save_load.py 4.1 KB
Newer Older
L
LDOUBLEV 已提交
1 2
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
W
WenmuZhou 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
L
LDOUBLEV 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
W
WenmuZhou 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
LDOUBLEV 已提交
14 15 16 17 18 19 20

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import errno
import os
W
WenmuZhou 已提交
21 22
import pickle
import six
L
LDOUBLEV 已提交
23

W
WenmuZhou 已提交
24
import paddle
L
LDOUBLEV 已提交
25

W
WenmuZhou 已提交
26
__all__ = ['init_model', 'save_model', 'load_dygraph_pretrain']
L
LDOUBLEV 已提交
27 28


W
WenmuZhou 已提交
29
def _mkdir_if_not_exist(path, logger):
L
LDOUBLEV 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
    """
    mkdir if not exists, ignore the exception when multiprocess mkdir together
    """
    if not os.path.exists(path):
        try:
            os.makedirs(path)
        except OSError as e:
            if e.errno == errno.EEXIST and os.path.isdir(path):
                logger.warning(
                    'be happy if some process has already created {}'.format(
                        path))
            else:
                raise OSError('Failed to mkdir {}'.format(path))


45
def load_dygraph_pretrain(model, logger=None, path=None):
L
LDOUBLEV 已提交
46 47 48
    if not (os.path.isdir(path) or os.path.exists(path + '.pdparams')):
        raise ValueError("Model pretrain path {} does not "
                         "exists.".format(path))
W
WenmuZhou 已提交
49 50
    param_state_dict = paddle.load(path + '.pdparams')
    model.set_state_dict(param_state_dict)
W
WenmuZhou 已提交
51
    return
L
LDOUBLEV 已提交
52

W
WenmuZhou 已提交
53 54

def init_model(config, model, logger, optimizer=None, lr_scheduler=None):
L
LDOUBLEV 已提交
55 56 57
    """
    load model from checkpoint or pretrained_model
    """
Y
YukSing 已提交
58 59 60
    global_config = config['Global']
    checkpoints = global_config.get('checkpoints')
    pretrained_model = global_config.get('pretrained_model')
W
WenmuZhou 已提交
61
    best_model_dict = {}
L
LDOUBLEV 已提交
62
    if checkpoints:
W
WenmuZhou 已提交
63 64 65 66
        assert os.path.exists(checkpoints + ".pdparams"), \
            "Given dir {}.pdparams not exist.".format(checkpoints)
        assert os.path.exists(checkpoints + ".pdopt"), \
            "Given dir {}.pdopt not exist.".format(checkpoints)
W
WenmuZhou 已提交
67 68
        para_dict = paddle.load(checkpoints + '.pdparams')
        opti_dict = paddle.load(checkpoints + '.pdopt')
W
WenmuZhou 已提交
69
        model.set_state_dict(para_dict)
W
WenmuZhou 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82
        if optimizer is not None:
            optimizer.set_state_dict(opti_dict)

        if os.path.exists(checkpoints + '.states'):
            with open(checkpoints + '.states', 'rb') as f:
                states_dict = pickle.load(f) if six.PY2 else pickle.load(
                    f, encoding='latin1')
            best_model_dict = states_dict.get('best_model_dict', {})
            if 'epoch' in states_dict:
                best_model_dict['start_epoch'] = states_dict['epoch'] + 1

        logger.info("resume from {}".format(checkpoints))
    elif pretrained_model:
D
dyning 已提交
83 84
        if not isinstance(pretrained_model, list):
            pretrained_model = [pretrained_model]
85 86
        for pretrained in pretrained_model:
            load_dygraph_pretrain(model, logger, path=pretrained)
D
dyning 已提交
87 88
            logger.info("load pretrained model from {}".format(
                pretrained_model))
89
    else:
W
WenmuZhou 已提交
90 91
        logger.info('train from scratch')
    return best_model_dict
L
LDOUBLEV 已提交
92 93


94
def save_model(model,
W
WenmuZhou 已提交
95 96 97 98 99 100
               optimizer,
               model_path,
               logger,
               is_best=False,
               prefix='ppocr',
               **kwargs):
L
LDOUBLEV 已提交
101 102 103
    """
    save model to the target path
    """
W
WenmuZhou 已提交
104 105
    _mkdir_if_not_exist(model_path, logger)
    model_prefix = os.path.join(model_path, prefix)
106
    paddle.save(model.state_dict(), model_prefix + '.pdparams')
W
WenmuZhou 已提交
107
    paddle.save(optimizer.state_dict(), model_prefix + '.pdopt')
W
WenmuZhou 已提交
108 109 110 111 112 113 114 115

    # save metric and config
    with open(model_prefix + '.states', 'wb') as f:
        pickle.dump(kwargs, f, protocol=2)
    if is_best:
        logger.info('save best model is to {}'.format(model_prefix))
    else:
        logger.info("save model in {}".format(model_prefix))