perf_counter.c 52.2 KB
Newer Older
T
Thomas Gleixner 已提交
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Performance counter core code
 *
 *  Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
 *
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/fs.h>
#include <linux/cpu.h>
#include <linux/smp.h>
13
#include <linux/file.h>
T
Thomas Gleixner 已提交
14 15 16 17 18 19 20
#include <linux/poll.h>
#include <linux/sysfs.h>
#include <linux/ptrace.h>
#include <linux/percpu.h>
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
21
#include <linux/kernel_stat.h>
T
Thomas Gleixner 已提交
22
#include <linux/perf_counter.h>
23 24
#include <linux/mm.h>
#include <linux/vmstat.h>
T
Thomas Gleixner 已提交
25 26 27 28 29 30

/*
 * Each CPU has a list of per CPU counters:
 */
DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);

31
int perf_max_counters __read_mostly = 1;
T
Thomas Gleixner 已提交
32 33 34 35 36 37 38 39 40 41 42
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

/*
 * Mutex for (sysadmin-configurable) counter reservations:
 */
static DEFINE_MUTEX(perf_resource_mutex);

/*
 * Architecture provided APIs - weak aliases:
 */
43
extern __weak const struct hw_perf_counter_ops *
I
Ingo Molnar 已提交
44
hw_perf_counter_init(struct perf_counter *counter)
T
Thomas Gleixner 已提交
45
{
46
	return NULL;
T
Thomas Gleixner 已提交
47 48
}

49
u64 __weak hw_perf_save_disable(void)		{ return 0; }
50
void __weak hw_perf_restore(u64 ctrl)		{ barrier(); }
51
void __weak hw_perf_counter_setup(int cpu)	{ barrier(); }
52 53 54 55 56 57
int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx, int cpu)
{
	return 0;
}
T
Thomas Gleixner 已提交
58

59 60
void __weak perf_counter_print_debug(void)	{ }

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
static void
list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *group_leader = counter->group_leader;

	/*
	 * Depending on whether it is a standalone or sibling counter,
	 * add it straight to the context's counter list, or to the group
	 * leader's sibling list:
	 */
	if (counter->group_leader == counter)
		list_add_tail(&counter->list_entry, &ctx->counter_list);
	else
		list_add_tail(&counter->list_entry, &group_leader->sibling_list);
}

static void
list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *sibling, *tmp;

	list_del_init(&counter->list_entry);

	/*
	 * If this was a group counter with sibling counters then
	 * upgrade the siblings to singleton counters by adding them
	 * to the context list directly:
	 */
	list_for_each_entry_safe(sibling, tmp,
				 &counter->sibling_list, list_entry) {

		list_del_init(&sibling->list_entry);
		list_add_tail(&sibling->list_entry, &ctx->counter_list);
		sibling->group_leader = sibling;
	}
}

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
static void
counter_sched_out(struct perf_counter *counter,
		  struct perf_cpu_context *cpuctx,
		  struct perf_counter_context *ctx)
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter->state = PERF_COUNTER_STATE_INACTIVE;
	counter->hw_ops->disable(counter);
	counter->oncpu = -1;

	if (!is_software_counter(counter))
		cpuctx->active_oncpu--;
	ctx->nr_active--;
	if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
		cpuctx->exclusive = 0;
}

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
static void
group_sched_out(struct perf_counter *group_counter,
		struct perf_cpu_context *cpuctx,
		struct perf_counter_context *ctx)
{
	struct perf_counter *counter;

	if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter_sched_out(group_counter, cpuctx, ctx);

	/*
	 * Schedule out siblings (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
		counter_sched_out(counter, cpuctx, ctx);

	if (group_counter->hw_event.exclusive)
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
139 140 141 142 143 144
/*
 * Cross CPU call to remove a performance counter
 *
 * We disable the counter on the hardware level first. After that we
 * remove it from the context list.
 */
145
static void __perf_counter_remove_from_context(void *info)
T
Thomas Gleixner 已提交
146 147 148 149
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
150
	unsigned long flags;
151
	u64 perf_flags;
T
Thomas Gleixner 已提交
152 153 154 155 156 157 158 159 160

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

I
Ingo Molnar 已提交
161 162
	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);
T
Thomas Gleixner 已提交
163

164 165 166
	counter_sched_out(counter, cpuctx, ctx);

	counter->task = NULL;
T
Thomas Gleixner 已提交
167 168 169 170 171 172
	ctx->nr_counters--;

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
173
	perf_flags = hw_perf_save_disable();
174
	list_del_counter(counter, ctx);
175
	hw_perf_restore(perf_flags);
T
Thomas Gleixner 已提交
176 177 178 179 180 181 182 183 184 185 186

	if (!ctx->task) {
		/*
		 * Allow more per task counters with respect to the
		 * reservation:
		 */
		cpuctx->max_pertask =
			min(perf_max_counters - ctx->nr_counters,
			    perf_max_counters - perf_reserved_percpu);
	}

I
Ingo Molnar 已提交
187 188
	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
T
Thomas Gleixner 已提交
189 190 191 192 193 194
}


/*
 * Remove the counter from a task's (or a CPU's) list of counters.
 *
195
 * Must be called with counter->mutex and ctx->mutex held.
T
Thomas Gleixner 已提交
196 197 198 199
 *
 * CPU counters are removed with a smp call. For task counters we only
 * call when the task is on a CPU.
 */
200
static void perf_counter_remove_from_context(struct perf_counter *counter)
T
Thomas Gleixner 已提交
201 202 203 204 205 206 207 208 209 210
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are removed via an smp call and
		 * the removal is always sucessful.
		 */
		smp_call_function_single(counter->cpu,
211
					 __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
212 213 214 215 216
					 counter, 1);
		return;
	}

retry:
217
	task_oncpu_function_call(task, __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
218 219 220 221 222 223
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the context is active we need to retry the smp call.
	 */
224
	if (ctx->nr_active && !list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
225 226 227 228 229 230
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
231
	 * can remove the counter safely, if the call above did not
T
Thomas Gleixner 已提交
232 233
	 * succeed.
	 */
234
	if (!list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
235
		ctx->nr_counters--;
236
		list_del_counter(counter, ctx);
T
Thomas Gleixner 已提交
237 238 239 240 241
		counter->task = NULL;
	}
	spin_unlock_irq(&ctx->lock);
}

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
/*
 * Cross CPU call to disable a performance counter
 */
static void __perf_counter_disable(void *info)
{
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	unsigned long flags;

	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);

	/*
	 * If the counter is on, turn it off.
	 * If it is in error state, leave it in error state.
	 */
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
		if (counter == counter->group_leader)
			group_sched_out(counter, cpuctx, ctx);
		else
			counter_sched_out(counter, cpuctx, ctx);
		counter->state = PERF_COUNTER_STATE_OFF;
	}

	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
}

/*
 * Disable a counter.
 */
static void perf_counter_disable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Disable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_disable,
					 counter, 1);
		return;
	}

 retry:
	task_oncpu_function_call(task, __perf_counter_disable, counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the counter is still active, we need to retry the cross-call.
	 */
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
	if (counter->state == PERF_COUNTER_STATE_INACTIVE)
		counter->state = PERF_COUNTER_STATE_OFF;

	spin_unlock_irq(&ctx->lock);
}

/*
 * Disable a counter and all its children.
 */
static void perf_counter_disable_family(struct perf_counter *counter)
{
	struct perf_counter *child;

	perf_counter_disable(counter);

	/*
	 * Lock the mutex to protect the list of children
	 */
	mutex_lock(&counter->mutex);
	list_for_each_entry(child, &counter->child_list, child_list)
		perf_counter_disable(child);
	mutex_unlock(&counter->mutex);
}

335 336 337 338 339 340
static int
counter_sched_in(struct perf_counter *counter,
		 struct perf_cpu_context *cpuctx,
		 struct perf_counter_context *ctx,
		 int cpu)
{
341
	if (counter->state <= PERF_COUNTER_STATE_OFF)
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
		return 0;

	counter->state = PERF_COUNTER_STATE_ACTIVE;
	counter->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

	if (counter->hw_ops->enable(counter)) {
		counter->state = PERF_COUNTER_STATE_INACTIVE;
		counter->oncpu = -1;
		return -EAGAIN;
	}

357 358
	if (!is_software_counter(counter))
		cpuctx->active_oncpu++;
359 360
	ctx->nr_active++;

361 362 363
	if (counter->hw_event.exclusive)
		cpuctx->exclusive = 1;

364 365 366
	return 0;
}

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
/*
 * Return 1 for a group consisting entirely of software counters,
 * 0 if the group contains any hardware counters.
 */
static int is_software_only_group(struct perf_counter *leader)
{
	struct perf_counter *counter;

	if (!is_software_counter(leader))
		return 0;
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		if (!is_software_counter(counter))
			return 0;
	return 1;
}

/*
 * Work out whether we can put this counter group on the CPU now.
 */
static int group_can_go_on(struct perf_counter *counter,
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
	 * Groups consisting entirely of software counters can always go on.
	 */
	if (is_software_only_group(counter))
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
	 * counters can go on.
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
	 * counters on the CPU, it can't go on.
	 */
	if (counter->hw_event.exclusive && cpuctx->active_oncpu)
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

T
Thomas Gleixner 已提交
414
/*
415
 * Cross CPU call to install and enable a performance counter
T
Thomas Gleixner 已提交
416 417 418 419 420 421
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
422
	struct perf_counter *leader = counter->group_leader;
T
Thomas Gleixner 已提交
423
	int cpu = smp_processor_id();
424
	unsigned long flags;
425
	u64 perf_flags;
426
	int err;
T
Thomas Gleixner 已提交
427 428 429 430 431 432 433 434 435

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

I
Ingo Molnar 已提交
436 437
	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);
T
Thomas Gleixner 已提交
438 439 440 441 442

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
443
	perf_flags = hw_perf_save_disable();
T
Thomas Gleixner 已提交
444

445
	list_add_counter(counter, ctx);
T
Thomas Gleixner 已提交
446 447
	ctx->nr_counters++;

448 449 450 451 452 453 454 455
	/*
	 * Don't put the counter on if it is disabled or if
	 * it is in a group and the group isn't on.
	 */
	if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
	    (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
		goto unlock;

456 457 458 459 460
	/*
	 * An exclusive counter can't go on if there are already active
	 * hardware counters, and no hardware counter can go on if there
	 * is already an exclusive counter on.
	 */
461
	if (!group_can_go_on(counter, cpuctx, 1))
462 463 464 465
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx, cpu);

466 467 468 469 470 471 472 473 474 475 476
	if (err) {
		/*
		 * This counter couldn't go on.  If it is in a group
		 * then we have to pull the whole group off.
		 * If the counter group is pinned then put it in error state.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
		if (leader->hw_event.pinned)
			leader->state = PERF_COUNTER_STATE_ERROR;
	}
T
Thomas Gleixner 已提交
477

478
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
479 480
		cpuctx->max_pertask--;

481
 unlock:
482 483
	hw_perf_restore(perf_flags);

I
Ingo Molnar 已提交
484 485
	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
T
Thomas Gleixner 已提交
486 487 488 489 490 491 492 493 494 495 496
}

/*
 * Attach a performance counter to a context
 *
 * First we add the counter to the list with the hardware enable bit
 * in counter->hw_config cleared.
 *
 * If the counter is attached to a task which is on a CPU we use a smp
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
497 498
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
 */
static void
perf_install_in_context(struct perf_counter_context *ctx,
			struct perf_counter *counter,
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are installed via an smp call and
		 * the install is always sucessful.
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
					 counter, 1);
		return;
	}

	counter->task = task;
retry:
	task_oncpu_function_call(task, __perf_install_in_context,
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * we need to retry the smp call.
	 */
526
	if (ctx->is_active && list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
527 528 529 530 531 532 533 534 535
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
	 * can add the counter safely, if it the call above did not
	 * succeed.
	 */
536 537
	if (list_empty(&counter->list_entry)) {
		list_add_counter(counter, ctx);
T
Thomas Gleixner 已提交
538 539 540 541 542
		ctx->nr_counters++;
	}
	spin_unlock_irq(&ctx->lock);
}

543 544 545 546
/*
 * Cross CPU call to enable a performance counter
 */
static void __perf_counter_enable(void *info)
547
{
548 549 550 551 552 553
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *leader = counter->group_leader;
	unsigned long flags;
	int err;
554

555 556 557 558 559
	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
560 561
		return;

562 563 564 565 566 567
	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);

	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto unlock;
	counter->state = PERF_COUNTER_STATE_INACTIVE;
568 569

	/*
570 571
	 * If the counter is in a group and isn't the group leader,
	 * then don't put it on unless the group is on.
572
	 */
573 574
	if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
		goto unlock;
575

576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
	if (!group_can_go_on(counter, cpuctx, 1))
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx,
				       smp_processor_id());

	if (err) {
		/*
		 * If this counter can't go on and it's part of a
		 * group, then the whole group has to come off.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
		if (leader->hw_event.pinned)
			leader->state = PERF_COUNTER_STATE_ERROR;
	}

 unlock:
	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
}

/*
 * Enable a counter.
 */
static void perf_counter_enable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Enable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_enable,
					 counter, 1);
		return;
	}

	spin_lock_irq(&ctx->lock);
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto out;

	/*
	 * If the counter is in error state, clear that first.
	 * That way, if we see the counter in error state below, we
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		counter->state = PERF_COUNTER_STATE_OFF;

 retry:
	spin_unlock_irq(&ctx->lock);
	task_oncpu_function_call(task, __perf_counter_enable, counter);

	spin_lock_irq(&ctx->lock);

	/*
	 * If the context is active and the counter is still off,
	 * we need to retry the cross-call.
	 */
	if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
	if (counter->state == PERF_COUNTER_STATE_OFF)
		counter->state = PERF_COUNTER_STATE_INACTIVE;
 out:
	spin_unlock_irq(&ctx->lock);
}

/*
 * Enable a counter and all its children.
 */
static void perf_counter_enable_family(struct perf_counter *counter)
{
	struct perf_counter *child;

	perf_counter_enable(counter);

	/*
	 * Lock the mutex to protect the list of children
	 */
	mutex_lock(&counter->mutex);
	list_for_each_entry(child, &counter->child_list, child_list)
		perf_counter_enable(child);
	mutex_unlock(&counter->mutex);
668 669
}

670 671 672 673
void __perf_counter_sched_out(struct perf_counter_context *ctx,
			      struct perf_cpu_context *cpuctx)
{
	struct perf_counter *counter;
674
	u64 flags;
675

676 677
	spin_lock(&ctx->lock);
	ctx->is_active = 0;
678
	if (likely(!ctx->nr_counters))
679
		goto out;
680

681
	flags = hw_perf_save_disable();
682 683 684 685
	if (ctx->nr_active) {
		list_for_each_entry(counter, &ctx->counter_list, list_entry)
			group_sched_out(counter, cpuctx, ctx);
	}
686
	hw_perf_restore(flags);
687
 out:
688 689 690
	spin_unlock(&ctx->lock);
}

T
Thomas Gleixner 已提交
691 692 693 694 695 696
/*
 * Called from scheduler to remove the counters of the current task,
 * with interrupts disabled.
 *
 * We stop each counter and update the counter value in counter->count.
 *
I
Ingo Molnar 已提交
697
 * This does not protect us against NMI, but disable()
T
Thomas Gleixner 已提交
698 699 700 701 702 703 704 705 706 707 708 709
 * sets the disabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * not restart the counter.
 */
void perf_counter_task_sched_out(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &task->perf_counter_ctx;

	if (likely(!cpuctx->task_ctx))
		return;

710 711
	__perf_counter_sched_out(ctx, cpuctx);

T
Thomas Gleixner 已提交
712 713 714
	cpuctx->task_ctx = NULL;
}

715
static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
716
{
717
	__perf_counter_sched_out(&cpuctx->ctx, cpuctx);
718 719
}

I
Ingo Molnar 已提交
720
static int
721 722 723 724 725
group_sched_in(struct perf_counter *group_counter,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx,
	       int cpu)
{
726
	struct perf_counter *counter, *partial_group;
727 728 729 730 731 732 733 734
	int ret;

	if (group_counter->state == PERF_COUNTER_STATE_OFF)
		return 0;

	ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
	if (ret)
		return ret < 0 ? ret : 0;
735

736 737
	if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
		return -EAGAIN;
738 739 740 741

	/*
	 * Schedule in siblings as one group (if any):
	 */
I
Ingo Molnar 已提交
742
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
743 744 745 746 747 748
		if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
			partial_group = counter;
			goto group_error;
		}
	}

749
	return 0;
750 751 752 753 754 755 756 757 758 759

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		if (counter == partial_group)
			break;
		counter_sched_out(counter, cpuctx, ctx);
I
Ingo Molnar 已提交
760
	}
761
	counter_sched_out(group_counter, cpuctx, ctx);
I
Ingo Molnar 已提交
762

763
	return -EAGAIN;
764 765
}

766 767 768
static void
__perf_counter_sched_in(struct perf_counter_context *ctx,
			struct perf_cpu_context *cpuctx, int cpu)
T
Thomas Gleixner 已提交
769 770
{
	struct perf_counter *counter;
771
	u64 flags;
772
	int can_add_hw = 1;
T
Thomas Gleixner 已提交
773

774 775
	spin_lock(&ctx->lock);
	ctx->is_active = 1;
T
Thomas Gleixner 已提交
776
	if (likely(!ctx->nr_counters))
777
		goto out;
T
Thomas Gleixner 已提交
778

779
	flags = hw_perf_save_disable();
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    !counter->hw_event.pinned)
			continue;
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

		if (group_can_go_on(counter, cpuctx, 1))
			group_sched_in(counter, cpuctx, ctx, cpu);

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
		if (counter->state == PERF_COUNTER_STATE_INACTIVE)
			counter->state = PERF_COUNTER_STATE_ERROR;
	}

803
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
804 805 806 807 808 809 810 811
		/*
		 * Ignore counters in OFF or ERROR state, and
		 * ignore pinned counters since we did them already.
		 */
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    counter->hw_event.pinned)
			continue;

812 813 814 815
		/*
		 * Listen to the 'cpu' scheduling filter constraint
		 * of counters:
		 */
T
Thomas Gleixner 已提交
816 817 818
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

819
		if (group_can_go_on(counter, cpuctx, can_add_hw)) {
820 821
			if (group_sched_in(counter, cpuctx, ctx, cpu))
				can_add_hw = 0;
822
		}
T
Thomas Gleixner 已提交
823
	}
824
	hw_perf_restore(flags);
825
 out:
T
Thomas Gleixner 已提交
826
	spin_unlock(&ctx->lock);
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
}

/*
 * Called from scheduler to add the counters of the current task
 * with interrupts disabled.
 *
 * We restore the counter value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * keep the counter running.
 */
void perf_counter_task_sched_in(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &task->perf_counter_ctx;
844

845
	__perf_counter_sched_in(ctx, cpuctx, cpu);
T
Thomas Gleixner 已提交
846 847 848
	cpuctx->task_ctx = ctx;
}

849 850 851 852 853 854 855
static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
{
	struct perf_counter_context *ctx = &cpuctx->ctx;

	__perf_counter_sched_in(ctx, cpuctx, cpu);
}

856 857 858 859 860
int perf_counter_task_disable(void)
{
	struct task_struct *curr = current;
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	struct perf_counter *counter;
I
Ingo Molnar 已提交
861
	unsigned long flags;
862 863 864 865 866 867
	u64 perf_flags;
	int cpu;

	if (likely(!ctx->nr_counters))
		return 0;

I
Ingo Molnar 已提交
868
	curr_rq_lock_irq_save(&flags);
869 870
	cpu = smp_processor_id();

I
Ingo Molnar 已提交
871 872 873
	/* force the update of the task clock: */
	__task_delta_exec(curr, 1);

874 875 876 877 878 879 880 881 882
	perf_counter_task_sched_out(curr, cpu);

	spin_lock(&ctx->lock);

	/*
	 * Disable all the counters:
	 */
	perf_flags = hw_perf_save_disable();

883 884 885 886
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state != PERF_COUNTER_STATE_ERROR)
			counter->state = PERF_COUNTER_STATE_OFF;
	}
887

888 889 890 891
	hw_perf_restore(perf_flags);

	spin_unlock(&ctx->lock);

I
Ingo Molnar 已提交
892
	curr_rq_unlock_irq_restore(&flags);
893 894 895 896 897 898 899 900 901

	return 0;
}

int perf_counter_task_enable(void)
{
	struct task_struct *curr = current;
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	struct perf_counter *counter;
I
Ingo Molnar 已提交
902
	unsigned long flags;
903 904 905 906 907 908
	u64 perf_flags;
	int cpu;

	if (likely(!ctx->nr_counters))
		return 0;

I
Ingo Molnar 已提交
909
	curr_rq_lock_irq_save(&flags);
910 911
	cpu = smp_processor_id();

I
Ingo Molnar 已提交
912 913 914
	/* force the update of the task clock: */
	__task_delta_exec(curr, 1);

915 916
	perf_counter_task_sched_out(curr, cpu);

917 918 919 920 921 922 923 924
	spin_lock(&ctx->lock);

	/*
	 * Disable all the counters:
	 */
	perf_flags = hw_perf_save_disable();

	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
925
		if (counter->state > PERF_COUNTER_STATE_OFF)
926
			continue;
927
		counter->state = PERF_COUNTER_STATE_INACTIVE;
I
Ingo Molnar 已提交
928
		counter->hw_event.disabled = 0;
929 930 931 932 933 934 935
	}
	hw_perf_restore(perf_flags);

	spin_unlock(&ctx->lock);

	perf_counter_task_sched_in(curr, cpu);

I
Ingo Molnar 已提交
936
	curr_rq_unlock_irq_restore(&flags);
937 938 939 940

	return 0;
}

941 942 943 944
/*
 * Round-robin a context's counters:
 */
static void rotate_ctx(struct perf_counter_context *ctx)
T
Thomas Gleixner 已提交
945 946
{
	struct perf_counter *counter;
947
	u64 perf_flags;
T
Thomas Gleixner 已提交
948

949
	if (!ctx->nr_counters)
T
Thomas Gleixner 已提交
950 951 952 953
		return;

	spin_lock(&ctx->lock);
	/*
954
	 * Rotate the first entry last (works just fine for group counters too):
T
Thomas Gleixner 已提交
955
	 */
956
	perf_flags = hw_perf_save_disable();
957 958 959
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		list_del(&counter->list_entry);
		list_add_tail(&counter->list_entry, &ctx->counter_list);
T
Thomas Gleixner 已提交
960 961
		break;
	}
962
	hw_perf_restore(perf_flags);
T
Thomas Gleixner 已提交
963 964

	spin_unlock(&ctx->lock);
965 966 967 968 969 970 971 972 973 974 975
}

void perf_counter_task_tick(struct task_struct *curr, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	const int rotate_percpu = 0;

	if (rotate_percpu)
		perf_counter_cpu_sched_out(cpuctx);
	perf_counter_task_sched_out(curr, cpu);
T
Thomas Gleixner 已提交
976

977 978 979 980 981 982
	if (rotate_percpu)
		rotate_ctx(&cpuctx->ctx);
	rotate_ctx(ctx);

	if (rotate_percpu)
		perf_counter_cpu_sched_in(cpuctx, cpu);
T
Thomas Gleixner 已提交
983 984 985 986 987 988
	perf_counter_task_sched_in(curr, cpu);
}

/*
 * Cross CPU call to read the hardware counter
 */
I
Ingo Molnar 已提交
989
static void __read(void *info)
T
Thomas Gleixner 已提交
990
{
I
Ingo Molnar 已提交
991
	struct perf_counter *counter = info;
I
Ingo Molnar 已提交
992
	unsigned long flags;
I
Ingo Molnar 已提交
993

I
Ingo Molnar 已提交
994
	curr_rq_lock_irq_save(&flags);
I
Ingo Molnar 已提交
995
	counter->hw_ops->read(counter);
I
Ingo Molnar 已提交
996
	curr_rq_unlock_irq_restore(&flags);
T
Thomas Gleixner 已提交
997 998
}

999
static u64 perf_counter_read(struct perf_counter *counter)
T
Thomas Gleixner 已提交
1000 1001 1002 1003 1004
{
	/*
	 * If counter is enabled and currently active on a CPU, update the
	 * value in the counter structure:
	 */
1005
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
T
Thomas Gleixner 已提交
1006
		smp_call_function_single(counter->oncpu,
I
Ingo Molnar 已提交
1007
					 __read, counter, 1);
T
Thomas Gleixner 已提交
1008 1009
	}

1010
	return atomic64_read(&counter->count);
T
Thomas Gleixner 已提交
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
}

/*
 * Cross CPU call to switch performance data pointers
 */
static void __perf_switch_irq_data(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_data *oldirqdata = counter->irqdata;

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task) {
		if (cpuctx->task_ctx != ctx)
			return;
		spin_lock(&ctx->lock);
	}

	/* Change the pointer NMI safe */
	atomic_long_set((atomic_long_t *)&counter->irqdata,
			(unsigned long) counter->usrdata);
	counter->usrdata = oldirqdata;

	if (ctx->task)
		spin_unlock(&ctx->lock);
}

static struct perf_data *perf_switch_irq_data(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_data *oldirqdata = counter->irqdata;
	struct task_struct *task = ctx->task;

	if (!task) {
		smp_call_function_single(counter->cpu,
					 __perf_switch_irq_data,
					 counter, 1);
		return counter->usrdata;
	}

retry:
	spin_lock_irq(&ctx->lock);
1058
	if (counter->state != PERF_COUNTER_STATE_ACTIVE) {
T
Thomas Gleixner 已提交
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
		counter->irqdata = counter->usrdata;
		counter->usrdata = oldirqdata;
		spin_unlock_irq(&ctx->lock);
		return oldirqdata;
	}
	spin_unlock_irq(&ctx->lock);
	task_oncpu_function_call(task, __perf_switch_irq_data, counter);
	/* Might have failed, because task was scheduled out */
	if (counter->irqdata == oldirqdata)
		goto retry;

	return counter->usrdata;
}

static void put_context(struct perf_counter_context *ctx)
{
	if (ctx->task)
		put_task_struct(ctx->task);
}

static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct perf_counter_context *ctx;
	struct task_struct *task;

	/*
	 * If cpu is not a wildcard then this is a percpu counter:
	 */
	if (cpu != -1) {
		/* Must be root to operate on a CPU counter: */
		if (!capable(CAP_SYS_ADMIN))
			return ERR_PTR(-EACCES);

		if (cpu < 0 || cpu > num_possible_cpus())
			return ERR_PTR(-EINVAL);

		/*
		 * We could be clever and allow to attach a counter to an
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
		if (!cpu_isset(cpu, cpu_online_map))
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	ctx = &task->perf_counter_ctx;
	ctx->task = task;

	/* Reuse ptrace permission checks for now. */
	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
		put_context(ctx);
		return ERR_PTR(-EACCES);
	}

	return ctx;
}

/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
{
	struct perf_counter *counter = file->private_data;
	struct perf_counter_context *ctx = counter->ctx;

	file->private_data = NULL;

1144
	mutex_lock(&ctx->mutex);
T
Thomas Gleixner 已提交
1145 1146
	mutex_lock(&counter->mutex);

1147
	perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
1148 1149

	mutex_unlock(&counter->mutex);
1150
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1151 1152

	kfree(counter);
1153
	put_context(ctx);
T
Thomas Gleixner 已提交
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168

	return 0;
}

/*
 * Read the performance counter - simple non blocking version for now
 */
static ssize_t
perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
{
	u64 cntval;

	if (count != sizeof(cntval))
		return -EINVAL;

1169 1170 1171 1172 1173 1174 1175 1176
	/*
	 * Return end-of-file for a read on a counter that is in
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		return 0;

T
Thomas Gleixner 已提交
1177
	mutex_lock(&counter->mutex);
1178
	cntval = perf_counter_read(counter);
T
Thomas Gleixner 已提交
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
	mutex_unlock(&counter->mutex);

	return put_user(cntval, (u64 __user *) buf) ? -EFAULT : sizeof(cntval);
}

static ssize_t
perf_copy_usrdata(struct perf_data *usrdata, char __user *buf, size_t count)
{
	if (!usrdata->len)
		return 0;

	count = min(count, (size_t)usrdata->len);
	if (copy_to_user(buf, usrdata->data + usrdata->rd_idx, count))
		return -EFAULT;

	/* Adjust the counters */
	usrdata->len -= count;
	if (!usrdata->len)
		usrdata->rd_idx = 0;
	else
		usrdata->rd_idx += count;

	return count;
}

static ssize_t
perf_read_irq_data(struct perf_counter	*counter,
		   char __user		*buf,
		   size_t		count,
		   int			nonblocking)
{
	struct perf_data *irqdata, *usrdata;
	DECLARE_WAITQUEUE(wait, current);
1212
	ssize_t res, res2;
T
Thomas Gleixner 已提交
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232

	irqdata = counter->irqdata;
	usrdata = counter->usrdata;

	if (usrdata->len + irqdata->len >= count)
		goto read_pending;

	if (nonblocking)
		return -EAGAIN;

	spin_lock_irq(&counter->waitq.lock);
	__add_wait_queue(&counter->waitq, &wait);
	for (;;) {
		set_current_state(TASK_INTERRUPTIBLE);
		if (usrdata->len + irqdata->len >= count)
			break;

		if (signal_pending(current))
			break;

1233 1234 1235
		if (counter->state == PERF_COUNTER_STATE_ERROR)
			break;

T
Thomas Gleixner 已提交
1236 1237 1238 1239 1240 1241 1242 1243
		spin_unlock_irq(&counter->waitq.lock);
		schedule();
		spin_lock_irq(&counter->waitq.lock);
	}
	__remove_wait_queue(&counter->waitq, &wait);
	__set_current_state(TASK_RUNNING);
	spin_unlock_irq(&counter->waitq.lock);

1244 1245
	if (usrdata->len + irqdata->len < count &&
	    counter->state != PERF_COUNTER_STATE_ERROR)
T
Thomas Gleixner 已提交
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
		return -ERESTARTSYS;
read_pending:
	mutex_lock(&counter->mutex);

	/* Drain pending data first: */
	res = perf_copy_usrdata(usrdata, buf, count);
	if (res < 0 || res == count)
		goto out;

	/* Switch irq buffer: */
	usrdata = perf_switch_irq_data(counter);
1257 1258
	res2 = perf_copy_usrdata(usrdata, buf + res, count - res);
	if (res2 < 0) {
T
Thomas Gleixner 已提交
1259 1260 1261
		if (!res)
			res = -EFAULT;
	} else {
1262
		res += res2;
T
Thomas Gleixner 已提交
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
	}
out:
	mutex_unlock(&counter->mutex);

	return res;
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
	struct perf_counter *counter = file->private_data;

I
Ingo Molnar 已提交
1275
	switch (counter->hw_event.record_type) {
T
Thomas Gleixner 已提交
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
	case PERF_RECORD_SIMPLE:
		return perf_read_hw(counter, buf, count);

	case PERF_RECORD_IRQ:
	case PERF_RECORD_GROUP:
		return perf_read_irq_data(counter, buf, count,
					  file->f_flags & O_NONBLOCK);
	}
	return -EINVAL;
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
	struct perf_counter *counter = file->private_data;
	unsigned int events = 0;
	unsigned long flags;

	poll_wait(file, &counter->waitq, wait);

	spin_lock_irqsave(&counter->waitq.lock, flags);
	if (counter->usrdata->len || counter->irqdata->len)
		events |= POLLIN;
	spin_unlock_irqrestore(&counter->waitq.lock, flags);

	return events;
}

1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_counter *counter = file->private_data;
	int err = 0;

	switch (cmd) {
	case PERF_COUNTER_IOC_ENABLE:
		perf_counter_enable_family(counter);
		break;
	case PERF_COUNTER_IOC_DISABLE:
		perf_counter_disable_family(counter);
		break;
	default:
		err = -ENOTTY;
	}
	return err;
}

T
Thomas Gleixner 已提交
1321 1322 1323 1324
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
1325 1326
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
T
Thomas Gleixner 已提交
1327 1328
};

1329
static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
1330
{
1331 1332 1333
	int cpu = raw_smp_processor_id();

	atomic64_set(&counter->hw.prev_count, cpu_clock(cpu));
1334
	return 0;
1335 1336
}

1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
static void cpu_clock_perf_counter_update(struct perf_counter *counter)
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
	prev = atomic64_read(&counter->hw.prev_count);
	atomic64_set(&counter->hw.prev_count, now);
	atomic64_add(now - prev, &counter->count);
}

1349 1350
static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
{
1351
	cpu_clock_perf_counter_update(counter);
1352 1353 1354 1355
}

static void cpu_clock_perf_counter_read(struct perf_counter *counter)
{
1356
	cpu_clock_perf_counter_update(counter);
1357 1358 1359
}

static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
I
Ingo Molnar 已提交
1360 1361 1362
	.enable		= cpu_clock_perf_counter_enable,
	.disable	= cpu_clock_perf_counter_disable,
	.read		= cpu_clock_perf_counter_read,
1363 1364
};

I
Ingo Molnar 已提交
1365 1366 1367 1368
/*
 * Called from within the scheduler:
 */
static u64 task_clock_perf_counter_val(struct perf_counter *counter, int update)
1369
{
I
Ingo Molnar 已提交
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
	struct task_struct *curr = counter->task;
	u64 delta;

	delta = __task_delta_exec(curr, update);

	return curr->se.sum_exec_runtime + delta;
}

static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
{
	u64 prev;
I
Ingo Molnar 已提交
1381 1382 1383 1384 1385 1386 1387 1388 1389
	s64 delta;

	prev = atomic64_read(&counter->hw.prev_count);

	atomic64_set(&counter->hw.prev_count, now);

	delta = now - prev;

	atomic64_add(delta, &counter->count);
1390 1391
}

I
Ingo Molnar 已提交
1392
static void task_clock_perf_counter_read(struct perf_counter *counter)
1393
{
I
Ingo Molnar 已提交
1394 1395 1396
	u64 now = task_clock_perf_counter_val(counter, 1);

	task_clock_perf_counter_update(counter, now);
1397 1398
}

1399
static int task_clock_perf_counter_enable(struct perf_counter *counter)
I
Ingo Molnar 已提交
1400
{
I
Ingo Molnar 已提交
1401 1402 1403
	u64 now = task_clock_perf_counter_val(counter, 0);

	atomic64_set(&counter->hw.prev_count, now);
1404 1405

	return 0;
I
Ingo Molnar 已提交
1406 1407 1408
}

static void task_clock_perf_counter_disable(struct perf_counter *counter)
1409
{
I
Ingo Molnar 已提交
1410 1411 1412
	u64 now = task_clock_perf_counter_val(counter, 0);

	task_clock_perf_counter_update(counter, now);
1413 1414 1415
}

static const struct hw_perf_counter_ops perf_ops_task_clock = {
I
Ingo Molnar 已提交
1416 1417 1418
	.enable		= task_clock_perf_counter_enable,
	.disable	= task_clock_perf_counter_disable,
	.read		= task_clock_perf_counter_read,
1419 1420
};

1421 1422 1423 1424 1425 1426 1427
#ifdef CONFIG_VM_EVENT_COUNTERS
#define cpu_page_faults()	__get_cpu_var(vm_event_states).event[PGFAULT]
#else
#define cpu_page_faults()	0
#endif

static u64 get_page_faults(struct perf_counter *counter)
1428
{
1429
	struct task_struct *curr = counter->ctx->task;
1430

1431 1432 1433
	if (curr)
		return curr->maj_flt + curr->min_flt;
	return cpu_page_faults();
1434 1435 1436 1437 1438 1439 1440 1441
}

static void page_faults_perf_counter_update(struct perf_counter *counter)
{
	u64 prev, now;
	s64 delta;

	prev = atomic64_read(&counter->hw.prev_count);
1442
	now = get_page_faults(counter);
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455

	atomic64_set(&counter->hw.prev_count, now);

	delta = now - prev;

	atomic64_add(delta, &counter->count);
}

static void page_faults_perf_counter_read(struct perf_counter *counter)
{
	page_faults_perf_counter_update(counter);
}

1456
static int page_faults_perf_counter_enable(struct perf_counter *counter)
1457
{
1458
	atomic64_set(&counter->hw.prev_count, get_page_faults(counter));
1459
	return 0;
1460 1461 1462 1463 1464 1465 1466 1467
}

static void page_faults_perf_counter_disable(struct perf_counter *counter)
{
	page_faults_perf_counter_update(counter);
}

static const struct hw_perf_counter_ops perf_ops_page_faults = {
I
Ingo Molnar 已提交
1468 1469 1470
	.enable		= page_faults_perf_counter_enable,
	.disable	= page_faults_perf_counter_disable,
	.read		= page_faults_perf_counter_read,
1471 1472
};

1473
static u64 get_context_switches(struct perf_counter *counter)
1474
{
1475
	struct task_struct *curr = counter->ctx->task;
1476

1477 1478 1479
	if (curr)
		return curr->nvcsw + curr->nivcsw;
	return cpu_nr_switches(smp_processor_id());
1480 1481 1482 1483 1484 1485 1486 1487
}

static void context_switches_perf_counter_update(struct perf_counter *counter)
{
	u64 prev, now;
	s64 delta;

	prev = atomic64_read(&counter->hw.prev_count);
1488
	now = get_context_switches(counter);
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501

	atomic64_set(&counter->hw.prev_count, now);

	delta = now - prev;

	atomic64_add(delta, &counter->count);
}

static void context_switches_perf_counter_read(struct perf_counter *counter)
{
	context_switches_perf_counter_update(counter);
}

1502
static int context_switches_perf_counter_enable(struct perf_counter *counter)
1503
{
1504
	atomic64_set(&counter->hw.prev_count, get_context_switches(counter));
1505
	return 0;
1506 1507 1508 1509 1510 1511 1512 1513
}

static void context_switches_perf_counter_disable(struct perf_counter *counter)
{
	context_switches_perf_counter_update(counter);
}

static const struct hw_perf_counter_ops perf_ops_context_switches = {
I
Ingo Molnar 已提交
1514 1515 1516
	.enable		= context_switches_perf_counter_enable,
	.disable	= context_switches_perf_counter_disable,
	.read		= context_switches_perf_counter_read,
1517 1518
};

1519
static inline u64 get_cpu_migrations(struct perf_counter *counter)
1520
{
1521 1522 1523 1524 1525
	struct task_struct *curr = counter->ctx->task;

	if (curr)
		return curr->se.nr_migrations;
	return cpu_nr_migrations(smp_processor_id());
1526 1527 1528 1529 1530 1531 1532 1533
}

static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
{
	u64 prev, now;
	s64 delta;

	prev = atomic64_read(&counter->hw.prev_count);
1534
	now = get_cpu_migrations(counter);
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547

	atomic64_set(&counter->hw.prev_count, now);

	delta = now - prev;

	atomic64_add(delta, &counter->count);
}

static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

1548
static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
1549
{
1550
	atomic64_set(&counter->hw.prev_count, get_cpu_migrations(counter));
1551
	return 0;
1552 1553 1554 1555 1556 1557 1558 1559
}

static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
I
Ingo Molnar 已提交
1560 1561 1562
	.enable		= cpu_migrations_perf_counter_enable,
	.disable	= cpu_migrations_perf_counter_disable,
	.read		= cpu_migrations_perf_counter_read,
1563 1564
};

1565 1566 1567 1568 1569
static const struct hw_perf_counter_ops *
sw_perf_counter_init(struct perf_counter *counter)
{
	const struct hw_perf_counter_ops *hw_ops = NULL;

1570 1571 1572 1573 1574 1575 1576
	/*
	 * Software counters (currently) can't in general distinguish
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
1577 1578
	switch (counter->hw_event.type) {
	case PERF_COUNT_CPU_CLOCK:
1579 1580 1581 1582
		if (!(counter->hw_event.exclude_user ||
		      counter->hw_event.exclude_kernel ||
		      counter->hw_event.exclude_hv))
			hw_ops = &perf_ops_cpu_clock;
1583
		break;
1584
	case PERF_COUNT_TASK_CLOCK:
1585 1586 1587 1588
		if (counter->hw_event.exclude_user ||
		    counter->hw_event.exclude_kernel ||
		    counter->hw_event.exclude_hv)
			break;
1589 1590 1591 1592 1593 1594 1595 1596
		/*
		 * If the user instantiates this as a per-cpu counter,
		 * use the cpu_clock counter instead.
		 */
		if (counter->ctx->task)
			hw_ops = &perf_ops_task_clock;
		else
			hw_ops = &perf_ops_cpu_clock;
1597
		break;
1598
	case PERF_COUNT_PAGE_FAULTS:
1599 1600 1601
		if (!(counter->hw_event.exclude_user ||
		      counter->hw_event.exclude_kernel))
			hw_ops = &perf_ops_page_faults;
1602
		break;
1603
	case PERF_COUNT_CONTEXT_SWITCHES:
1604 1605
		if (!counter->hw_event.exclude_kernel)
			hw_ops = &perf_ops_context_switches;
1606
		break;
1607
	case PERF_COUNT_CPU_MIGRATIONS:
1608 1609
		if (!counter->hw_event.exclude_kernel)
			hw_ops = &perf_ops_cpu_migrations;
1610
		break;
1611 1612 1613 1614 1615 1616
	default:
		break;
	}
	return hw_ops;
}

T
Thomas Gleixner 已提交
1617 1618 1619 1620
/*
 * Allocate and initialize a counter structure
 */
static struct perf_counter *
1621 1622
perf_counter_alloc(struct perf_counter_hw_event *hw_event,
		   int cpu,
1623
		   struct perf_counter_context *ctx,
1624 1625
		   struct perf_counter *group_leader,
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
1626
{
1627
	const struct hw_perf_counter_ops *hw_ops;
I
Ingo Molnar 已提交
1628
	struct perf_counter *counter;
T
Thomas Gleixner 已提交
1629

1630
	counter = kzalloc(sizeof(*counter), gfpflags);
T
Thomas Gleixner 已提交
1631 1632 1633
	if (!counter)
		return NULL;

1634 1635 1636 1637 1638 1639 1640
	/*
	 * Single counters are their own group leaders, with an
	 * empty sibling list:
	 */
	if (!group_leader)
		group_leader = counter;

T
Thomas Gleixner 已提交
1641
	mutex_init(&counter->mutex);
1642 1643
	INIT_LIST_HEAD(&counter->list_entry);
	INIT_LIST_HEAD(&counter->sibling_list);
T
Thomas Gleixner 已提交
1644 1645
	init_waitqueue_head(&counter->waitq);

1646 1647
	INIT_LIST_HEAD(&counter->child_list);

I
Ingo Molnar 已提交
1648 1649 1650 1651 1652
	counter->irqdata		= &counter->data[0];
	counter->usrdata		= &counter->data[1];
	counter->cpu			= cpu;
	counter->hw_event		= *hw_event;
	counter->wakeup_pending		= 0;
1653
	counter->group_leader		= group_leader;
I
Ingo Molnar 已提交
1654
	counter->hw_ops			= NULL;
1655
	counter->ctx			= ctx;
I
Ingo Molnar 已提交
1656

1657
	counter->state = PERF_COUNTER_STATE_INACTIVE;
1658 1659 1660
	if (hw_event->disabled)
		counter->state = PERF_COUNTER_STATE_OFF;

1661 1662 1663
	hw_ops = NULL;
	if (!hw_event->raw && hw_event->type < 0)
		hw_ops = sw_perf_counter_init(counter);
1664
	else
1665 1666
		hw_ops = hw_perf_counter_init(counter);

I
Ingo Molnar 已提交
1667 1668 1669 1670 1671
	if (!hw_ops) {
		kfree(counter);
		return NULL;
	}
	counter->hw_ops = hw_ops;
T
Thomas Gleixner 已提交
1672 1673 1674 1675 1676

	return counter;
}

/**
I
Ingo Molnar 已提交
1677 1678 1679
 * sys_perf_task_open - open a performance counter, associate it to a task/cpu
 *
 * @hw_event_uptr:	event type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
1680
 * @pid:		target pid
I
Ingo Molnar 已提交
1681 1682
 * @cpu:		target cpu
 * @group_fd:		group leader counter fd
T
Thomas Gleixner 已提交
1683
 */
1684 1685 1686
asmlinkage int
sys_perf_counter_open(struct perf_counter_hw_event *hw_event_uptr __user,
		      pid_t pid, int cpu, int group_fd)
T
Thomas Gleixner 已提交
1687
{
1688
	struct perf_counter *counter, *group_leader;
I
Ingo Molnar 已提交
1689
	struct perf_counter_hw_event hw_event;
1690
	struct perf_counter_context *ctx;
1691
	struct file *counter_file = NULL;
1692 1693
	struct file *group_file = NULL;
	int fput_needed = 0;
1694
	int fput_needed2 = 0;
T
Thomas Gleixner 已提交
1695 1696
	int ret;

I
Ingo Molnar 已提交
1697
	if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
1698 1699
		return -EFAULT;

1700
	/*
I
Ingo Molnar 已提交
1701 1702 1703 1704 1705 1706 1707 1708
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
	 * Look up the group leader (we will attach this counter to it):
1709 1710 1711 1712 1713 1714
	 */
	group_leader = NULL;
	if (group_fd != -1) {
		ret = -EINVAL;
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
1715
			goto err_put_context;
1716
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
1717
			goto err_put_context;
1718 1719 1720

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
1721 1722 1723 1724 1725 1726 1727 1728
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
1729
		 */
I
Ingo Molnar 已提交
1730 1731
		if (group_leader->ctx != ctx)
			goto err_put_context;
1732 1733 1734 1735 1736
		/*
		 * Only a group leader can be exclusive or pinned
		 */
		if (hw_event.exclusive || hw_event.pinned)
			goto err_put_context;
1737 1738
	}

1739
	ret = -EINVAL;
1740 1741
	counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
				     GFP_KERNEL);
T
Thomas Gleixner 已提交
1742 1743 1744 1745 1746
	if (!counter)
		goto err_put_context;

	ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
	if (ret < 0)
1747 1748 1749 1750 1751 1752 1753
		goto err_free_put_context;

	counter_file = fget_light(ret, &fput_needed2);
	if (!counter_file)
		goto err_free_put_context;

	counter->filp = counter_file;
1754
	mutex_lock(&ctx->mutex);
1755
	perf_install_in_context(ctx, counter, cpu);
1756
	mutex_unlock(&ctx->mutex);
1757 1758

	fput_light(counter_file, fput_needed2);
T
Thomas Gleixner 已提交
1759

1760 1761 1762
out_fput:
	fput_light(group_file, fput_needed);

T
Thomas Gleixner 已提交
1763 1764
	return ret;

1765
err_free_put_context:
T
Thomas Gleixner 已提交
1766 1767 1768 1769 1770
	kfree(counter);

err_put_context:
	put_context(ctx);

1771
	goto out_fput;
T
Thomas Gleixner 已提交
1772 1773
}

1774 1775 1776 1777 1778 1779 1780 1781 1782
/*
 * Initialize the perf_counter context in a task_struct:
 */
static void
__perf_counter_init_context(struct perf_counter_context *ctx,
			    struct task_struct *task)
{
	memset(ctx, 0, sizeof(*ctx));
	spin_lock_init(&ctx->lock);
1783
	mutex_init(&ctx->mutex);
1784 1785 1786 1787 1788 1789 1790
	INIT_LIST_HEAD(&ctx->counter_list);
	ctx->task = task;
}

/*
 * inherit a counter from parent task to child task:
 */
1791
static struct perf_counter *
1792 1793 1794 1795
inherit_counter(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
1796
	      struct perf_counter *group_leader,
1797 1798 1799 1800
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *child_counter;

1801 1802 1803 1804 1805 1806 1807 1808 1809
	/*
	 * Instead of creating recursive hierarchies of counters,
	 * we link inherited counters back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_counter->parent)
		parent_counter = parent_counter->parent;

1810
	child_counter = perf_counter_alloc(&parent_counter->hw_event,
1811 1812
					   parent_counter->cpu, child_ctx,
					   group_leader, GFP_KERNEL);
1813
	if (!child_counter)
1814
		return NULL;
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836

	/*
	 * Link it up in the child's context:
	 */
	child_counter->task = child;
	list_add_counter(child_counter, child_ctx);
	child_ctx->nr_counters++;

	child_counter->parent = parent_counter;
	/*
	 * inherit into child's child as well:
	 */
	child_counter->hw_event.inherit = 1;

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child counter exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_counter->filp->f_count);

1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
	/*
	 * Link this into the parent counter's child list
	 */
	mutex_lock(&parent_counter->mutex);
	list_add_tail(&child_counter->child_list, &parent_counter->child_list);

	/*
	 * Make the child state follow the state of the parent counter,
	 * not its hw_event.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_counter_{en,dis}able_family.
	 */
	if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
		child_counter->state = PERF_COUNTER_STATE_INACTIVE;
	else
		child_counter->state = PERF_COUNTER_STATE_OFF;

	mutex_unlock(&parent_counter->mutex);

	return child_counter;
}

static int inherit_group(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *leader;
	struct perf_counter *sub;

	leader = inherit_counter(parent_counter, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (!leader)
		return -ENOMEM;
	list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
		if (!inherit_counter(sub, parent, parent_ctx,
				     child, leader, child_ctx))
			return -ENOMEM;
	}
1876 1877 1878
	return 0;
}

1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
static void sync_child_counter(struct perf_counter *child_counter,
			       struct perf_counter *parent_counter)
{
	u64 parent_val, child_val;

	parent_val = atomic64_read(&parent_counter->count);
	child_val = atomic64_read(&child_counter->count);

	/*
	 * Add back the child's count to the parent's count:
	 */
	atomic64_add(child_val, &parent_counter->count);

	/*
	 * Remove this counter from the parent's list
	 */
	mutex_lock(&parent_counter->mutex);
	list_del_init(&child_counter->child_list);
	mutex_unlock(&parent_counter->mutex);

	/*
	 * Release the parent counter, if this was the last
	 * reference to it.
	 */
	fput(parent_counter->filp);
}

1906 1907 1908 1909 1910 1911
static void
__perf_counter_exit_task(struct task_struct *child,
			 struct perf_counter *child_counter,
			 struct perf_counter_context *child_ctx)
{
	struct perf_counter *parent_counter;
1912
	struct perf_counter *sub, *tmp;
1913 1914

	/*
1915 1916 1917 1918 1919 1920
	 * If we do not self-reap then we have to wait for the
	 * child task to unschedule (it will happen for sure),
	 * so that its counter is at its final count. (This
	 * condition triggers rarely - child tasks usually get
	 * off their CPU before the parent has a chance to
	 * get this far into the reaping action)
1921
	 */
1922 1923 1924 1925
	if (child != current) {
		wait_task_inactive(child, 0);
		list_del_init(&child_counter->list_entry);
	} else {
1926
		struct perf_cpu_context *cpuctx;
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
		unsigned long flags;
		u64 perf_flags;

		/*
		 * Disable and unlink this counter.
		 *
		 * Be careful about zapping the list - IRQ/NMI context
		 * could still be processing it:
		 */
		curr_rq_lock_irq_save(&flags);
		perf_flags = hw_perf_save_disable();
1938 1939 1940

		cpuctx = &__get_cpu_var(perf_cpu_context);

1941
		group_sched_out(child_counter, cpuctx, child_ctx);
1942

1943
		list_del_init(&child_counter->list_entry);
1944

1945
		child_ctx->nr_counters--;
1946

1947 1948 1949
		hw_perf_restore(perf_flags);
		curr_rq_unlock_irq_restore(&flags);
	}
1950 1951 1952 1953 1954 1955 1956

	parent_counter = child_counter->parent;
	/*
	 * It can happen that parent exits first, and has counters
	 * that are still around due to the child reference. These
	 * counters need to be zapped - but otherwise linger.
	 */
1957 1958 1959 1960
	if (parent_counter) {
		sync_child_counter(child_counter, parent_counter);
		list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
					 list_entry) {
1961
			if (sub->parent) {
1962
				sync_child_counter(sub, sub->parent);
1963 1964
				kfree(sub);
			}
1965
		}
1966
		kfree(child_counter);
1967
	}
1968 1969 1970
}

/*
1971
 * When a child task exits, feed back counter values to parent counters.
1972
 *
1973
 * Note: we may be running in child context, but the PID is not hashed
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
 * anymore so new counters will not be added.
 */
void perf_counter_exit_task(struct task_struct *child)
{
	struct perf_counter *child_counter, *tmp;
	struct perf_counter_context *child_ctx;

	child_ctx = &child->perf_counter_ctx;

	if (likely(!child_ctx->nr_counters))
		return;

	list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
				 list_entry)
		__perf_counter_exit_task(child, child_counter, child_ctx);
}

/*
 * Initialize the perf_counter context in task_struct
 */
void perf_counter_init_task(struct task_struct *child)
{
	struct perf_counter_context *child_ctx, *parent_ctx;
1997
	struct perf_counter *counter;
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
	struct task_struct *parent = current;

	child_ctx  =  &child->perf_counter_ctx;
	parent_ctx = &parent->perf_counter_ctx;

	__perf_counter_init_context(child_ctx, child);

	/*
	 * This is executed from the parent task context, so inherit
	 * counters that have been marked for cloning:
	 */

	if (likely(!parent_ctx->nr_counters))
		return;

	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
2017
	mutex_lock(&parent_ctx->mutex);
2018 2019 2020 2021 2022 2023

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
	list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
2024
		if (!counter->hw_event.inherit)
2025 2026
			continue;

2027
		if (inherit_group(counter, parent,
2028 2029 2030 2031
				  parent_ctx, child, child_ctx))
			break;
	}

2032
	mutex_unlock(&parent_ctx->mutex);
2033 2034
}

2035
static void __cpuinit perf_counter_init_cpu(int cpu)
T
Thomas Gleixner 已提交
2036
{
2037
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
2038

2039 2040
	cpuctx = &per_cpu(perf_cpu_context, cpu);
	__perf_counter_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
2041 2042

	mutex_lock(&perf_resource_mutex);
2043
	cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
T
Thomas Gleixner 已提交
2044
	mutex_unlock(&perf_resource_mutex);
2045

2046
	hw_perf_counter_setup(cpu);
T
Thomas Gleixner 已提交
2047 2048 2049
}

#ifdef CONFIG_HOTPLUG_CPU
2050
static void __perf_counter_exit_cpu(void *info)
T
Thomas Gleixner 已提交
2051 2052 2053 2054 2055
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = &cpuctx->ctx;
	struct perf_counter *counter, *tmp;

2056 2057
	list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
		__perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
2058
}
2059
static void perf_counter_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
2060
{
2061 2062 2063 2064
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &cpuctx->ctx;

	mutex_lock(&ctx->mutex);
2065
	smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
2066
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2067 2068
}
#else
2069
static inline void perf_counter_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
2081
		perf_counter_init_cpu(cpu);
T
Thomas Gleixner 已提交
2082 2083 2084 2085
		break;

	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
2086
		perf_counter_exit_cpu(cpu);
T
Thomas Gleixner 已提交
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
};

static int __init perf_counter_init(void)
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
	register_cpu_notifier(&perf_cpu_nb);

	return 0;
}
early_initcall(perf_counter_init);

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > perf_max_counters)
		return -EINVAL;

	mutex_lock(&perf_resource_mutex);
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
		spin_lock_irq(&cpuctx->ctx.lock);
		mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
			  perf_max_counters - perf_reserved_percpu);
		cpuctx->max_pertask = mpt;
		spin_unlock_irq(&cpuctx->ctx.lock);
	}
	mutex_unlock(&perf_resource_mutex);

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

	mutex_lock(&perf_resource_mutex);
	perf_overcommit = val;
	mutex_unlock(&perf_resource_mutex);

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
	.name			= "perf_counters",
};

static int __init perf_counter_sysfs_init(void)
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
device_initcall(perf_counter_sysfs_init);