save_load.py 5.7 KB
Newer Older
L
LDOUBLEV 已提交
1 2
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
W
WenmuZhou 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
L
LDOUBLEV 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
W
WenmuZhou 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
LDOUBLEV 已提交
14 15 16 17 18 19 20

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import errno
import os
W
WenmuZhou 已提交
21 22
import pickle
import six
L
LDOUBLEV 已提交
23

W
WenmuZhou 已提交
24
import paddle
L
LDOUBLEV 已提交
25

W
WenmuZhou 已提交
26
__all__ = ['init_model', 'save_model', 'load_dygraph_pretrain']
L
LDOUBLEV 已提交
27 28


W
WenmuZhou 已提交
29
def _mkdir_if_not_exist(path, logger):
L
LDOUBLEV 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
    """
    mkdir if not exists, ignore the exception when multiprocess mkdir together
    """
    if not os.path.exists(path):
        try:
            os.makedirs(path)
        except OSError as e:
            if e.errno == errno.EEXIST and os.path.isdir(path):
                logger.warning(
                    'be happy if some process has already created {}'.format(
                        path))
            else:
                raise OSError('Failed to mkdir {}'.format(path))


W
WenmuZhou 已提交
45 46 47 48 49
def load_dygraph_pretrain(
        model,
        logger,
        path=None,
        load_static_weights=False, ):
L
LDOUBLEV 已提交
50 51 52
    if not (os.path.isdir(path) or os.path.exists(path + '.pdparams')):
        raise ValueError("Model pretrain path {} does not "
                         "exists.".format(path))
W
WenmuZhou 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
    if load_static_weights:
        pre_state_dict = paddle.io.load_program_state(path)
        param_state_dict = {}
        model_dict = model.state_dict()
        for key in model_dict.keys():
            weight_name = model_dict[key].name
            weight_name = weight_name.replace('binarize', '').replace(
                'thresh', '')  # for DB
            if weight_name in pre_state_dict.keys():
                logger.info('Load weight: {}, shape: {}'.format(
                    weight_name, pre_state_dict[weight_name].shape))
                if 'encoder_rnn' in key:
                    # delete axis which is 1
                    pre_state_dict[weight_name] = pre_state_dict[
                        weight_name].squeeze()
                    # change axis
                    if len(pre_state_dict[weight_name].shape) > 1:
                        pre_state_dict[weight_name] = pre_state_dict[
                            weight_name].transpose((1, 0))
                param_state_dict[key] = pre_state_dict[weight_name]
            else:
                param_state_dict[key] = model_dict[key]
        model.set_dict(param_state_dict)
        return

    param_state_dict, optim_state_dict = paddle.load(path)
    model.set_dict(param_state_dict)
    return
L
LDOUBLEV 已提交
81

W
WenmuZhou 已提交
82 83

def init_model(config, model, logger, optimizer=None, lr_scheduler=None):
L
LDOUBLEV 已提交
84 85 86
    """
    load model from checkpoint or pretrained_model
    """
W
WenmuZhou 已提交
87 88 89 90
    gloabl_config = config['Global']
    checkpoints = gloabl_config.get('checkpoints')
    pretrained_model = gloabl_config.get('pretrained_model')
    best_model_dict = {}
L
LDOUBLEV 已提交
91
    if checkpoints:
W
WenmuZhou 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
        assert os.path.exists(checkpoints + ".pdparams"), \
            "Given dir {}.pdparams not exist.".format(checkpoints)
        assert os.path.exists(checkpoints + ".pdopt"), \
            "Given dir {}.pdopt not exist.".format(checkpoints)
        para_dict, opti_dict = paddle.load(checkpoints)
        model.set_dict(para_dict)
        if optimizer is not None:
            optimizer.set_state_dict(opti_dict)

        if os.path.exists(checkpoints + '.states'):
            with open(checkpoints + '.states', 'rb') as f:
                states_dict = pickle.load(f) if six.PY2 else pickle.load(
                    f, encoding='latin1')
            best_model_dict = states_dict.get('best_model_dict', {})
            if 'epoch' in states_dict:
                best_model_dict['start_epoch'] = states_dict['epoch'] + 1
            best_model_dict['start_epoch'] = best_model_dict['best_epoch'] + 1

        logger.info("resume from {}".format(checkpoints))
    elif pretrained_model:
        load_static_weights = gloabl_config.get('load_static_weights', False)
        if pretrained_model:
            if not isinstance(pretrained_model, list):
                pretrained_model = [pretrained_model]
            if not isinstance(load_static_weights, list):
                load_static_weights = [load_static_weights] * len(
                    pretrained_model)
            for idx, pretrained in enumerate(pretrained_model):
                load_static = load_static_weights[idx]
                load_dygraph_pretrain(
                    model,
                    logger,
                    path=pretrained,
                    load_static_weights=load_static)
                logger.info("load pretrained model from {}".format(
                    pretrained_model))
128
    else:
W
WenmuZhou 已提交
129 130
        logger.info('train from scratch')
    return best_model_dict
L
LDOUBLEV 已提交
131 132


W
WenmuZhou 已提交
133 134 135 136 137 138 139
def save_model(net,
               optimizer,
               model_path,
               logger,
               is_best=False,
               prefix='ppocr',
               **kwargs):
L
LDOUBLEV 已提交
140 141 142
    """
    save model to the target path
    """
W
WenmuZhou 已提交
143 144 145 146 147 148 149 150 151 152 153 154
    _mkdir_if_not_exist(model_path, logger)
    model_prefix = os.path.join(model_path, prefix)
    paddle.save(net.state_dict(), model_prefix)
    paddle.save(optimizer.state_dict(), model_prefix)

    # save metric and config
    with open(model_prefix + '.states', 'wb') as f:
        pickle.dump(kwargs, f, protocol=2)
    if is_best:
        logger.info('save best model is to {}'.format(model_prefix))
    else:
        logger.info("save model in {}".format(model_prefix))