test_pool2d_op.py 46.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
from __future__ import division
17

C
chengduoZH 已提交
18 19
import unittest
import numpy as np
20

21
import paddle.fluid.core as core
A
arlesniak 已提交
22
from paddle.fluid.tests.unittests.op_test import OpTest
23
import paddle.fluid as fluid
24
from paddle.fluid import Program, program_guard
C
chengduoZH 已提交
25 26


27 28 29 30 31 32 33 34
def adaptive_start_index(index, input_size, output_size):
    return int(np.floor(index * input_size / output_size))


def adaptive_end_index(index, input_size, output_size):
    return int(np.ceil((index + 1) * input_size / output_size))


35 36 37 38 39
def max_pool2D_forward_naive(x,
                             ksize,
                             strides,
                             paddings,
                             global_pool=0,
40
                             ceil_mode=False,
41
                             exclusive=True,
42
                             adaptive=False,
43
                             data_type=np.float64):
44 45
    if data_type == np.float64 and core.is_compiled_with_rocm():
        data_type = np.float32
C
chengduoZH 已提交
46
    N, C, H, W = x.shape
C
chengduoZH 已提交
47 48
    if global_pool == 1:
        ksize = [H, W]
49 50 51 52 53 54 55 56 57
    if adaptive:
        H_out, W_out = ksize
    else:
        H_out = (H - ksize[0] + 2 * paddings[0] + strides[0] - 1
                 ) // strides[0] + 1 if ceil_mode else (
                     H - ksize[0] + 2 * paddings[0]) // strides[0] + 1
        W_out = (W - ksize[1] + 2 * paddings[1] + strides[1] - 1
                 ) // strides[1] + 1 if ceil_mode else (
                     W - ksize[1] + 2 * paddings[1]) // strides[1] + 1
C
chengduoZH 已提交
58
    out = np.zeros((N, C, H_out, W_out))
59 60
    for i in range(H_out):
        for j in range(W_out):
61 62 63 64 65 66 67 68 69 70
            if adaptive:
                r_start = adaptive_start_index(i, H, ksize[0])
                r_end = adaptive_end_index(i, H, ksize[0])
                c_start = adaptive_start_index(j, W, ksize[1])
                c_end = adaptive_end_index(j, W, ksize[1])
            else:
                r_start = np.max((i * strides[0] - paddings[0], 0))
                r_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
                c_start = np.max((j * strides[1] - paddings[1], 0))
                c_end = np.min((j * strides[1] + ksize[1] - paddings[1], W))
C
chengduoZH 已提交
71 72 73 74 75 76
            x_masked = x[:, :, r_start:r_end, c_start:c_end]

            out[:, :, i, j] = np.max(x_masked, axis=(2, 3))
    return out


77 78 79 80 81
def avg_pool2D_forward_naive(x,
                             ksize,
                             strides,
                             paddings,
                             global_pool=0,
82
                             ceil_mode=False,
83
                             exclusive=True,
84
                             adaptive=False,
85
                             data_type=np.float64):
86 87
    if data_type == np.float64 and core.is_compiled_with_rocm():
        data_type = np.float32
C
chengduoZH 已提交
88
    N, C, H, W = x.shape
C
chengduoZH 已提交
89 90
    if global_pool == 1:
        ksize = [H, W]
91 92 93 94 95 96 97 98 99
    if adaptive:
        H_out, W_out = ksize
    else:
        H_out = (H - ksize[0] + 2 * paddings[0] + strides[0] - 1
                 ) // strides[0] + 1 if ceil_mode else (
                     H - ksize[0] + 2 * paddings[0]) // strides[0] + 1
        W_out = (W - ksize[1] + 2 * paddings[1] + strides[1] - 1
                 ) // strides[1] + 1 if ceil_mode else (
                     W - ksize[1] + 2 * paddings[1]) // strides[1] + 1
C
chengduoZH 已提交
100
    out = np.zeros((N, C, H_out, W_out))
101 102
    for i in range(H_out):
        for j in range(W_out):
103 104 105 106 107 108
            if adaptive:
                r_start = adaptive_start_index(i, H, ksize[0])
                r_end = adaptive_end_index(i, H, ksize[0])
                c_start = adaptive_start_index(j, W, ksize[1])
                c_end = adaptive_end_index(j, W, ksize[1])
            else:
D
Double_V 已提交
109 110 111 112 113 114 115 116 117 118
                r_start = i * strides[0] - paddings[0]
                r_end = i * strides[0] + ksize[0] - paddings[0]
                c_start = j * strides[1] - paddings[1]
                c_end = j * strides[1] + ksize[1] - paddings[1]
                field_size = (r_end - r_start) * (c_end - c_start)
                r_start = np.max((r_start, 0))
                r_end = np.min((r_end, H))
                c_start = np.max((c_start, 0))
                c_end = np.min((c_end, W))

C
chengduoZH 已提交
119 120
            x_masked = x[:, :, r_start:r_end, c_start:c_end]

D
Double_V 已提交
121 122 123
            if (exclusive or adaptive):
                field_size = (r_end - r_start) * (c_end - c_start)

124 125 126 127 128 129 130
            if data_type == np.int8 or data_type == np.uint8:
                out[:, :, i, j] = (np.rint(
                    np.sum(x_masked, axis=(2, 3)) /
                    field_size)).astype(data_type)
            else:
                out[:, :, i, j] = (np.sum(x_masked, axis=(2, 3)) /
                                   field_size).astype(data_type)
C
chengduoZH 已提交
131 132 133
    return out


134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
def pool2D_forward_naive(x,
                         ksize,
                         strides,
                         paddings,
                         global_pool=0,
                         ceil_mode=False,
                         exclusive=True,
                         adaptive=False,
                         data_format='NCHW',
                         pool_type="max",
                         padding_algorithm="EXPLICIT"):

    # update paddings
    def _get_padding_with_SAME(input_shape, pool_size, pool_stride):
        padding = []
        for input_size, filter_size, stride_size in zip(input_shape, pool_size,
                                                        pool_stride):
            out_size = int((input_size + stride_size - 1) / stride_size)
            pad_sum = np.max((
                (out_size - 1) * stride_size + filter_size - input_size, 0))
            pad_0 = int(pad_sum / 2)
            pad_1 = int(pad_sum - pad_0)
            padding.append(pad_0)
            padding.append(pad_1)
        return padding

    if isinstance(padding_algorithm, str):
        padding_algorithm = padding_algorithm.upper()
        if padding_algorithm not in ["SAME", "VALID", "EXPLICIT"]:
            raise ValueError("Unknown Attr(padding_algorithm): '%s'. "
                             "It can only be 'SAME' or 'VALID'." %
                             str(padding_algorithm))

        if padding_algorithm == "VALID":
            paddings = [0, 0, 0, 0]
            if ceil_mode != False:
                raise ValueError(
                    "When Attr(pool_padding) is \"VALID\", Attr(ceil_mode)"
                    " must be False. "
                    "Received ceil_mode: True.")
        elif padding_algorithm == "SAME":
            input_data_shape = []
            if data_format == "NCHW":
                input_data_shape = x.shape[2:4]
            elif data_format == "NHWC":
                input_data_shape = x.shape[1:3]
            paddings = _get_padding_with_SAME(input_data_shape, ksize, strides)

    assert len(paddings) == 2 or len(paddings) == 4
    is_sys = True if len(paddings) == 2 else False

    N = x.shape[0]
    C, H, W = [x.shape[1], x.shape[2], x.shape[3]] if data_format == 'NCHW' \
        else [x.shape[3], x.shape[1], x.shape[2]]

    if global_pool == 1:
        ksize = [H, W]
        paddings = [0 for _ in range(len(paddings))]

    pad_h_up = paddings[0] if is_sys else paddings[0]
    pad_h_down = paddings[0] if is_sys else paddings[1]
    pad_w_left = paddings[1] if is_sys else paddings[2]
    pad_w_right = paddings[1] if is_sys else paddings[3]

    if adaptive:
        H_out, W_out = ksize
    else:
        H_out = (H - ksize[0] + pad_h_up + pad_h_down + strides[0] - 1) // strides[0] + 1 \
            if ceil_mode else (H - ksize[0] + pad_h_up + pad_h_down) // strides[0] + 1
        W_out = (W - ksize[1] + pad_w_left + pad_w_right + strides[1] - 1) // strides[1] + 1 \
            if ceil_mode else (W - ksize[1] + pad_w_left + pad_w_right) // strides[1] + 1

    out = np.zeros((N, C, H_out, W_out)) if data_format=='NCHW' \
        else np.zeros((N, H_out, W_out, C))
    for i in range(H_out):
        if adaptive:
            in_h_start = adaptive_start_index(i, H, ksize[0])
            in_h_end = adaptive_end_index(i, H, ksize[0])
        else:
            in_h_start = np.max((i * strides[0] - pad_h_up, 0))
            in_h_end = np.min((i * strides[0] + ksize[0] - pad_h_up, H))

        for j in range(W_out):
            if adaptive:
                in_w_start = adaptive_start_index(j, W, ksize[1])
                in_w_end = adaptive_end_index(j, W, ksize[1])
            else:
D
Double_V 已提交
221 222 223 224 225 226 227 228 229 230
                in_h_start = i * strides[0] - pad_h_up
                in_w_start = j * strides[1] - pad_w_left
                in_h_end = i * strides[0] + ksize[0] - pad_h_up
                in_w_end = j * strides[1] + ksize[1] - pad_w_left

                field_size = (in_h_end - in_h_start) * (in_w_end - in_w_start)
                in_h_start = np.max((in_h_start, 0))
                in_w_start = np.max((in_w_start, 0))
                in_h_end = np.min((in_h_end, H))
                in_w_end = np.min((in_w_end, W))
231 232 233 234

            if data_format == 'NCHW':
                x_masked = x[:, :, in_h_start:in_h_end, in_w_start:in_w_end]
                if pool_type == 'avg':
D
Double_V 已提交
235 236 237 238 239
                    if (exclusive or adaptive):
                        field_size = (in_h_end - in_h_start) * (
                            in_w_end - in_w_start)

#                         if (exclusive or adaptive) else (ksize[0] * ksize[1])
240 241 242 243 244 245
                    out[:, :, i, j] = np.sum(x_masked, axis=(2, 3)) / field_size
                elif pool_type == 'max':
                    out[:, :, i, j] = np.max(x_masked, axis=(2, 3))
            elif data_format == 'NHWC':
                x_masked = x[:, in_h_start:in_h_end, in_w_start:in_w_end, :]
                if pool_type == 'avg':
D
Double_V 已提交
246 247 248
                    if (exclusive or adaptive):
                        field_size = (in_h_end - in_h_start) * (
                            in_w_end - in_w_start)
249 250 251 252 253 254
                    out[:, i, j, :] = np.sum(x_masked, axis=(1, 2)) / field_size
                elif pool_type == 'max':
                    out[:, i, j, :] = np.max(x_masked, axis=(1, 2))
    return out


A
arlesniak 已提交
255
class TestPool2D_Op_Mixin(object):
C
chengduoZH 已提交
256
    def setUp(self):
K
Kexin Zhao 已提交
257
        self.op_type = "pool2d"
258
        self.use_cudnn = False
259
        self.init_kernel_type()
260
        self.use_mkldnn = False
X
xiaolil1 已提交
261
        self.init_data_type()
C
chengduoZH 已提交
262
        self.init_test_case()
263 264
        self.padding_algorithm = "EXPLICIT"
        self.init_paddings()
C
chengduoZH 已提交
265
        self.init_global_pool()
K
Kexin Zhao 已提交
266
        self.init_kernel_type()
C
chengduoZH 已提交
267
        self.init_pool_type()
268
        self.init_ceil_mode()
269
        self.init_exclusive()
270
        self.init_adaptive()
271 272 273
        self.init_data_format()
        self.init_shape()

K
Kexin Zhao 已提交
274
        input = np.random.random(self.shape).astype(self.dtype)
275
        output = pool2D_forward_naive(
276
            input, self.ksize, self.strides, self.paddings, self.global_pool,
277 278
            self.ceil_mode, self.exclusive, self.adaptive, self.data_format,
            self.pool_type, self.padding_algorithm).astype(self.dtype)
K
Kexin Zhao 已提交
279
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(input)}
C
chengduoZH 已提交
280 281 282 283 284

        self.attrs = {
            'strides': self.strides,
            'paddings': self.paddings,
            'ksize': self.ksize,
C
chengduoZH 已提交
285 286
            'pooling_type': self.pool_type,
            'global_pooling': self.global_pool,
287
            'use_cudnn': self.use_cudnn,
288
            'use_mkldnn': self.use_mkldnn,
289
            'ceil_mode': self.ceil_mode,
290
            'data_format': self.data_format,
291
            'exclusive': self.exclusive,
292 293
            'adaptive': self.adaptive,
            "padding_algorithm": self.padding_algorithm,
C
chengduoZH 已提交
294 295
        }

K
Kexin Zhao 已提交
296
        self.outputs = {'Out': output}
C
chengduoZH 已提交
297

298
    def has_cudnn(self):
299 300
        return core.is_compiled_with_cuda() and self.use_cudnn

C
chengduoZH 已提交
301
    def test_check_output(self):
302
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
303
        if self.has_cudnn():
304
            place = core.CUDAPlace(0)
305 306
            self.check_output_with_place(
                place, atol=1e-5, check_dygraph=(self.use_mkldnn == False))
307
        else:
308
            self.check_output(check_dygraph=(self.use_mkldnn == False))
C
chengduoZH 已提交
309 310

    def test_check_grad(self):
K
Kexin Zhao 已提交
311 312
        if self.dtype == np.float16:
            return
313
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
314
        if self.has_cudnn() and self.pool_type != "max":
315 316
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
317 318 319 320 321
                place,
                set(['X']),
                'Out',
                max_relative_error=0.07,
                check_dygraph=(self.use_mkldnn == False))
322
        elif self.pool_type != "max":
323 324 325 326 327
            self.check_grad(
                set(['X']),
                'Out',
                max_relative_error=0.07,
                check_dygraph=(self.use_mkldnn == False))
C
chengduoZH 已提交
328

329 330 331 332
    def init_data_format(self):
        self.data_format = "NCHW"

    def init_shape(self):
C
chengduoZH 已提交
333
        self.shape = [2, 3, 5, 5]
334 335

    def init_test_case(self):
C
chengduoZH 已提交
336 337
        self.ksize = [3, 3]
        self.strides = [1, 1]
338 339

    def init_paddings(self):
C
chengduoZH 已提交
340
        self.paddings = [0, 0]
341
        self.padding_algorithm = "EXPLICIT"
C
chengduoZH 已提交
342

K
Kexin Zhao 已提交
343
    def init_kernel_type(self):
344
        self.use_cudnn = False
C
chengduoZH 已提交
345

X
xiaolil1 已提交
346
    def init_data_type(self):
347
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64
X
xiaolil1 已提交
348

C
chengduoZH 已提交
349 350
    def init_pool_type(self):
        self.pool_type = "avg"
C
chengduoZH 已提交
351 352 353 354
        self.pool2D_forward_naive = avg_pool2D_forward_naive

    def init_global_pool(self):
        self.global_pool = True
C
chengduoZH 已提交
355

356 357 358
    def init_ceil_mode(self):
        self.ceil_mode = False

359 360 361
    def init_exclusive(self):
        self.exclusive = True

362 363 364
    def init_adaptive(self):
        self.adaptive = False

C
chengduoZH 已提交
365

A
arlesniak 已提交
366 367 368 369
class TestPool2D_Op(TestPool2D_Op_Mixin, OpTest):
    pass


C
chengduo 已提交
370
class TestCase1(TestPool2D_Op):
C
chengduoZH 已提交
371
    def init_test_case(self):
C
chengduoZH 已提交
372 373
        self.ksize = [3, 3]
        self.strides = [1, 1]
374 375

    def init_paddings(self):
C
chengduoZH 已提交
376
        self.paddings = [0, 0]
C
chengduoZH 已提交
377

C
chengduoZH 已提交
378 379
    def init_pool_type(self):
        self.pool_type = "avg"
C
chengduoZH 已提交
380 381 382 383
        self.pool2D_forward_naive = avg_pool2D_forward_naive

    def init_global_pool(self):
        self.global_pool = False
C
chengduoZH 已提交
384

385 386 387
    def init_shape(self):
        self.shape = [2, 3, 7, 7]

C
chengduoZH 已提交
388

C
chengduo 已提交
389
class TestCase2(TestPool2D_Op):
C
chengduoZH 已提交
390
    def init_test_case(self):
C
chengduoZH 已提交
391 392
        self.ksize = [3, 3]
        self.strides = [1, 1]
393 394

    def init_paddings(self):
C
chengduoZH 已提交
395 396
        self.paddings = [1, 1]

C
chengduoZH 已提交
397 398
    def init_pool_type(self):
        self.pool_type = "avg"
C
chengduoZH 已提交
399
        self.pool2D_forward_naive = avg_pool2D_forward_naive
C
chengduoZH 已提交
400

C
chengduoZH 已提交
401 402
    def init_global_pool(self):
        self.global_pool = False
C
chengduoZH 已提交
403

404 405 406
    def init_shape(self):
        self.shape = [2, 3, 7, 7]

C
chengduoZH 已提交
407

C
chengduo 已提交
408
class TestCase3(TestPool2D_Op):
C
chengduoZH 已提交
409 410
    def init_pool_type(self):
        self.pool_type = "max"
C
chengduoZH 已提交
411
        self.pool2D_forward_naive = max_pool2D_forward_naive
C
chengduoZH 已提交
412

C
chengduoZH 已提交
413 414

class TestCase4(TestCase1):
C
chengduoZH 已提交
415 416 417 418
    def init_pool_type(self):
        self.pool_type = "max"
        self.pool2D_forward_naive = max_pool2D_forward_naive

C
chengduoZH 已提交
419 420

class TestCase5(TestCase2):
C
chengduoZH 已提交
421 422
    def init_pool_type(self):
        self.pool_type = "max"
C
chengduoZH 已提交
423
        self.pool2D_forward_naive = max_pool2D_forward_naive
C
chengduoZH 已提交
424 425


C
chengduo 已提交
426
#--------------------test pool2d cudnn--------------------
C
chengduoZH 已提交
427 428


C
chengduo 已提交
429 430 431 432 433 434
def create_test_cudnn_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
K
Kexin Zhao 已提交
435

C
chengduo 已提交
436 437 438
    cls_name = "{0}_{1}".format(parent.__name__, "CUDNNOp")
    TestCUDNNCase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNCase
K
Kexin Zhao 已提交
439 440


C
chengduo 已提交
441 442 443 444 445 446
create_test_cudnn_class(TestPool2D_Op)
create_test_cudnn_class(TestCase1)
create_test_cudnn_class(TestCase2)
create_test_cudnn_class(TestCase3)
create_test_cudnn_class(TestCase4)
create_test_cudnn_class(TestCase5)
C
chengduoZH 已提交
447

C
chengduo 已提交
448
#--------------------test pool2d cudnn_fp16--------------------
C
chengduoZH 已提交
449

K
Kexin Zhao 已提交
450

C
chengduo 已提交
451 452 453 454 455 456 457
def create_test_cudnn_fp16_class(parent, check_grad=True):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNFp16Case(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
            self.dtype = np.float16
K
Kexin Zhao 已提交
458

C
chengduo 已提交
459
        def test_check_output(self):
460
            # TODO(wangzhongpu): support mkldnn op in dygraph mode
C
chengduo 已提交
461 462 463
            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
464 465 466 467
                    self.check_output_with_place(
                        place,
                        atol=1e-3,
                        check_dygraph=(self.use_mkldnn == False))
K
Kexin Zhao 已提交
468

C
chengduo 已提交
469
        def test_check_grad(self):
470
            # TODO(wangzhongpu): support mkldnn op in dygraph mode
K
Kexin Zhao 已提交
471
            place = core.CUDAPlace(0)
C
chengduo 已提交
472 473 474
            if core.is_float16_supported(
                    place) and self.pool_type != "max" and check_grad:
                self.check_grad_with_place(
475 476 477 478 479
                    place,
                    set(['X']),
                    'Out',
                    max_relative_error=0.07,
                    check_dygraph=(self.use_mkldnn == False))
K
Kexin Zhao 已提交
480

C
chengduo 已提交
481 482 483
    cls_name = "{0}_{1}".format(parent.__name__, "CUDNNFp16Op")
    TestCUDNNFp16Case.__name__ = cls_name
    globals()[cls_name] = TestCUDNNFp16Case
K
Kexin Zhao 已提交
484

C
chengduoZH 已提交
485

486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
def create_test_fp16_class(parent, check_grad=True):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestFp16Case(parent):
        def init_kernel_type(self):
            self.use_cudnn = False
            self.dtype = np.float16

        def test_check_output(self):
            # TODO(wangzhongpu): support mkldnn op in dygraph mode
            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    self.check_output_with_place(
                        place,
                        atol=1e-3,
                        check_dygraph=(self.use_mkldnn == False))

        def test_check_grad(self):
            # TODO(wangzhongpu): support mkldnn op in dygraph mode
            place = core.CUDAPlace(0)
            if core.is_float16_supported(
                    place) and self.pool_type != "max" and check_grad:
                self.check_grad_with_place(
                    place,
                    set(['X']),
                    'Out',
                    max_relative_error=0.07,
                    check_dygraph=(self.use_mkldnn == False))

    cls_name = "{0}_{1}".format(parent.__name__, "Fp16Op")
    TestFp16Case.__name__ = cls_name
    globals()[cls_name] = TestFp16Case


C
chengduo 已提交
521 522 523 524 525 526
create_test_cudnn_fp16_class(TestPool2D_Op)
create_test_cudnn_fp16_class(TestCase1, check_grad=False)
create_test_cudnn_fp16_class(TestCase2)
create_test_cudnn_fp16_class(TestCase3)
create_test_cudnn_fp16_class(TestCase4)
create_test_cudnn_fp16_class(TestCase5)
C
chengduoZH 已提交
527

528 529 530 531 532 533 534
create_test_fp16_class(TestPool2D_Op)
create_test_fp16_class(TestCase1, check_grad=False)
create_test_fp16_class(TestCase2)
create_test_fp16_class(TestCase3)
create_test_fp16_class(TestCase4)
create_test_fp16_class(TestCase5)

C
chengduo 已提交
535
#--------------------test pool2d use ceil mode--------------------
K
Kexin Zhao 已提交
536 537


C
chengduo 已提交
538 539 540 541 542 543
def create_test_cudnn_use_ceil_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestPool2DUseCeilCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
K
Kexin Zhao 已提交
544

C
chengduo 已提交
545 546
        def init_ceil_mode(self):
            self.ceil_mode = True
C
chengduoZH 已提交
547

C
chengduo 已提交
548 549 550
    cls_name = "{0}_{1}".format(parent.__name__, "CUDNNOpCeilMode")
    TestPool2DUseCeilCase.__name__ = cls_name
    globals()[cls_name] = TestPool2DUseCeilCase
K
Kexin Zhao 已提交
551 552


C
chengduo 已提交
553 554
create_test_cudnn_use_ceil_class(TestPool2D_Op)
create_test_cudnn_use_ceil_class(TestCase1)
K
Kexin Zhao 已提交
555

556

C
chengduo 已提交
557 558 559 560
def create_test_use_ceil_class(parent):
    class TestPool2DUseCeilCase(parent):
        def init_ceil_mode(self):
            self.ceil_mode = True
561

C
chengduo 已提交
562 563 564
    cls_name = "{0}_{1}".format(parent.__name__, "CeilModeCast")
    TestPool2DUseCeilCase.__name__ = cls_name
    globals()[cls_name] = TestPool2DUseCeilCase
565 566


C
chengduo 已提交
567 568
create_test_use_ceil_class(TestCase1)
create_test_use_ceil_class(TestCase2)
569

570

571 572 573 574
class TestAvgInclude(TestCase2):
    def init_exclusive(self):
        self.exclusive = False

575

C
chengduo 已提交
576 577 578 579
class TestCUDNNAvgInclude(TestCase2):
    def init_kernel_type(self):
        self.use_cudnn = True

580 581 582
    def init_exclusive(self):
        self.exclusive = False

583

584 585 586 587 588
class TestAvgPoolAdaptive(TestCase1):
    def init_adaptive(self):
        self.adaptive = True


589 590 591 592 593 594 595 596 597 598 599 600 601
class TestAvgPoolAdaptiveAsyOutSize(TestCase1):
    def init_adaptive(self):
        self.adaptive = True

    def init_shape(self):
        self.shape = [8, 3, 6, 6]

    def init_test_case(self):
        self.ksize = [2, 3]
        self.strides = [1, 1]
        self.paddings = [0, 0, 0, 0]


602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
#-------test pool2d with asymmetric padding-----


class TestPool2D_AsyPadding(TestPool2D_Op):
    def init_test_case(self):
        self.ksize = [3, 3]
        self.strides = [1, 1]
        self.paddings = [1, 0, 1, 2]

    def init_shape(self):
        self.shape = [2, 3, 5, 5]


class TestCase1_AsyPadding(TestCase1):
    def init_test_case(self):
        self.ksize = [3, 3]
        self.strides = [1, 1]
        self.paddings = [1, 0, 1, 0]

    def init_shape(self):
        self.shape = [2, 3, 7, 7]


class TestCase2_AsyPadding(TestCase2):
    def init_test_case(self):
        self.ksize = [3, 3]
        self.strides = [1, 1]
        self.paddings = [1, 2, 1, 2]

    def init_shape(self):
        self.shape = [2, 3, 7, 7]


class TestCase3_AsyPadding(TestCase3):
    def init_test_case(self):
        self.ksize = [3, 3]
        self.strides = [1, 1]
        self.paddings = [1, 0, 1, 2]

    def init_shape(self):
        self.shape = [2, 3, 5, 5]


class TestCase4_AsyPadding(TestCase4):
    def init_test_case(self):
        self.ksize = [3, 3]
        self.strides = [1, 1]
        self.paddings = [1, 0, 1, 0]

    def init_shape(self):
        self.shape = [2, 3, 7, 7]


class TestCase5_AsyPadding((TestCase5)):
    def init_test_case(self):
        self.ksize = [3, 3]
        self.strides = [1, 1]
        self.paddings = [2, 2, 1, 2]

    def init_shape(self):
        self.shape = [2, 3, 7, 7]


create_test_cudnn_class(TestPool2D_AsyPadding)
create_test_cudnn_class(TestCase1_AsyPadding)
create_test_cudnn_class(TestCase2_AsyPadding)
create_test_cudnn_class(TestCase3_AsyPadding)
create_test_cudnn_class(TestCase4_AsyPadding)
create_test_cudnn_class(TestCase5_AsyPadding)

create_test_cudnn_fp16_class(TestPool2D_AsyPadding)
create_test_cudnn_fp16_class(TestCase1_AsyPadding, check_grad=False)
create_test_cudnn_fp16_class(TestCase2_AsyPadding)
create_test_cudnn_fp16_class(TestCase3_AsyPadding)
create_test_cudnn_fp16_class(TestCase4_AsyPadding)
create_test_cudnn_fp16_class(TestCase5_AsyPadding)

create_test_cudnn_use_ceil_class(TestPool2D_AsyPadding)
create_test_cudnn_use_ceil_class(TestCase1_AsyPadding)

create_test_use_ceil_class(TestCase1_AsyPadding)
create_test_use_ceil_class(TestCase2_AsyPadding)


class TestAvgInclude_AsyPadding(TestCase2):
    def init_exclusive(self):
        self.exclusive = False

    def init_test_case(self):
        self.ksize = [3, 3]
        self.strides = [1, 1]
        self.paddings = [1, 2, 1, 2]

    def init_shape(self):
        self.shape = [2, 3, 7, 7]


class TestCUDNNAvgInclude_AsyPadding(TestCase2):
    def init_kernel_type(self):
        self.use_cudnn = True

    def init_exclusive(self):
        self.exclusive = False

    def init_test_case(self):
        self.ksize = [3, 3]
        self.strides = [1, 1]
        self.paddings = [2, 1, 1, 1]

    def init_shape(self):
        self.shape = [2, 3, 7, 7]


class TestAvgPoolAdaptive_AsyPadding(TestCase1):
    def init_adaptive(self):
        self.adaptive = True

    def init_test_case(self):
        self.ksize = [3, 3]
        self.strides = [1, 1]
        self.paddings = [1, 1, 0, 2]

    def init_shape(self):
        self.shape = [2, 3, 7, 7]


#----------- test channel_last --------------
class TestPool2D_channel_last(TestPool2D_Op):
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 5, 5, 3]


class TestCase1_channel_last(TestCase1):
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 3]


class TestCase2_channel_last(TestCase2):
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 3]


class TestCase3_channel_last(TestCase3):
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 5, 5, 3]


class TestCase4_channel_last(TestCase4):
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 3]


class TestCase5_channel_last(TestCase5):
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 3]


create_test_cudnn_class(TestPool2D_channel_last)
create_test_cudnn_class(TestCase1_channel_last)
create_test_cudnn_class(TestCase2_channel_last)
create_test_cudnn_class(TestCase3_channel_last)
create_test_cudnn_class(TestCase4_channel_last)
create_test_cudnn_class(TestCase5_channel_last)

create_test_cudnn_fp16_class(TestPool2D_channel_last)
create_test_cudnn_fp16_class(TestCase1_channel_last, check_grad=False)
create_test_cudnn_fp16_class(TestCase2_channel_last)
create_test_cudnn_fp16_class(TestCase3_channel_last)
create_test_cudnn_fp16_class(TestCase4_channel_last)
create_test_cudnn_fp16_class(TestCase5_channel_last)

create_test_cudnn_use_ceil_class(TestPool2D_channel_last)
create_test_cudnn_use_ceil_class(TestCase1_channel_last)

create_test_use_ceil_class(TestCase1_channel_last)
create_test_use_ceil_class(TestCase2_channel_last)


class TestCase5_Max(TestCase2):
    def init_pool_type(self):
        self.pool_type = "max"

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        if self.has_cudnn() and self.pool_type == "max":
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, set(['X']), 'Out', max_relative_error=1.00)
        elif self.pool_type == "max":
            self.check_grad(set(['X']), 'Out', max_relative_error=1.00)


class TestCase5_channel_last_Max(TestCase5_Max):
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 3]


create_test_cudnn_class(TestCase5_Max)
create_test_cudnn_class(TestCase5_channel_last_Max)


class TestAvgInclude_channel_last(TestCase2_channel_last):
    def init_exclusive(self):
        self.exclusive = False


class TestCUDNNAvgInclude_channel_last(TestCase2_channel_last):
    def init_kernel_type(self):
        self.use_cudnn = True

    def init_exclusive(self):
        self.exclusive = False


class TestAvgPoolAdaptive_channel_last(TestCase1_channel_last):
    def init_adaptive(self):
        self.adaptive = True


class TestPool2D_AsyPadding_channel_last(TestPool2D_AsyPadding):
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 5, 5, 3]


class TestCase1_AsyPadding_channel_last(TestCase1_AsyPadding):
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 3]


class TestCase2_AsyPadding_channel_last(TestCase2_AsyPadding):
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 3]


class TestCase3_AsyPadding_channel_last(TestCase3_AsyPadding):
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 5, 5, 3]


class TestCase4_AsyPadding_channel_last(TestCase4_AsyPadding):
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 3]


class TestCase5_AsyPadding_channel_last(TestCase5_AsyPadding):
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 3]


create_test_cudnn_class(TestPool2D_AsyPadding_channel_last)
create_test_cudnn_class(TestCase1_AsyPadding_channel_last)
create_test_cudnn_class(TestCase2_AsyPadding_channel_last)
create_test_cudnn_class(TestCase3_AsyPadding_channel_last)
create_test_cudnn_class(TestCase4_AsyPadding_channel_last)
create_test_cudnn_class(TestCase5_AsyPadding_channel_last)

create_test_cudnn_fp16_class(TestPool2D_AsyPadding_channel_last)
create_test_cudnn_fp16_class(
    TestCase1_AsyPadding_channel_last, check_grad=False)
create_test_cudnn_fp16_class(TestCase2_AsyPadding_channel_last)
create_test_cudnn_fp16_class(TestCase3_AsyPadding_channel_last)
create_test_cudnn_fp16_class(TestCase4_AsyPadding_channel_last)
create_test_cudnn_fp16_class(TestCase5_AsyPadding_channel_last)

create_test_cudnn_use_ceil_class(TestPool2D_AsyPadding_channel_last)
create_test_cudnn_use_ceil_class(TestCase1_AsyPadding_channel_last)

create_test_use_ceil_class(TestCase1_AsyPadding_channel_last)
create_test_use_ceil_class(TestCase2_AsyPadding_channel_last)


class TestAvgInclude_AsyPadding_channel_last(TestAvgInclude_AsyPadding):
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 3]


class TestCUDNNAvgInclude_AsyPadding_channel_last(
        TestCUDNNAvgInclude_AsyPadding):
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 3]


class TestAvgPoolAdaptive_AsyPadding_channel_last(
        TestAvgPoolAdaptive_AsyPadding):
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 3]


# test paddings: SAME VALID


def create_test_padding_SAME_class(parent):
    class TestPaddingSMAECase(parent):
        def init_paddings(self):
            self.paddings = [0, 0]
            self.padding_algorithm = "SAME"

    cls_name = "{0}_{1}".format(parent.__name__, "PaddingSAMEOp")
    TestPaddingSMAECase.__name__ = cls_name
    globals()[cls_name] = TestPaddingSMAECase


create_test_padding_SAME_class(TestPool2D_Op)
create_test_padding_SAME_class(TestCase1)
create_test_padding_SAME_class(TestCase2)
create_test_padding_SAME_class(TestCase3)
create_test_padding_SAME_class(TestCase4)
create_test_padding_SAME_class(TestCase5)

create_test_padding_SAME_class(TestPool2D_channel_last)
create_test_padding_SAME_class(TestCase1_channel_last)
create_test_padding_SAME_class(TestCase2_channel_last)
create_test_padding_SAME_class(TestCase3_channel_last)
create_test_padding_SAME_class(TestCase4_channel_last)
create_test_padding_SAME_class(TestCase5_channel_last)


def create_test_cudnn_padding_SAME_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNPaddingSMAECase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True

        def init_paddings(self):
            self.paddings = [1, 1]
            self.padding_algorithm = "SAME"

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnPaddingSAMEOp")
    TestCUDNNPaddingSMAECase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNPaddingSMAECase


create_test_cudnn_padding_SAME_class(TestPool2D_Op)
create_test_cudnn_padding_SAME_class(TestCase1)
create_test_cudnn_padding_SAME_class(TestCase2)
create_test_cudnn_padding_SAME_class(TestCase3)
create_test_cudnn_padding_SAME_class(TestCase4)
create_test_cudnn_padding_SAME_class(TestCase5)

create_test_cudnn_padding_SAME_class(TestPool2D_channel_last)
create_test_cudnn_padding_SAME_class(TestCase1_channel_last)
create_test_cudnn_padding_SAME_class(TestCase2_channel_last)
create_test_cudnn_padding_SAME_class(TestCase3_channel_last)
create_test_cudnn_padding_SAME_class(TestCase4_channel_last)
create_test_cudnn_padding_SAME_class(TestCase5_channel_last)


def create_test_padding_VALID_class(parent):
    class TestPaddingVALIDCase(parent):
        def init_paddings(self):
            self.paddings = [1, 1]
            self.padding_algorithm = "VALID"

    cls_name = "{0}_{1}".format(parent.__name__, "PaddingVALIDOp")
    TestPaddingVALIDCase.__name__ = cls_name
    globals()[cls_name] = TestPaddingVALIDCase


create_test_padding_VALID_class(TestPool2D_Op)
create_test_padding_VALID_class(TestCase1)
create_test_padding_VALID_class(TestCase2)
create_test_padding_VALID_class(TestCase3)
create_test_padding_VALID_class(TestCase4)
create_test_padding_VALID_class(TestCase5)

create_test_padding_VALID_class(TestPool2D_channel_last)
create_test_padding_VALID_class(TestCase1_channel_last)
create_test_padding_VALID_class(TestCase2_channel_last)
create_test_padding_VALID_class(TestCase3_channel_last)
create_test_padding_VALID_class(TestCase4_channel_last)
create_test_padding_VALID_class(TestCase5_channel_last)


def create_test_cudnn_padding_VALID_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNPaddingVALIDCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True

        def init_paddings(self):
            self.paddings = [1, 1]
            self.padding_algorithm = "VALID"

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnPaddingVALIDOp")
    TestCUDNNPaddingVALIDCase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNPaddingVALIDCase


create_test_cudnn_padding_VALID_class(TestPool2D_Op)
create_test_cudnn_padding_VALID_class(TestCase1)
create_test_cudnn_padding_VALID_class(TestCase2)
create_test_cudnn_padding_VALID_class(TestCase3)
create_test_cudnn_padding_VALID_class(TestCase4)
create_test_cudnn_padding_VALID_class(TestCase5)

create_test_cudnn_padding_VALID_class(TestPool2D_channel_last)
create_test_cudnn_padding_VALID_class(TestCase1_channel_last)
create_test_cudnn_padding_VALID_class(TestCase2_channel_last)
create_test_cudnn_padding_VALID_class(TestCase3_channel_last)
create_test_cudnn_padding_VALID_class(TestCase4_channel_last)
create_test_cudnn_padding_VALID_class(TestCase5_channel_last)


1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
class TestCase1_strides(TestCase1):
    def init_test_case(self):
        self.ksize = [3, 3]
        self.strides = [1, 2]

    def init_shape(self):
        self.shape = [2, 3, 4, 5]


create_test_cudnn_class(TestCase1_strides)
create_test_padding_SAME_class(TestCase1_strides)
create_test_cudnn_padding_SAME_class(TestCase1_strides)


1070
# ----- test API
C
cnn 已提交
1071
class TestPool2DAPI(unittest.TestCase):
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
    def test_api(self):
        x_NHWC = np.random.random([2, 5, 5, 3]).astype("float32")
        x_NCHW = np.random.random([2, 3, 5, 5]).astype("float32")

        input_NHWC = fluid.layers.data(
            name="input_NHWC",
            shape=[2, 5, 5, 3],
            append_batch_size=False,
            dtype="float32")

        input_NCHW = fluid.layers.data(
            name="input_NCHW",
            shape=[2, 3, 5, 5],
            append_batch_size=False,
            dtype="float32")

1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
        input_NHWC_negetive = fluid.layers.data(
            name="input_NHWC_negetive",
            shape=[2, -1, 5, 3],
            append_batch_size=False,
            dtype="float32")

        input_NCHW_negetive = fluid.layers.data(
            name="input_NCHW_negetive",
            shape=[2, 3, -1, -1],
            append_batch_size=False,
            dtype="float32")

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
        ksize = [3, 3]
        out_1 = fluid.layers.pool2d(
            input=input_NHWC,
            pool_size=ksize,
            pool_type="max",
            pool_padding=[1, 1],
            use_cudnn=False,
            data_format="NHWC")

        out_2 = fluid.layers.pool2d(
            input=input_NHWC,
            pool_size=ksize,
            pool_type="avg",
            pool_padding=[[0, 0], [1, 1], [1, 1], [0, 0]],
            use_cudnn=False,
            data_format="NHWC")

        out_3 = fluid.layers.pool2d(
            input=input_NCHW,
            pool_size=ksize,
            pool_type="avg",
            pool_padding=[[0, 0], [0, 0], [1, 1], [1, 1]],
            use_cudnn=False,
            data_format="NCHW")

        out_4 = fluid.layers.pool2d(
            input=input_NCHW,
            pool_size=ksize,
            pool_type="avg",
            pool_padding=[1, 2, 1, 0],
            use_cudnn=False,
            data_format="NCHW")
        # test VALID
        out_5 = fluid.layers.pool2d(
            input=input_NCHW,
            pool_size=ksize,
            pool_type="avg",
            pool_padding="VALID",
            use_cudnn=False,
            data_format="NCHW")

        out_6 = fluid.layers.pool2d(
            input=input_NHWC,
            pool_size=ksize,
            pool_type="max",
            pool_padding="VALID",
            use_cudnn=False,
            data_format="NHWC")

        # test SAME
        out_7 = fluid.layers.pool2d(
            input=input_NCHW,
            pool_size=[4, 4],
            pool_type="avg",
            pool_padding="SAME",
            use_cudnn=False,
            data_format="NCHW")

        out_8 = fluid.layers.pool2d(
            input=input_NHWC,
            pool_size=[4, 4],
            pool_type="max",
            pool_padding="SAME",
            use_cudnn=False,
            data_format="NHWC")

1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
        # test negetive
        out_9 = fluid.layers.pool2d(
            input=input_NHWC_negetive,
            pool_size=ksize,
            pool_type="avg",
            pool_padding=[0, 0],
            use_cudnn=False,
            data_format="NHWC")
        assert out_9.shape == (2, -1, 3, 3)

        out_10 = fluid.layers.pool2d(
            input=input_NCHW_negetive,
            pool_size=ksize,
            pool_type="avg",
            pool_padding=[0, 0],
            use_cudnn=False,
            data_format="NCHW")
        assert out_10.shape == (2, 3, -1, -1)

1185 1186 1187
        exe = fluid.Executor(place=fluid.CPUPlace())
        [res_1, res_2, res_3, res_4, res_5, res_6, res_7, res_8] = exe.run(
            fluid.default_main_program(),
1188 1189 1190 1191 1192 1193
            feed={
                "input_NHWC": x_NHWC,
                "input_NCHW": x_NCHW,
                "input_NHWC_negetive": x_NHWC,
                "input_NCHW_negetive": x_NCHW
            },
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
            fetch_list=[
                out_1, out_2, out_3, out_4, out_5, out_6, out_7, out_8
            ])

        assert np.allclose(
            res_1,
            pool2D_forward_naive(
                x=x_NHWC,
                ksize=ksize,
                pool_type="max",
                strides=[1, 1],
                paddings=[1, 1],
                data_format="NHWC"))

        assert np.allclose(
            res_2,
            pool2D_forward_naive(
                x=x_NHWC,
                ksize=ksize,
                pool_type="avg",
                strides=[1, 1],
                paddings=[1, 1, 1, 1],
                data_format="NHWC"))
        assert np.allclose(
            res_3,
            pool2D_forward_naive(
                x=x_NCHW,
                ksize=ksize,
                pool_type="avg",
                strides=[1, 1],
                paddings=[1, 1, 1, 1],
                data_format="NCHW"),
            rtol=0.07,
            atol=1e-05)

        assert np.allclose(
            res_4,
            pool2D_forward_naive(
                x=x_NCHW,
                ksize=ksize,
                pool_type="avg",
                strides=[1, 1],
                paddings=[1, 2, 1, 0],
                data_format="NCHW"),
            rtol=0.07,
            atol=1e-05)

        # VALID
        assert np.allclose(
            res_5,
            pool2D_forward_naive(
                x=x_NCHW,
                ksize=ksize,
                pool_type="avg",
                strides=[1, 1],
                paddings=[10, 20],  # any ele is ok
                padding_algorithm="VALID",
                data_format="NCHW"),
            rtol=0.07,
            atol=1e-05)
        assert np.allclose(
            res_6,
            pool2D_forward_naive(
                x=x_NHWC,
                ksize=ksize,
                pool_type="max",
                strides=[1, 1],
                paddings=[10, 20],
                padding_algorithm="VALID",
                data_format="NHWC"))
        # SAME
        assert np.allclose(
            res_7,
            pool2D_forward_naive(
                x=x_NCHW,
                ksize=[4, 4],
                pool_type="avg",
                strides=[1, 1],
                paddings=[10, 20],
                padding_algorithm="SAME",
                data_format="NCHW"),
            rtol=0.07,
            atol=1e-05)

        assert np.allclose(
            res_8,
            pool2D_forward_naive(
                x=x_NHWC,
                ksize=[4, 4],
                pool_type="max",
                strides=[1, 1],
                paddings=[10, 20],
                padding_algorithm="SAME",
                data_format="NHWC"))


C
cnn 已提交
1290
class TestPool2DAPI_Error(unittest.TestCase):
1291 1292 1293 1294 1295 1296 1297 1298
    def test_api(self):
        input_NHWC = fluid.layers.data(
            name="input_NHWC",
            shape=[2, 5, 5, 3],
            append_batch_size=False,
            dtype="float32")
        ksize = [3, 3]

1299
        # cudnn type error
1300 1301 1302 1303 1304 1305 1306 1307 1308
        def run_1():
            out_1 = fluid.layers.pool2d(
                input=input_NHWC,
                pool_size=ksize,
                pool_type="max",
                pool_padding=[1, 1],
                use_cudnn=[0],
                data_format="NHWC")

1309
        self.assertRaises(TypeError, run_1)
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360

        # data_format value error
        def run_2():
            out_2 = fluid.layers.pool2d(
                input=input_NHWC,
                pool_size=ksize,
                pool_type="max",
                pool_padding=[1, 1],
                use_cudnn=False,
                data_format="NHWCC")

        self.assertRaises(ValueError, run_2)

        # padding str value error
        def run_3():
            out_3 = fluid.layers.pool2d(
                input=input_NHWC,
                pool_size=ksize,
                pool_type="max",
                pool_padding="VALIDSAME",
                use_cudnn=False,
                data_format="NHWC")

        self.assertRaises(ValueError, run_3)

        # padding str valid and ceil_mode value error
        def run_4():
            out_4 = fluid.layers.pool2d(
                input=input_NHWC,
                pool_size=ksize,
                pool_type="max",
                pool_padding="VALID",
                use_cudnn=False,
                ceil_mode=True,
                data_format="NHWC")

        self.assertRaises(ValueError, run_4)

        # padding with 8 ele. value error
        def run_5():
            out_5 = fluid.layers.pool2d(
                input=input_NHWC,
                pool_size=ksize,
                pool_type="max",
                pool_padding=[[1, 1], [0, 0], [0, 0], [1, 1]],
                use_cudnn=False,
                data_format="NHWC")

        self.assertRaises(ValueError, run_5)


1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
class TestDygraphPool2DAPIError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
            # the input of Pool2D must be Variable.
            data1 = np.random.random((3, 32, 32, 5)).astype('float32')
            pool2d = fluid.dygraph.Pool2D(
                pool_size=2,
                pool_type='max',
                pool_stride=1,
                global_pooling=False)
            self.assertRaises(TypeError, pool2d, data1)

            # the input dtype of Pool2D must be uint8 or int8 or float16 or float32 or float64
            # uint8 and int8 only can be set on mkldnn
            # float16 only can be set on GPU place
            data2 = fluid.layers.data(
                name='x1', shape=[3, 32, 32, 5], dtype="int32")
            self.assertRaises(TypeError, pool2d, data2)

1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
    def test_data_format_error(self):
        with program_guard(Program(), Program()):
            # the data_format must be 'NCHW' or 'NHWC'
            data1 = np.random.random((3, 32, 32, 5)).astype('float32')
            self.assertRaises(
                ValueError,
                fluid.dygraph.Pool2D,
                pool_size=2,
                pool_type='max',
                pool_stride=1,
                global_pooling=False,
                data_format='NWHC')


class TestDygraphPool2DAPI(unittest.TestCase):
    def test_nhwc(self):
        with fluid.dygraph.guard():
            data = np.random.random((3, 32, 32, 5)).astype('float32')
            x = fluid.dygraph.to_variable(data)
            pool2d = fluid.dygraph.Pool2D(
                pool_size=2,
                pool_type='max',
                pool_stride=1,
                pool_padding=[0, 0],
                global_pooling=False,
                data_format='NHWC')
            out1 = pool2d(x)
            out2 = pool2D_forward_naive(
                data, [2, 2], [1, 1],
                paddings=[0, 0],
                pool_type='max',
                data_format='NHWC')
            self.assertTrue(np.allclose(out1.numpy(), out2))

    def test_lower_case(self):
        with fluid.dygraph.guard():
            data = np.random.random((3, 32, 32, 5)).astype('float32')
            x = fluid.dygraph.to_variable(data)
            pool2d = fluid.dygraph.Pool2D(
                pool_size=2,
                pool_type='max',
                pool_stride=1,
                pool_padding=[0, 0],
                global_pooling=False,
                data_format='nhwc')
            out1 = pool2d(x)
            out2 = pool2D_forward_naive(
                data, [2, 2], [1, 1],
                paddings=[0, 0],
                pool_type='max',
                data_format='NHWC')
            self.assertTrue(np.allclose(out1.numpy(), out2))

    def test_upper_case(self):
        with fluid.dygraph.guard():
            data = np.random.random((3, 32, 32, 5)).astype('float32')
            x = fluid.dygraph.to_variable(data)
            pool2d = fluid.dygraph.Pool2D(
                pool_size=2,
                pool_type='MAX',
                pool_stride=1,
                pool_padding=[0, 0],
                global_pooling=False,
                data_format='nhwc')
            out1 = pool2d(x)
            out2 = pool2D_forward_naive(
                data, [2, 2], [1, 1],
                paddings=[0, 0],
                pool_type='max',
                data_format='NHWC')
            self.assertTrue(np.allclose(out1.numpy(), out2))

1452

C
chengduoZH 已提交
1453 1454
if __name__ == '__main__':
    unittest.main()