Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
weixin_41840029
PaddleOCR
提交
e5d3a2d8
P
PaddleOCR
项目概览
weixin_41840029
/
PaddleOCR
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleOCR
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleOCR
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e5d3a2d8
编写于
6月 03, 2021
作者:
littletomatodonkey
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix distillation arch and model init
上级
9d1e5d09
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
141 addition
and
98 deletion
+141
-98
configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_distillation_v2.1.yml
...h_ppocr_v2.0/rec_chinese_lite_train_distillation_v2.1.yml
+14
-18
ppocr/losses/basic_loss.py
ppocr/losses/basic_loss.py
+18
-8
ppocr/losses/distillation_loss.py
ppocr/losses/distillation_loss.py
+18
-23
ppocr/modeling/architectures/distillation_model.py
ppocr/modeling/architectures/distillation_model.py
+8
-13
ppocr/utils/save_load.py
ppocr/utils/save_load.py
+3
-36
ppstructure/layout/README.md
ppstructure/layout/README.md
+80
-0
未找到文件。
configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_distillation_v2.1.yml
浏览文件 @
e5d3a2d8
...
...
@@ -4,11 +4,9 @@ Global:
epoch_num
:
800
log_smooth_window
:
20
print_batch_step
:
10
save_model_dir
:
./output/rec_
D08
1
save_model_dir
:
./output/rec_
chinese_lite_distillation_v2.
1
save_epoch_step
:
3
eval_batch_step
:
-
0
-
2000
eval_batch_step
:
[
0
,
2000
]
cal_metric_during_train
:
true
pretrained_model
:
null
checkpoints
:
null
...
...
@@ -37,12 +35,10 @@ Optimizer:
Architecture
:
name
:
DistillationModel
algorithm
:
Distillation
freeze_params
:
-
false
-
false
pretrained
:
null
Models
:
Student
:
pretrained
:
null
freeze_params
:
false
model_type
:
rec
algorithm
:
CRNN
Transform
:
...
...
@@ -59,6 +55,8 @@ Architecture:
name
:
CTCHead
fc_decay
:
0.00001
Teacher
:
pretrained
:
null
freeze_params
:
false
model_type
:
rec
algorithm
:
CRNN
Transform
:
...
...
@@ -85,16 +83,20 @@ Loss:
key
:
null
-
DistillationDMLLoss
:
weight
:
1.0
model_name_list1
:
[
"
Student"
]
model_name_list2
:
[
"
Teacher"
]
act
:
"
softmax"
model_name_pairs
:
-
[
"
Student"
,
"
Teacher"
]
key
:
null
PostProcess
:
name
:
DistillationCTCLabelDecode
model_name
:
"
Student"
key_out
:
null
Metric
:
name
:
RecMetric
main_indicator
:
acc
Train
:
dataset
:
name
:
SimpleDataSet
...
...
@@ -108,10 +110,7 @@ Train:
-
RecAug
:
null
-
CTCLabelEncode
:
null
-
RecResizeImg
:
image_shape
:
-
3
-
32
-
320
image_shape
:
[
3
,
32
,
320
]
-
KeepKeys
:
keep_keys
:
-
image
...
...
@@ -135,10 +134,7 @@ Eval:
channel_first
:
false
-
CTCLabelEncode
:
null
-
RecResizeImg
:
image_shape
:
-
3
-
32
-
320
image_shape
:
[
3
,
32
,
320
]
-
KeepKeys
:
keep_keys
:
-
image
...
...
ppocr/losses/basic_loss.py
浏览文件 @
e5d3a2d8
...
...
@@ -62,19 +62,29 @@ class DMLLoss(nn.Layer):
DMLLoss
"""
def
__init__
(
self
,
name
=
"loss_dml"
):
def
__init__
(
self
,
act
=
None
,
name
=
"loss_dml"
):
super
().
__init__
()
if
act
is
not
None
:
assert
act
in
[
"softmax"
,
"sigmoid"
]
self
.
name
=
name
if
act
==
"softmax"
:
self
.
act
=
nn
.
Softmax
(
axis
=-
1
)
elif
act
==
"sigmoid"
:
self
.
act
=
nn
.
Sigmoid
()
else
:
self
.
act
=
None
def
forward
(
self
,
out1
,
out2
):
loss_dict
=
{}
soft_out1
=
F
.
softmax
(
out1
,
axis
=-
1
)
log_soft_out1
=
paddle
.
log
(
soft_out1
)
soft_out2
=
F
.
softmax
(
out2
,
axis
=-
1
)
log_soft_out2
=
paddle
.
log
(
soft_out2
)
if
self
.
act
is
not
None
:
out1
=
self
.
act
(
out1
)
out2
=
self
.
act
(
out2
)
log_out1
=
paddle
.
log
(
out1
)
log_out2
=
paddle
.
log
(
out2
)
loss
=
(
F
.
kl_div
(
log_
soft_out1
,
soft_
out2
,
reduction
=
'batchmean'
)
+
F
.
kl_div
(
log_
soft_out2
,
soft
_out1
,
reduction
=
'batchmean'
))
/
2.0
log_
out1
,
out2
,
reduction
=
'batchmean'
)
+
F
.
kl_div
(
log_
out2
,
log
_out1
,
reduction
=
'batchmean'
))
/
2.0
loss_dict
[
self
.
name
]
=
loss
return
loss_dict
...
...
@@ -90,7 +100,7 @@ class DistanceLoss(nn.Layer):
assert
mode
in
[
"l1"
,
"l2"
,
"smooth_l1"
]
if
mode
==
"l1"
:
self
.
loss_func
=
nn
.
L1Loss
(
**
kargs
)
elif
mode
==
"l
1
"
:
elif
mode
==
"l
2
"
:
self
.
loss_func
=
nn
.
MSELoss
(
**
kargs
)
elif
mode
==
"smooth_l1"
:
self
.
loss_func
=
nn
.
SmoothL1Loss
(
**
kargs
)
...
...
ppocr/losses/distillation_loss.py
浏览文件 @
e5d3a2d8
...
...
@@ -23,35 +23,28 @@ class DistillationDMLLoss(DMLLoss):
"""
"""
def
__init__
(
self
,
model_name_list1
=
[],
model_name_list2
=
[],
key
=
None
,
def
__init__
(
self
,
model_name_pairs
=
[],
act
=
None
,
key
=
None
,
name
=
"loss_dml"
):
super
().
__init__
(
name
=
name
)
if
not
isinstance
(
model_name_list1
,
(
list
,
)):
model_name_list1
=
[
model_name_list1
]
if
not
isinstance
(
model_name_list2
,
(
list
,
)):
model_name_list2
=
[
model_name_list2
]
assert
len
(
model_name_list1
)
==
len
(
model_name_list2
)
self
.
model_name_list1
=
model_name_list1
self
.
model_name_list2
=
model_name_list2
super
().
__init__
(
act
=
act
,
name
=
name
)
assert
isinstance
(
model_name_pairs
,
list
)
self
.
key
=
key
self
.
model_name_pairs
=
model_name_pairs
def
forward
(
self
,
predicts
,
batch
):
loss_dict
=
dict
()
for
idx
in
range
(
len
(
self
.
model_name_list1
)
):
out1
=
predicts
[
self
.
model_name_list1
[
idx
]]
out2
=
predicts
[
self
.
model_name_list2
[
idx
]]
for
idx
,
pair
in
enumerate
(
self
.
model_name_pairs
):
out1
=
predicts
[
pair
[
0
]]
out2
=
predicts
[
pair
[
1
]]
if
self
.
key
is
not
None
:
out1
=
out1
[
self
.
key
]
out2
=
out2
[
self
.
key
]
loss
=
super
().
forward
(
out1
,
out2
)
if
isinstance
(
loss
,
dict
):
assert
len
(
loss
)
==
1
loss
=
list
(
loss
.
values
())[
0
]
loss_dict
[
"{}_{}"
.
format
(
self
.
name
,
idx
)]
=
loss
for
key
in
loss
:
loss_dict
[
"{}_{}_{}"
.
format
(
self
.
name
,
key
,
idx
)]
=
loss
[
key
]
else
:
loss_dict
[
"{}_{}"
.
format
(
self
.
name
,
idx
)]
=
loss
return
loss_dict
...
...
@@ -64,13 +57,15 @@ class DistillationCTCLoss(CTCLoss):
def
forward
(
self
,
predicts
,
batch
):
loss_dict
=
dict
()
for
model_name
in
self
.
model_name_list
:
for
idx
,
model_name
in
enumerate
(
self
.
model_name_list
)
:
out
=
predicts
[
model_name
]
if
self
.
key
is
not
None
:
out
=
out
[
self
.
key
]
loss
=
super
().
forward
(
out
,
batch
)
if
isinstance
(
loss
,
dict
):
assert
len
(
loss
)
==
1
loss
=
list
(
loss
.
values
())[
0
]
loss_dict
[
"{}_{}"
.
format
(
self
.
name
,
model_name
)]
=
loss
for
key
in
loss
:
loss_dict
[
"{}_{}_{}"
.
format
(
self
.
name
,
model_name
,
idx
)]
=
loss
[
key
]
else
:
loss_dict
[
"{}_{}"
.
format
(
self
.
name
,
model_name
)]
=
loss
return
loss_dict
ppocr/modeling/architectures/distillation_model.py
浏览文件 @
e5d3a2d8
...
...
@@ -34,25 +34,20 @@ class DistillationModel(nn.Layer):
config (dict): the super parameters for module.
"""
super
().
__init__
()
freeze_params
=
config
[
"freeze_params"
]
pretrained
=
config
[
"pretrained"
]
if
not
isinstance
(
freeze_params
,
list
):
freeze_params
=
[
freeze_params
]
assert
len
(
config
[
"Models"
])
==
len
(
freeze_params
)
if
not
isinstance
(
pretrained
,
list
):
pretrained
=
[
pretrained
]
*
len
(
config
[
"Models"
])
assert
len
(
config
[
"Models"
])
==
len
(
pretrained
)
self
.
model_dict
=
dict
()
index
=
0
for
key
in
config
[
"Models"
]:
model_config
=
config
[
"Models"
][
key
]
freeze_params
=
False
pretrained
=
None
if
"freeze_params"
in
model_config
:
freeze_params
=
model_config
.
pop
(
"freeze_params"
)
if
"pretrained"
in
model_config
:
pretrained
=
model_config
.
pop
(
"pretrained"
)
model
=
BaseModel
(
model_config
)
if
pretrained
[
index
]
is
not
None
:
if
pretrained
is
not
None
:
load_dygraph_pretrain
(
model
,
path
=
pretrained
[
index
])
if
freeze_params
[
index
]
:
if
freeze_params
:
for
param
in
model
.
parameters
():
param
.
trainable
=
False
self
.
model_dict
[
key
]
=
self
.
add_sublayer
(
key
,
model
)
...
...
ppocr/utils/save_load.py
浏览文件 @
e5d3a2d8
...
...
@@ -42,38 +42,10 @@ def _mkdir_if_not_exist(path, logger):
raise
OSError
(
'Failed to mkdir {}'
.
format
(
path
))
def
load_dygraph_pretrain
(
model
,
logger
=
None
,
path
=
None
,
load_static_weights
=
False
):
def
load_dygraph_pretrain
(
model
,
logger
=
None
,
path
=
None
):
if
not
(
os
.
path
.
isdir
(
path
)
or
os
.
path
.
exists
(
path
+
'.pdparams'
)):
raise
ValueError
(
"Model pretrain path {} does not "
"exists."
.
format
(
path
))
if
load_static_weights
:
pre_state_dict
=
paddle
.
static
.
load_program_state
(
path
)
param_state_dict
=
{}
model_dict
=
model
.
state_dict
()
for
key
in
model_dict
.
keys
():
weight_name
=
model_dict
[
key
].
name
weight_name
=
weight_name
.
replace
(
'binarize'
,
''
).
replace
(
'thresh'
,
''
)
# for DB
if
weight_name
in
pre_state_dict
.
keys
():
# logger.info('Load weight: {}, shape: {}'.format(
# weight_name, pre_state_dict[weight_name].shape))
if
'encoder_rnn'
in
key
:
# delete axis which is 1
pre_state_dict
[
weight_name
]
=
pre_state_dict
[
weight_name
].
squeeze
()
# change axis
if
len
(
pre_state_dict
[
weight_name
].
shape
)
>
1
:
pre_state_dict
[
weight_name
]
=
pre_state_dict
[
weight_name
].
transpose
((
1
,
0
))
param_state_dict
[
key
]
=
pre_state_dict
[
weight_name
]
else
:
param_state_dict
[
key
]
=
model_dict
[
key
]
model
.
set_state_dict
(
param_state_dict
)
return
param_state_dict
=
paddle
.
load
(
path
+
'.pdparams'
)
model
.
set_state_dict
(
param_state_dict
)
return
...
...
@@ -108,15 +80,10 @@ def init_model(config, model, logger, optimizer=None, lr_scheduler=None):
logger
.
info
(
"resume from {}"
.
format
(
checkpoints
))
elif
pretrained_model
:
load_static_weights
=
global_config
.
get
(
'load_static_weights'
,
False
)
if
not
isinstance
(
pretrained_model
,
list
):
pretrained_model
=
[
pretrained_model
]
if
not
isinstance
(
load_static_weights
,
list
):
load_static_weights
=
[
load_static_weights
]
*
len
(
pretrained_model
)
for
idx
,
pretrained
in
enumerate
(
pretrained_model
):
load_static
=
load_static_weights
[
idx
]
load_dygraph_pretrain
(
model
,
logger
,
path
=
pretrained
,
load_static_weights
=
load_static
)
for
pretrained
in
pretrained_model
:
load_dygraph_pretrain
(
model
,
logger
,
path
=
pretrained
)
logger
.
info
(
"load pretrained model from {}"
.
format
(
pretrained_model
))
else
:
...
...
ppstructure/layout/README.md
浏览文件 @
e5d3a2d8
# Python端预测部署
Python预测可以使用
`tools/infer.py`
,此种方式依赖PaddleDetection源码;也可以使用本篇教程预测方式,先将模型导出,使用一个独立的文件进行预测。
本篇教程使用AnalysisPredictor对
[
导出模型
](
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/deploy/EXPORT_MODEL.md
)
进行高性能预测。
在PaddlePaddle中预测引擎和训练引擎底层有着不同的优化方法, 预测引擎使用了AnalysisPredictor,专门针对推理进行了优化,是基于
[
C++预测库
](
https://www.paddlepaddle.org.cn/documentation/docs/zh/advanced_guide/inference_deployment/inference/native_infer.html
)
的Python接口,该引擎可以对模型进行多项图优化,减少不必要的内存拷贝。如果用户在部署已训练模型的过程中对性能有较高的要求,我们提供了独立于PaddleDetection的预测脚本,方便用户直接集成部署。
主要包含两个步骤:
-
导出预测模型
-
基于Python的预测
## 1. 导出预测模型
PaddleDetection在训练过程包括网络的前向和优化器相关参数,而在部署过程中,我们只需要前向参数,具体参考:
[
导出模型
](
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/deploy/EXPORT_MODEL.md
)
导出后目录下,包括
`infer_cfg.yml`
,
`model.pdiparams`
,
`model.pdiparams.info`
,
`model.pdmodel`
四个文件。
## 2. 基于python的预测
### 2.1 安装依赖
-
`PaddlePaddle`
的安装:
请点击
[
官方安装文档
](
https://paddlepaddle.org.cn/install/quick
)
选择适合的方式,版本为2.0rc1以上即可
-
切换到
`PaddleDetection`
代码库根目录,执行
`pip install -r requirements.txt`
安装其它依赖
### 2.2 执行预测程序
在终端输入以下命令进行预测:
```
bash
python deploy/python/infer.py
--model_dir
=
/path/to/models
--image_file
=
/path/to/image
--use_gpu
=(
False/True
)
```
参数说明如下:
| 参数 | 是否必须|含义 |
|-------|-------|----------|
| --model_dir | Yes|上述导出的模型路径 |
| --image_file | Option |需要预测的图片 |
| --video_file | Option |需要预测的视频 |
| --camera_id | Option | 用来预测的摄像头ID,默认为-1(表示不使用摄像头预测,可设置为:0 - (摄像头数目-1) ),预测过程中在可视化界面按
`q`
退出输出预测结果到:output/output.mp4|
| --use_gpu |No|是否GPU,默认为False|
| --run_mode |No|使用GPU时,默认为fluid, 可选(fluid/trt_fp32/trt_fp16/trt_int8)|
| --threshold |No|预测得分的阈值,默认为0.5|
| --output_dir |No|可视化结果保存的根目录,默认为output/|
| --run_benchmark |No|是否运行benchmark,同时需指定--image_file|
说明:
-
run_mode:fluid代表使用AnalysisPredictor,精度float32来推理,其他参数指用AnalysisPredictor,TensorRT不同精度来推理。
-
PaddlePaddle默认的GPU安装包(<=1.7),不支持基于TensorRT进行预测,如果想基于TensorRT加速预测,需要自行编译,详细可参考
[
预测库编译教程
](
https://www.paddlepaddle.org.cn/documentation/docs/zh/advanced_usage/deploy/inference/paddle_tensorrt_infer.html
)
。
## 3. 部署性能对比测试
对比AnalysisPredictor相对Executor的推理速度
### 3.1 测试环境:
-
CUDA 9.0
-
CUDNN 7.5
-
PaddlePaddle 1.71
-
GPU: Tesla P40
### 3.2 测试方式:
-
Batch Size=1
-
去掉前100轮warmup时间,测试100轮的平均时间,单位ms/image,只计算模型运行时间,不包括数据的处理和拷贝。
### 3.3 测试结果
|模型 | AnalysisPredictor | Executor | 输入|
|---|----|---|---|
| YOLOv3-MobileNetv1 | 15.20 | 19.54 | 608
*
608
| faster_rcnn_r50_fpn_1x | 50.05 | 69.58 |800
*
1088
| faster_rcnn_r50_1x | 326.11 | 347.22 | 800
*
1067
| mask_rcnn_r50_fpn_1x | 67.49 | 91.02 | 800
*
1088
| mask_rcnn_r50_1x | 326.11 | 350.94 | 800
*
1067
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录