save_load.py 5.7 KB
Newer Older
L
LDOUBLEV 已提交
1 2
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
W
WenmuZhou 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
L
LDOUBLEV 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
W
WenmuZhou 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
LDOUBLEV 已提交
14 15 16 17 18 19 20

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import errno
import os
W
WenmuZhou 已提交
21 22
import pickle
import six
L
LDOUBLEV 已提交
23

W
WenmuZhou 已提交
24
import paddle
L
LDOUBLEV 已提交
25

W
WenmuZhou 已提交
26
__all__ = ['init_model', 'save_model', 'load_dygraph_pretrain']
L
LDOUBLEV 已提交
27 28


W
WenmuZhou 已提交
29
def _mkdir_if_not_exist(path, logger):
L
LDOUBLEV 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
    """
    mkdir if not exists, ignore the exception when multiprocess mkdir together
    """
    if not os.path.exists(path):
        try:
            os.makedirs(path)
        except OSError as e:
            if e.errno == errno.EEXIST and os.path.isdir(path):
                logger.warning(
                    'be happy if some process has already created {}'.format(
                        path))
            else:
                raise OSError('Failed to mkdir {}'.format(path))


littletomatodonkey's avatar
littletomatodonkey 已提交
45 46 47 48
def load_dygraph_pretrain(model,
                          logger=None,
                          path=None,
                          load_static_weights=False):
L
LDOUBLEV 已提交
49 50 51
    if not (os.path.isdir(path) or os.path.exists(path + '.pdparams')):
        raise ValueError("Model pretrain path {} does not "
                         "exists.".format(path))
W
WenmuZhou 已提交
52
    if load_static_weights:
D
dyning 已提交
53
        pre_state_dict = paddle.static.load_program_state(path)
W
WenmuZhou 已提交
54 55 56 57 58 59 60
        param_state_dict = {}
        model_dict = model.state_dict()
        for key in model_dict.keys():
            weight_name = model_dict[key].name
            weight_name = weight_name.replace('binarize', '').replace(
                'thresh', '')  # for DB
            if weight_name in pre_state_dict.keys():
L
LDOUBLEV 已提交
61 62
                # logger.info('Load weight: {}, shape: {}'.format(
                #     weight_name, pre_state_dict[weight_name].shape))
W
WenmuZhou 已提交
63 64 65 66 67 68 69 70 71 72 73
                if 'encoder_rnn' in key:
                    # delete axis which is 1
                    pre_state_dict[weight_name] = pre_state_dict[
                        weight_name].squeeze()
                    # change axis
                    if len(pre_state_dict[weight_name].shape) > 1:
                        pre_state_dict[weight_name] = pre_state_dict[
                            weight_name].transpose((1, 0))
                param_state_dict[key] = pre_state_dict[weight_name]
            else:
                param_state_dict[key] = model_dict[key]
W
WenmuZhou 已提交
74
        model.set_state_dict(param_state_dict)
W
WenmuZhou 已提交
75 76
        return

W
WenmuZhou 已提交
77 78
    param_state_dict = paddle.load(path + '.pdparams')
    model.set_state_dict(param_state_dict)
W
WenmuZhou 已提交
79
    return
L
LDOUBLEV 已提交
80

W
WenmuZhou 已提交
81 82

def init_model(config, model, logger, optimizer=None, lr_scheduler=None):
L
LDOUBLEV 已提交
83 84 85
    """
    load model from checkpoint or pretrained_model
    """
Y
YukSing 已提交
86 87 88
    global_config = config['Global']
    checkpoints = global_config.get('checkpoints')
    pretrained_model = global_config.get('pretrained_model')
W
WenmuZhou 已提交
89
    best_model_dict = {}
L
LDOUBLEV 已提交
90
    if checkpoints:
W
WenmuZhou 已提交
91 92 93 94
        assert os.path.exists(checkpoints + ".pdparams"), \
            "Given dir {}.pdparams not exist.".format(checkpoints)
        assert os.path.exists(checkpoints + ".pdopt"), \
            "Given dir {}.pdopt not exist.".format(checkpoints)
W
WenmuZhou 已提交
95 96
        para_dict = paddle.load(checkpoints + '.pdparams')
        opti_dict = paddle.load(checkpoints + '.pdopt')
W
WenmuZhou 已提交
97
        model.set_state_dict(para_dict)
W
WenmuZhou 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110
        if optimizer is not None:
            optimizer.set_state_dict(opti_dict)

        if os.path.exists(checkpoints + '.states'):
            with open(checkpoints + '.states', 'rb') as f:
                states_dict = pickle.load(f) if six.PY2 else pickle.load(
                    f, encoding='latin1')
            best_model_dict = states_dict.get('best_model_dict', {})
            if 'epoch' in states_dict:
                best_model_dict['start_epoch'] = states_dict['epoch'] + 1

        logger.info("resume from {}".format(checkpoints))
    elif pretrained_model:
Y
YukSing 已提交
111
        load_static_weights = global_config.get('load_static_weights', False)
D
dyning 已提交
112 113 114
        if not isinstance(pretrained_model, list):
            pretrained_model = [pretrained_model]
        if not isinstance(load_static_weights, list):
D
dyning 已提交
115
            load_static_weights = [load_static_weights] * len(pretrained_model)
D
dyning 已提交
116 117 118
        for idx, pretrained in enumerate(pretrained_model):
            load_static = load_static_weights[idx]
            load_dygraph_pretrain(
D
dyning 已提交
119
                model, logger, path=pretrained, load_static_weights=load_static)
D
dyning 已提交
120 121
            logger.info("load pretrained model from {}".format(
                pretrained_model))
122
    else:
W
WenmuZhou 已提交
123 124
        logger.info('train from scratch')
    return best_model_dict
L
LDOUBLEV 已提交
125 126


127
def save_model(model,
W
WenmuZhou 已提交
128 129 130 131 132 133
               optimizer,
               model_path,
               logger,
               is_best=False,
               prefix='ppocr',
               **kwargs):
L
LDOUBLEV 已提交
134 135 136
    """
    save model to the target path
    """
W
WenmuZhou 已提交
137 138
    _mkdir_if_not_exist(model_path, logger)
    model_prefix = os.path.join(model_path, prefix)
139
    paddle.save(model.state_dict(), model_prefix + '.pdparams')
W
WenmuZhou 已提交
140
    paddle.save(optimizer.state_dict(), model_prefix + '.pdopt')
W
WenmuZhou 已提交
141 142 143 144 145 146 147 148

    # save metric and config
    with open(model_prefix + '.states', 'wb') as f:
        pickle.dump(kwargs, f, protocol=2)
    if is_best:
        logger.info('save best model is to {}'.format(model_prefix))
    else:
        logger.info("save model in {}".format(model_prefix))