(TestCase2_AsyPadding_channel_last)


class TestAvgInclude_AsyPadding_channel_last(TestAvgInclude_AsyPadding):
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 3]


class TestCUDNNAvgInclude_AsyPadding_channel_last(
        TestCUDNNAvgInclude_AsyPadding):
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 3]


class TestAvgPoolAdaptive_AsyPadding_channel_last(
        TestAvgPoolAdaptive_AsyPadding):
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 3]


# test paddings: SAME VALID


def create_test_padding_SAME_class(parent):
    class TestPaddingSMAECase(parent):
        def init_paddings(self):
            self.paddings = [0, 0]
            self.padding_algorithm = "SAME"

    cls_name = "{0}_{1}".format(parent.__name__, "PaddingSAMEOp")
    TestPaddingSMAECase.__name__ = cls_name
    globals()[cls_name] = TestPaddingSMAECase


create_test_padding_SAME_class(TestPool2D_Op)
create_test_padding_SAME_class(TestCase1)
create_test_padding_SAME_class(TestCase2)
create_test_padding_SAME_class(TestCase3)
create_test_padding_SAME_class(TestCase4)
create_test_padding_SAME_class(TestCase5)

create_test_padding_SAME_class(TestPool2D_channel_last)
create_test_padding_SAME_class(TestCase1_channel_last)
create_test_padding_SAME_class(TestCase2_channel_last)
create_test_padding_SAME_class(TestCase3_channel_last)
create_test_padding_SAME_class(TestCase4_channel_last)
create_test_padding_SAME_class(TestCase5_channel_last)


def create_test_cudnn_padding_SAME_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNPaddingSMAECase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True

        def init_paddings(self):
            self.paddings = [1, 1]
            self.padding_algorithm = "SAME"

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnPaddingSAMEOp")
    TestCUDNNPaddingSMAECase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNPaddingSMAECase


create_test_cudnn_padding_SAME_class(TestPool2D_Op)
create_test_cudnn_padding_SAME_class(TestCase1)
create_test_cudnn_padding_SAME_class(TestCase2)
create_test_cudnn_padding_SAME_class(TestCase3)
create_test_cudnn_padding_SAME_class(TestCase4)
create_test_cudnn_padding_SAME_class(TestCase5)

create_test_cudnn_padding_SAME_class(TestPool2D_channel_last)
create_test_cudnn_padding_SAME_class(TestCase1_channel_last)
create_test_cudnn_padding_SAME_class(TestCase2_channel_last)
create_test_cudnn_padding_SAME_class(TestCase3_channel_last)
create_test_cudnn_padding_SAME_class(TestCase4_channel_last)
create_test_cudnn_padding_SAME_class(TestCase5_channel_last)


def create_test_padding_VALID_class(parent):
    class TestPaddingVALIDCase(parent):
        def init_paddings(self):
            self.paddings = [1, 1]
            self.padding_algorithm = "VALID"

    cls_name = "{0}_{1}".format(parent.__name__, "PaddingVALIDOp")
    TestPaddingVALIDCase.__name__ = cls_name
    globals()[cls_name] = TestPaddingVALIDCase


create_test_padding_VALID_class(TestPool2D_Op)
create_test_padding_VALID_class(TestCase1)
create_test_padding_VALID_class(TestCase2)
create_test_padding_VALID_class(TestCase3)
create_test_padding_VALID_class(TestCase4)
create_test_padding_VALID_class(TestCase5)

create_test_padding_VALID_class(TestPool2D_channel_last)
create_test_padding_VALID_class(TestCase1_channel_last)
create_test_padding_VALID_class(TestCase2_channel_last)
create_test_padding_VALID_class(TestCase3_channel_last)
create_test_padding_VALID_class(TestCase4_channel_last)
create_test_padding_VALID_class(TestCase5_channel_last)


def create_test_cudnn_padding_VALID_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNPaddingVALIDCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True

        def init_paddings(self):
            self.paddings = [1, 1]
            self.padding_algorithm = "VALID"

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnPaddingVALIDOp")
    TestCUDNNPaddingVALIDCase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNPaddingVALIDCase


create_test_cudnn_padding_VALID_class(TestPool2D_Op)
create_test_cudnn_padding_VALID_class(TestCase1)
create_test_cudnn_padding_VALID_class(TestCase2)
create_test_cudnn_padding_VALID_class(TestCase3)
create_test_cudnn_padding_VALID_class(TestCase4)
create_test_cudnn_padding_VALID_class(TestCase5)

create_test_cudnn_padding_VALID_class(TestPool2D_channel_last)
create_test_cudnn_padding_VALID_class(TestCase1_channel_last)
create_test_cudnn_padding_VALID_class(TestCase2_channel_last)
create_test_cudnn_padding_VALID_class(TestCase3_channel_last)
create_test_cudnn_padding_VALID_class(TestCase4_channel_last)
create_test_cudnn_padding_VALID_class(TestCase5_channel_last)


# ----- test API
class TestPool2dAPI(OpTest):
    def test_api(self):
        x_NHWC = np.random.random([2, 5, 5, 3]).astype("float32")
        x_NCHW = np.random.random([2, 3, 5, 5]).astype("float32")

        input_NHWC = fluid.layers.data(
            name="input_NHWC",
            shape=[2, 5, 5, 3],
            append_batch_size=False,
            dtype="float32")

        input_NCHW = fluid.layers.data(
            name="input_NCHW",
            shape=[2, 3, 5, 5],
            append_batch_size=False,
            dtype="float32")

971 972 973 974 975 976 977 978 979 980 981 982
        input_NHWC_negetive = fluid.layers.data(
            name="input_NHWC_negetive",
            shape=[2, -1, 5, 3],
            append_batch_size=False,
            dtype="float32")

        input_NCHW_negetive = fluid.layers.data(
            name="input_NCHW_negetive",
            shape=[2, 3, -1, -1],
            append_batch_size=False,
            dtype="float32")

983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
        ksize = [3, 3]
        out_1 = fluid.layers.pool2d(
            input=input_NHWC,
            pool_size=ksize,
            pool_type="max",
            pool_padding=[1, 1],
            use_cudnn=False,
            data_format="NHWC")

        out_2 = fluid.layers.pool2d(
            input=input_NHWC,
            pool_size=ksize,
            pool_type="avg",
            pool_padding=[[0, 0], [1, 1], [1, 1], [0, 0]],
            use_cudnn=False,
            data_format="NHWC")

        out_3 = fluid.layers.pool2d(
            input=input_NCHW,
            pool_size=ksize,
            pool_type="avg",
            pool_padding=[[0, 0], [0, 0], [1, 1], [1, 1]],
            use_cudnn=False,
            data_format="NCHW")

        out_4 = fluid.layers.pool2d(
            input=input_NCHW,
            pool_size=ksize,
            pool_type="avg",
            pool_padding=[1, 2, 1, 0],
            use_cudnn=False,
            data_format="NCHW")
        # test VALID
        out_5 = fluid.layers.pool2d(
            input=input_NCHW,
            pool_size=ksize,
            pool_type="avg",
            pool_padding="VALID",
            use_cudnn=False,
            data_format="NCHW")

        out_6 = fluid.layers.pool2d(
            input=input_NHWC,
            pool_size=ksize,
            pool_type="max",
            pool_padding="VALID",
            use_cudnn=False,
            data_format="NHWC")

        # test SAME
        out_7 = fluid.layers.pool2d(
            input=input_NCHW,
            pool_size=[4, 4],
            pool_type="avg",
            pool_padding="SAME",
            use_cudnn=False,
            data_format="NCHW")

        out_8 = fluid.layers.pool2d(
            input=input_NHWC,
            pool_size=[4, 4],
            pool_type="max",
            pool_padding="SAME",
            use_cudnn=False,
            data_format="NHWC")

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
        # test negetive
        out_9 = fluid.layers.pool2d(
            input=input_NHWC_negetive,
            pool_size=ksize,
            pool_type="avg",
            pool_padding=[0, 0],
            use_cudnn=False,
            data_format="NHWC")
        assert out_9.shape == (2, -1, 3, 3)

        out_10 = fluid.layers.pool2d(
            input=input_NCHW_negetive,
            pool_size=ksize,
            pool_type="avg",
            pool_padding=[0, 0],
            use_cudnn=False,
            data_format="NCHW")
        assert out_10.shape == (2, 3, -1, -1)

1068 1069 1070
        exe = fluid.Executor(place=fluid.CPUPlace())
        [res_1, res_2, res_3, res_4, res_5, res_6, res_7, res_8] = exe.run(
            fluid.default_main_program(),
1071 1072 1073 1074 1075 1076
            feed={
                "input_NHWC": x_NHWC,
                "input_NCHW": x_NCHW,
                "input_NHWC_negetive": x_NHWC,
                "input_NCHW_negetive": x_NCHW
            },
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
            fetch_list=[
                out_1, out_2, out_3, out_4, out_5, out_6, out_7, out_8
            ])

        assert np.allclose(
            res_1,
            pool2D_forward_naive(
                x=x_NHWC,
                ksize=ksize,
                pool_type="max",
                strides=[1, 1],
                paddings=[1, 1],
                data_format="NHWC"))

        assert np.allclose(
            res_2,
            pool2D_forward_naive(
                x=x_NHWC,
                ksize=ksize,
                pool_type="avg",
                strides=[1, 1],
                paddings=[1, 1, 1, 1],
                data_format="NHWC"))
        assert np.allclose(
            res_3,
            pool2D_forward_naive(
                x=x_NCHW,
                ksize=ksize,
                pool_type="avg",
                strides=[1, 1],
                paddings=[1, 1, 1, 1],
                data_format="NCHW"),
            rtol=0.07,
            atol=1e-05)

        assert np.allclose(
            res_4,
            pool2D_forward_naive(
                x=x_NCHW,
                ksize=ksize,
                pool_type="avg",
                strides=[1, 1],
                paddings=[1, 2, 1, 0],
                data_format="NCHW"),
            rtol=0.07,
            atol=1e-05)

        # VALID
        assert np.allclose(
            res_5,
            pool2D_forward_naive(
                x=x_NCHW,
                ksize=ksize,
                pool_type="avg",
                strides=[1, 1],
                paddings=[10, 20],  # any ele is ok
                padding_algorithm="VALID",
                data_format="NCHW"),
            rtol=0.07,
            atol=1e-05)
        assert np.allclose(
            res_6,
            pool2D_forward_naive(
                x=x_NHWC,
                ksize=ksize,
                pool_type="max",
                strides=[1, 1],
                paddings=[10, 20],
                padding_algorithm="VALID",
                data_format="NHWC"))
        # SAME
        assert np.allclose(
            res_7,
            pool2D_forward_naive(
                x=x_NCHW,
                ksize=[4, 4],
                pool_type="avg",
                strides=[1, 1],
                paddings=[10, 20],
                padding_algorithm="SAME",
                data_format="NCHW"),
            rtol=0.07,
            atol=1e-05)

        assert np.allclose(
            res_8,
            pool2D_forward_naive(
                x=x_NHWC,
                ksize=[4, 4],
                pool_type="max",
                strides=[1, 1],
                paddings=[10, 20],
                padding_algorithm="SAME",
                data_format="NHWC"))


class TestPool2dAPI_Error(OpTest):
    def test_api(self):
        input_NHWC = fluid.layers.data(
            name="input_NHWC",
            shape=[2, 5, 5, 3],
            append_batch_size=False,
            dtype="float32")
        ksize = [3, 3]

1182
        # cudnn type error
1183 1184 1185 1186 1187 1188 1189 1190 1191
        def run_1():
            out_1 = fluid.layers.pool2d(
                input=input_NHWC,
                pool_size=ksize,
                pool_type="max",
                pool_padding=[1, 1],
                use_cudnn=[0],
                data_format="NHWC")

1192
        self.assertRaises(TypeError, run_1)
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243

        # data_format value error
        def run_2():
            out_2 = fluid.layers.pool2d(
                input=input_NHWC,
                pool_size=ksize,
                pool_type="max",
                pool_padding=[1, 1],
                use_cudnn=False,
                data_format="NHWCC")

        self.assertRaises(ValueError, run_2)

        # padding str value error
        def run_3():
            out_3 = fluid.layers.pool2d(
                input=input_NHWC,
                pool_size=ksize,
                pool_type="max",
                pool_padding="VALIDSAME",
                use_cudnn=False,
                data_format="NHWC")

        self.assertRaises(ValueError, run_3)

        # padding str valid and ceil_mode value error
        def run_4():
            out_4 = fluid.layers.pool2d(
                input=input_NHWC,
                pool_size=ksize,
                pool_type="max",
                pool_padding="VALID",
                use_cudnn=False,
                ceil_mode=True,
                data_format="NHWC")

        self.assertRaises(ValueError, run_4)

        # padding with 8 ele. value error
        def run_5():
            out_5 = fluid.layers.pool2d(
                input=input_NHWC,
                pool_size=ksize,
                pool_type="max",
                pool_padding=[[1, 1], [0, 0], [0, 0], [1, 1]],
                use_cudnn=False,
                data_format="NHWC")

        self.assertRaises(ValueError, run_5)


C
chengduoZH 已提交
1244 1245
if __name__ == '__main__':
    unittest.main()