inference_en.md 25.1 KB
Newer Older
K
Khanh Tran 已提交
1

T
tink2123 已提交
2
# Reasoning based on Python prediction engine
K
Khanh Tran 已提交
3

W
WenmuZhou 已提交
4
The inference model (the model saved by `paddle.jit.save`) is generally a solidified model saved after the model training is completed, and is mostly used to give prediction in deployment.
K
Khanh Tran 已提交
5 6 7

The model saved during the training process is the checkpoints model, which saves the parameters of the model and is mostly used to resume training.

L
LDOUBLEV 已提交
8
Compared with the checkpoints model, the inference model will additionally save the structural information of the model. Therefore, it is easier to deploy because the model structure and model parameters are already solidified in the inference model file, and is suitable for integration with actual systems.
L
LDOUBLEV 已提交
9
For more details, please refer to the document [Classification Framework](https://github.com/PaddlePaddle/PaddleClas/blob/release%2F2.0/docs/zh_CN/extension/paddle_mobile_inference.md).
K
Khanh Tran 已提交
10

W
WenmuZhou 已提交
11
Next, we first introduce how to convert a trained model into an inference model, and then we will introduce text detection, text recognition, angle class, and the concatenation of them based on inference model.
K
Khanh Tran 已提交
12

L
licx 已提交
13 14 15
- [CONVERT TRAINING MODEL TO INFERENCE MODEL](#CONVERT)
    - [Convert detection model to inference model](#Convert_detection_model)
    - [Convert recognition model to inference model](#Convert_recognition_model)
W
WenmuZhou 已提交
16 17 18
    - [Convert angle classification model to inference model](#Convert_angle_class_model)


L
licx 已提交
19 20 21 22 23
- [TEXT DETECTION MODEL INFERENCE](#DETECTION_MODEL_INFERENCE)
    - [1. LIGHTWEIGHT CHINESE DETECTION MODEL INFERENCE](#LIGHTWEIGHT_DETECTION)
    - [2. DB TEXT DETECTION MODEL INFERENCE](#DB_DETECTION)
    - [3. EAST TEXT DETECTION MODEL INFERENCE](#EAST_DETECTION)
    - [4. SAST TEXT DETECTION MODEL INFERENCE](#SAST_DETECTION)
W
WenmuZhou 已提交
24 25
    - [5. Multilingual model inference](#Multilingual model inference)

L
licx 已提交
26 27 28
- [TEXT RECOGNITION MODEL INFERENCE](#RECOGNITION_MODEL_INFERENCE)
    - [1. LIGHTWEIGHT CHINESE MODEL](#LIGHTWEIGHT_RECOGNITION)
    - [2. CTC-BASED TEXT RECOGNITION MODEL INFERENCE](#CTC-BASED_RECOGNITION)
T
tink2123 已提交
29
    - [3. SRN-BASED TEXT RECOGNITION MODEL INFERENCE](#SRN-BASED_RECOGNITION)
W
WenmuZhou 已提交
30 31
    - [3. TEXT RECOGNITION MODEL INFERENCE USING CUSTOM CHARACTERS DICTIONARY](#USING_CUSTOM_CHARACTERS)
    - [4. MULTILINGUAL MODEL INFERENCE](MULTILINGUAL_MODEL_INFERENCE)
W
WenmuZhou 已提交
32 33 34 35 36

- [ANGLE CLASSIFICATION MODEL INFERENCE](#ANGLE_CLASS_MODEL_INFERENCE)
    - [1. ANGLE CLASSIFICATION MODEL INFERENCE](#ANGLE_CLASS_MODEL_INFERENCE)

- [TEXT DETECTION ANGLE CLASSIFICATION AND RECOGNITION INFERENCE CONCATENATION](#CONCATENATION)
L
licx 已提交
37 38
    - [1. LIGHTWEIGHT CHINESE MODEL](#LIGHTWEIGHT_CHINESE_MODEL)
    - [2. OTHER MODELS](#OTHER_MODELS)
W
WenmuZhou 已提交
39

L
licx 已提交
40
<a name="CONVERT"></a>
X
xxxpsyduck 已提交
41
## CONVERT TRAINING MODEL TO INFERENCE MODEL
L
licx 已提交
42
<a name="Convert_detection_model"></a>
X
xxxpsyduck 已提交
43
### Convert detection model to inference model
K
Khanh Tran 已提交
44

X
xxxpsyduck 已提交
45
Download the lightweight Chinese detection model:
K
Khanh Tran 已提交
46
```
W
WenmuZhou 已提交
47
wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar && tar xf ./ch_lite/ch_ppocr_mobile_v2.0_det_train.tar -C ./ch_lite/
K
Khanh Tran 已提交
48
```
W
WenmuZhou 已提交
49

K
Khanh Tran 已提交
50 51
The above model is a DB algorithm trained with MobileNetV3 as the backbone. To convert the trained model into an inference model, just run the following command:
```
W
WenmuZhou 已提交
52 53
# -c Set the training algorithm yml configuration file
# -o Set optional parameters
W
WenmuZhou 已提交
54
# Global.pretrained_model parameter Set the training model address to be converted without adding the file suffix .pdmodel, .pdopt or .pdparams.
W
WenmuZhou 已提交
55 56
# Global.load_static_weights needs to be set to False
# Global.save_inference_dir Set the address where the converted model will be saved.
T
tink2123 已提交
57

W
WenmuZhou 已提交
58
python3 tools/export_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_det_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_db/
K
Khanh Tran 已提交
59
```
W
WenmuZhou 已提交
60

W
WenmuZhou 已提交
61
When converting to an inference model, the configuration file used is the same as the configuration file used during training. In addition, you also need to set the `Global.pretrained_model` parameter in the configuration file.
W
WenmuZhou 已提交
62
After the conversion is successful, there are three files in the model save directory:
K
Khanh Tran 已提交
63 64
```
inference/det_db/
65 66 67
    ├── inference.pdiparams         # The parameter file of detection inference model
    ├── inference.pdiparams.info    # The parameter information of detection inference model, which can be ignored
    └── inference.pdmodel           # The program file of detection inference model
K
Khanh Tran 已提交
68 69
```

L
licx 已提交
70
<a name="Convert_recognition_model"></a>
X
xxxpsyduck 已提交
71
### Convert recognition model to inference model
K
Khanh Tran 已提交
72

X
xxxpsyduck 已提交
73
Download the lightweight Chinese recognition model:
K
Khanh Tran 已提交
74
```
W
WenmuZhou 已提交
75
wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar && tar xf ./ch_lite/ch_ppocr_mobile_v2.0_rec_train.tar -C ./ch_lite/
K
Khanh Tran 已提交
76 77 78 79
```

The recognition model is converted to the inference model in the same way as the detection, as follows:
```
W
WenmuZhou 已提交
80 81
# -c Set the training algorithm yml configuration file
# -o Set optional parameters
W
WenmuZhou 已提交
82
# Global.pretrained_model parameter Set the training model address to be converted without adding the file suffix .pdmodel, .pdopt or .pdparams.
W
WenmuZhou 已提交
83 84
# Global.load_static_weights needs to be set to False
# Global.save_inference_dir Set the address where the converted model will be saved.
T
tink2123 已提交
85

W
WenmuZhou 已提交
86
python3 tools/export_model.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_rec_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/rec_crnn/
K
Khanh Tran 已提交
87 88 89 90
```

If you have a model trained on your own dataset with a different dictionary file, please make sure that you modify the `character_dict_path` in the configuration file to your dictionary file path.

W
WenmuZhou 已提交
91
After the conversion is successful, there are three files in the model save directory:
K
Khanh Tran 已提交
92
```
W
WenmuZhou 已提交
93
inference/det_db/
94 95 96
    ├── inference.pdiparams         # The parameter file of recognition inference model
    ├── inference.pdiparams.info    # The parameter information of recognition inference model, which can be ignored
    └── inference.pdmodel           # The program file of recognition model
K
Khanh Tran 已提交
97 98
```

W
WenmuZhou 已提交
99 100 101 102 103
<a name="Convert_angle_class_model"></a>
### Convert angle classification model to inference model

Download the angle classification model:
```
W
WenmuZhou 已提交
104
wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar && tar xf ./ch_lite/ch_ppocr_mobile_v2.0_cls_train.tar -C ./ch_lite/
W
WenmuZhou 已提交
105 106 107 108
```

The angle classification model is converted to the inference model in the same way as the detection, as follows:
```
W
WenmuZhou 已提交
109 110
# -c Set the training algorithm yml configuration file
# -o Set optional parameters
W
WenmuZhou 已提交
111
# Global.pretrained_model parameter Set the training model address to be converted without adding the file suffix .pdmodel, .pdopt or .pdparams.
W
WenmuZhou 已提交
112 113
# Global.load_static_weights needs to be set to False
# Global.save_inference_dir Set the address where the converted model will be saved.
W
WenmuZhou 已提交
114

W
WenmuZhou 已提交
115
python3 tools/export_model.py -c configs/cls/cls_mv3.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_cls_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/cls/
W
WenmuZhou 已提交
116 117 118 119
```

After the conversion is successful, there are two files in the directory:
```
W
WenmuZhou 已提交
120
inference/det_db/
121 122 123
    ├── inference.pdiparams         # The parameter file of angle class inference model
    ├── inference.pdiparams.info    # The parameter information of  angle class inference model, which can be ignored
    └── inference.pdmodel           # The program file of angle class model
W
WenmuZhou 已提交
124 125 126
```


L
licx 已提交
127
<a name="DETECTION_MODEL_INFERENCE"></a>
X
xxxpsyduck 已提交
128
## TEXT DETECTION MODEL INFERENCE
K
Khanh Tran 已提交
129

T
tink2123 已提交
130 131
The following will introduce the lightweight Chinese detection model inference, DB text detection model inference and EAST text detection model inference. The default configuration is based on the inference setting of the DB text detection model.
Because EAST and DB algorithms are very different, when inference, it is necessary to **adapt the EAST text detection algorithm by passing in corresponding parameters**.
K
Khanh Tran 已提交
132

L
licx 已提交
133
<a name="LIGHTWEIGHT_DETECTION"></a>
X
xxxpsyduck 已提交
134
### 1. LIGHTWEIGHT CHINESE DETECTION MODEL INFERENCE
K
Khanh Tran 已提交
135

X
xxxpsyduck 已提交
136
For lightweight Chinese detection model inference, you can execute the following commands:
K
Khanh Tran 已提交
137 138

```
L
LDOUBLEV 已提交
139 140 141 142
# download DB text detection inference model
wget  https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar
tar xf ch_ppocr_mobile_v2.0_det_infer.tar
# predict
L
LDOUBLEV 已提交
143
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./inference/det_db/"
K
Khanh Tran 已提交
144 145 146 147
```

The visual text detection results are saved to the ./inference_results folder by default, and the name of the result file is prefixed with'det_res'. Examples of results are as follows:

L
LDOUBLEV 已提交
148
![](../imgs_results/det_res_00018069.jpg)
K
Khanh Tran 已提交
149

L
LDOUBLEV 已提交
150
You can use the parameters `limit_type` and `det_limit_side_len` to limit the size of the input image,
M
MissPenguin 已提交
151
The optional parameters of `limit_type` are [`max`, `min`], and
L
LDOUBLEV 已提交
152
`det_limit_size_len` is a positive integer, generally set to a multiple of 32, such as 960.
K
Khanh Tran 已提交
153

L
LDOUBLEV 已提交
154 155 156 157 158
The default setting of the parameters is `limit_type='max', det_limit_side_len=960`. Indicates that the longest side of the network input image cannot exceed 960,
If this value is exceeded, the image will be resized with the same width ratio to ensure that the longest side is `det_limit_side_len`.
Set as `limit_type='min', det_limit_side_len=960`, it means that the shortest side of the image is limited to 960.

If the resolution of the input picture is relatively large and you want to use a larger resolution prediction, you can set det_limit_side_len to the desired value, such as 1216:
K
Khanh Tran 已提交
159
```
L
LDOUBLEV 已提交
160
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/22.jpg" --det_model_dir="./inference/det_db/" --det_limit_type=max --det_limit_side_len=1216
K
Khanh Tran 已提交
161 162 163 164
```

If you want to use the CPU for prediction, execute the command as follows
```
L
LDOUBLEV 已提交
165
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/22.jpg" --det_model_dir="./inference/det_db/" --use_gpu=False
K
Khanh Tran 已提交
166 167
```

L
licx 已提交
168
<a name="DB_DETECTION"></a>
X
xxxpsyduck 已提交
169
### 2. DB TEXT DETECTION MODEL INFERENCE
K
Khanh Tran 已提交
170

W
WenmuZhou 已提交
171
First, convert the model saved in the DB text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the ICDAR2015 English dataset as an example ([model download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar)), you can use the following command to convert:
K
Khanh Tran 已提交
172 173

```
W
WenmuZhou 已提交
174
python3 tools/export_model.py -c configs/det/det_r50_vd_db.yml -o Global.pretrained_model=./det_r50_vd_db_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_db
K
Khanh Tran 已提交
175 176 177 178 179 180 181 182 183 184
```

DB text detection model inference, you can execute the following command:

```
python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_db/"
```

The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows:

185
![](../imgs_results/det_res_img_10_db.jpg)
K
Khanh Tran 已提交
186 187 188

**Note**: Since the ICDAR2015 dataset has only 1,000 training images, mainly for English scenes, the above model has very poor detection result on Chinese text images.

L
licx 已提交
189
<a name="EAST_DETECTION"></a>
X
xxxpsyduck 已提交
190
### 3. EAST TEXT DETECTION MODEL INFERENCE
K
Khanh Tran 已提交
191

M
MissPenguin 已提交
192
First, convert the model saved in the EAST text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the ICDAR2015 English dataset as an example ([model download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_east_v2.0_train.tar)), you can use the following command to convert:
K
Khanh Tran 已提交
193 194

```
W
WenmuZhou 已提交
195
python3 tools/export_model.py -c configs/det/det_r50_vd_east.yml -o Global.pretrained_model=./det_r50_vd_east_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_east
K
Khanh Tran 已提交
196
```
L
licx 已提交
197
**For EAST text detection model inference, you need to set the parameter ``--det_algorithm="EAST"``**, run the following command:
K
Khanh Tran 已提交
198 199 200 201

```
python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_east/" --det_algorithm="EAST"
```
L
licx 已提交
202

K
Khanh Tran 已提交
203 204
The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows:

M
MissPenguin 已提交
205
![](../imgs_results/det_res_img_10_east.jpg)
K
Khanh Tran 已提交
206

L
licx 已提交
207 208 209 210 211 212
**Note**: EAST post-processing locality aware NMS has two versions: Python and C++. The speed of C++ version is obviously faster than that of Python version. Due to the compilation version problem of NMS of C++ version, C++ version NMS will be called only in Python 3.5 environment, and python version NMS will be called in other cases.


<a name="SAST_DETECTION"></a>
### 4. SAST TEXT DETECTION MODEL INFERENCE
#### (1). Quadrangle text detection model (ICDAR2015)  
M
MissPenguin 已提交
213
First, convert the model saved in the SAST text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the ICDAR2015 English dataset as an example ([model download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar)), you can use the following command to convert:
L
licx 已提交
214 215

```
W
WenmuZhou 已提交
216
python3 tools/export_model.py -c configs/det/det_r50_vd_sast_icdar15.yml -o Global.pretrained_model=./det_r50_vd_sast_icdar15_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_sast_ic15
L
licx 已提交
217 218 219
```

**For SAST quadrangle text detection model inference, you need to set the parameter `--det_algorithm="SAST"`**, run the following command:
K
Khanh Tran 已提交
220

L
licx 已提交
221 222 223 224 225
```
python3 tools/infer/predict_det.py --det_algorithm="SAST" --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_sast_ic15/"
```

The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows:
K
Khanh Tran 已提交
226

M
MissPenguin 已提交
227
![](../imgs_results/det_res_img_10_sast.jpg)
L
licx 已提交
228 229

#### (2). Curved text detection model (Total-Text)  
M
MissPenguin 已提交
230
First, convert the model saved in the SAST text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the Total-Text English dataset as an example ([model download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_totaltext_v2.0_train.tar)), you can use the following command to convert:
L
licx 已提交
231 232

```
W
WenmuZhou 已提交
233
python3 tools/export_model.py -c configs/det/det_r50_vd_sast_totaltext.yml -o Global.pretrained_model=./det_r50_vd_sast_totaltext_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_sast_tt
L
licx 已提交
234 235 236 237 238 239 240 241 242 243
```

**For SAST curved text detection model inference, you need to set the parameter `--det_algorithm="SAST"` and `--det_sast_polygon=True`**, run the following command:

```
python3 tools/infer/predict_det.py --det_algorithm="SAST" --image_dir="./doc/imgs_en/img623.jpg" --det_model_dir="./inference/det_sast_tt/" --det_sast_polygon=True
```

The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows:

M
MissPenguin 已提交
244
![](../imgs_results/det_res_img623_sast.jpg)
L
licx 已提交
245 246 247 248

**Note**: SAST post-processing locality aware NMS has two versions: Python and C++. The speed of C++ version is obviously faster than that of Python version. Due to the compilation version problem of NMS of C++ version, C++ version NMS will be called only in Python 3.5 environment, and python version NMS will be called in other cases.

<a name="RECOGNITION_MODEL_INFERENCE"></a>
X
xxxpsyduck 已提交
249
## TEXT RECOGNITION MODEL INFERENCE
K
Khanh Tran 已提交
250

X
xxxpsyduck 已提交
251
The following will introduce the lightweight Chinese recognition model inference, other CTC-based and Attention-based text recognition models inference. For Chinese text recognition, it is recommended to choose the recognition model based on CTC loss. In practice, it is also found that the result of the model based on Attention loss is not as good as the one based on CTC loss. In addition, if the characters dictionary is modified during training, make sure that you use the same characters set during inferencing. Please check below for details.
K
Khanh Tran 已提交
252 253


L
licx 已提交
254
<a name="LIGHTWEIGHT_RECOGNITION"></a>
X
xxxpsyduck 已提交
255
### 1. LIGHTWEIGHT CHINESE TEXT RECOGNITION MODEL REFERENCE
K
Khanh Tran 已提交
256

X
xxxpsyduck 已提交
257
For lightweight Chinese recognition model inference, you can execute the following commands:
K
Khanh Tran 已提交
258 259

```
W
WenmuZhou 已提交
260 261 262 263
# download CRNN text recognition inference model
wget  https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar
tar xf ch_ppocr_mobile_v2.0_rec_infer.tar
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_10.png" --rec_model_dir="ch_ppocr_mobile_v2.0_rec_infer"
K
Khanh Tran 已提交
264 265
```

W
WenmuZhou 已提交
266
![](../imgs_words_en/word_10.png)
K
Khanh Tran 已提交
267 268 269

After executing the command, the prediction results (recognized text and score) of the above image will be printed on the screen.

W
WenmuZhou 已提交
270
```bash
W
WenmuZhou 已提交
271
Predicts of ./doc/imgs_words_en/word_10.png:('PAIN', 0.9897658)
W
WenmuZhou 已提交
272
```
K
Khanh Tran 已提交
273

L
licx 已提交
274
<a name="CTC-BASED_RECOGNITION"></a>
X
xxxpsyduck 已提交
275
### 2. CTC-BASED TEXT RECOGNITION MODEL INFERENCE
K
Khanh Tran 已提交
276

W
WenmuZhou 已提交
277
Taking CRNN as an example, we introduce the recognition model inference based on CTC loss. Rosetta and Star-Net are used in a similar way, No need to set the recognition algorithm parameter rec_algorithm.
K
Khanh Tran 已提交
278

W
WenmuZhou 已提交
279
First, convert the model saved in the CRNN text recognition training process into an inference model. Taking the model based on Resnet34_vd backbone network, using MJSynth and SynthText (two English text recognition synthetic datasets) for training, as an example ([model download address](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_bilstm_ctc_v2.0_train.tar)). It can be converted as follow:
K
Khanh Tran 已提交
280 281

```
W
WenmuZhou 已提交
282
python3 tools/export_model.py -c configs/det/rec_r34_vd_none_bilstm_ctc.yml -o Global.pretrained_model=./rec_r34_vd_none_bilstm_ctc_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/rec_crnn
K
Khanh Tran 已提交
283 284
```

W
WenmuZhou 已提交
285
For CRNN text recognition model inference, execute the following commands:
K
Khanh Tran 已提交
286 287 288 289

```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./inference/starnet/" --rec_image_shape="3, 32, 100" --rec_char_type="en"
```
X
xxxpsyduck 已提交
290

W
WenmuZhou 已提交
291
![](../imgs_words_en/word_336.png)
K
Khanh Tran 已提交
292

W
WenmuZhou 已提交
293 294 295 296 297
After executing the command, the recognition result of the above image is as follows:

```bash
Predicts of ./doc/imgs_words_en/word_336.png:('super', 0.9999073)
```
X
xxxpsyduck 已提交
298
**Note**:Since the above model refers to [DTRB](https://arxiv.org/abs/1904.01906) text recognition training and evaluation process, it is different from the training of lightweight Chinese recognition model in two aspects:
K
Khanh Tran 已提交
299 300 301 302 303 304 305 306 307 308

- The image resolution used in training is different: the image resolution used in training the above model is [3,32,100], while during our Chinese model training, in order to ensure the recognition effect of long text, the image resolution used in training is [3, 32, 320]. The default shape parameter of the inference stage is the image resolution used in training phase, that is [3, 32, 320]. Therefore, when running inference of the above English model here, you need to set the shape of the recognition image through the parameter `rec_image_shape`.

- Character list: the experiment in the DTRB paper is only for 26 lowercase English characters and 10 numbers, a total of 36 characters. All upper and lower case characters are converted to lower case characters, and characters not in the above list are ignored and considered as spaces. Therefore, no characters dictionary file is used here, but a dictionary is generated by the below command. Therefore, the parameter `rec_char_type` needs to be set during inference, which is specified as "en" in English.

```
self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
dict_character = list(self.character_str)
```

T
tink2123 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
<a name="SRN-BASED_RECOGNITION"></a>
### 3. SRN-BASED TEXT RECOGNITION MODEL INFERENCE

The recognition model based on SRN requires additional setting of the recognition algorithm parameter
--rec_algorithm="SRN". At the same time, it is necessary to ensure that the predicted shape is consistent
with the training, such as: --rec_image_shape="1, 64, 256"

```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" \
                                    --rec_model_dir="./inference/srn/" \
                                    --rec_image_shape="1, 64, 256" \
                                    --rec_char_type="en" \
                                    --rec_algorithm="SRN"
```

L
licx 已提交
324
<a name="USING_CUSTOM_CHARACTERS"></a>
T
tink2123 已提交
325
### 4. TEXT RECOGNITION MODEL INFERENCE USING CUSTOM CHARACTERS DICTIONARY
W
WenmuZhou 已提交
326
If the text dictionary is modified during training, when using the inference model to predict, you need to specify the dictionary path used by `--rec_char_dict_path`, and set `rec_char_type=ch`
L
LDOUBLEV 已提交
327 328

```
W
WenmuZhou 已提交
329
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_type="ch" --rec_char_dict_path="your text dict path"
L
LDOUBLEV 已提交
330 331
```

W
WenmuZhou 已提交
332
<a name="MULTILINGUAL_MODEL_INFERENCE"></a>
T
tink2123 已提交
333
### 5. MULTILINGAUL MODEL INFERENCE
W
WenmuZhou 已提交
334
If you need to predict other language models, when using inference model prediction, you need to specify the dictionary path used by `--rec_char_dict_path`. At the same time, in order to get the correct visualization results,
T
tink2123 已提交
335
You need to specify the visual font path through `--vis_font_path`. There are small language fonts provided by default under the `doc/fonts` path, such as Korean recognition:
W
WenmuZhou 已提交
336 337

```
T
tink2123 已提交
338
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/korean/1.jpg" --rec_model_dir="./your inference model" --rec_char_type="korean" --rec_char_dict_path="ppocr/utils/dict/korean_dict.txt" --vis_font_path="doc/fonts/korean.ttf"
W
WenmuZhou 已提交
339 340 341 342 343 344
```
![](../imgs_words/korean/1.jpg)

After executing the command, the prediction result of the above figure is:

``` text
W
WenmuZhou 已提交
345
Predicts of ./doc/imgs_words/korean/1.jpg:('바탕으로', 0.9948904)
W
WenmuZhou 已提交
346 347 348 349 350 351 352 353 354 355 356 357 358 359
```

<a name="ANGLE_CLASSIFICATION_MODEL_INFERENCE"></a>
## ANGLE CLASSIFICATION MODEL INFERENCE

The following will introduce the angle classification model inference.


<a name="ANGLE_CLASS_MODEL_INFERENCE"></a>
### 1.ANGLE CLASSIFICATION MODEL INFERENCE

For angle classification model inference, you can execute the following commands:

```
W
WenmuZhou 已提交
360
python3 tools/infer/predict_cls.py --image_dir="./doc/imgs_words_en/word_10.png" --cls_model_dir="./inference/cls/"
W
WenmuZhou 已提交
361
```
W
WenmuZhou 已提交
362 363 364 365 366 367
```
# download text angle class inference model:
wget  https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar
tar xf ch_ppocr_mobile_v2.0_cls_infer.tar
python3 tools/infer/predict_cls.py --image_dir="./doc/imgs_words_en/word_10.png" --cls_model_dir="ch_ppocr_mobile_v2.0_cls_infer"
```
W
WenmuZhou 已提交
368
![](../imgs_words_en/word_10.png)
W
WenmuZhou 已提交
369 370 371

After executing the command, the prediction results (classification angle and score) of the above image will be printed on the screen.

W
WenmuZhou 已提交
372
```
W
WenmuZhou 已提交
373
 Predicts of ./doc/imgs_words_en/word_10.png:['0', 0.9999995]
W
WenmuZhou 已提交
374
```
W
WenmuZhou 已提交
375

L
licx 已提交
376
<a name="CONCATENATION"></a>
W
WenmuZhou 已提交
377
## TEXT DETECTION ANGLE CLASSIFICATION AND RECOGNITION INFERENCE CONCATENATION
K
Khanh Tran 已提交
378

L
licx 已提交
379
<a name="LIGHTWEIGHT_CHINESE_MODEL"></a>
X
xxxpsyduck 已提交
380
### 1. LIGHTWEIGHT CHINESE MODEL
K
Khanh Tran 已提交
381

littletomatodonkey's avatar
littletomatodonkey 已提交
382
When performing prediction, you need to specify the path of a single image or a folder of images through the parameter `image_dir`, the parameter `det_model_dir` specifies the path to detect the inference model, the parameter `cls_model_dir` specifies the path to angle classification inference model and the parameter `rec_model_dir` specifies the path to identify the inference model. The parameter `use_angle_cls` is used to control whether to enable the angle classification model. The parameter `use_mp` specifies whether to use multi-process to infer `total_process_num` specifies process number when using multi-process. The parameter . The visualized recognition results are saved to the `./inference_results` folder by default.
K
Khanh Tran 已提交
383

littletomatodonkey's avatar
littletomatodonkey 已提交
384
```shell
W
WenmuZhou 已提交
385
# use direction classifier
W
WenmuZhou 已提交
386
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./inference/det_db/" --cls_model_dir="./inference/cls/" --rec_model_dir="./inference/rec_crnn/" --use_angle_cls=true
W
WenmuZhou 已提交
387 388

# not use use direction classifier
W
WenmuZhou 已提交
389
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./inference/det_db/" --rec_model_dir="./inference/rec_crnn/"
littletomatodonkey's avatar
littletomatodonkey 已提交
390 391 392 393

# use multi-process
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./inference/det_db/" --rec_model_dir="./inference/rec_crnn/" --use_angle_cls=false --use_mp=True --total_process_num=6
```
K
Khanh Tran 已提交
394 395 396 397
```

After executing the command, the recognition result image is as follows:

W
WenmuZhou 已提交
398
![](../imgs_results/system_res_00018069.jpg)
K
Khanh Tran 已提交
399

L
licx 已提交
400
<a name="OTHER_MODELS"></a>
X
xxxpsyduck 已提交
401
### 2. OTHER MODELS
K
Khanh Tran 已提交
402

L
licx 已提交
403 404 405 406 407
If you want to try other detection algorithms or recognition algorithms, please refer to the above text detection model inference and text recognition model inference, update the corresponding configuration and model.

**Note: due to the limitation of rotation logic of detected box, SAST curved text detection model (using the parameter `det_sast_polygon=True`) is not supported for model combination yet.**

The following command uses the combination of the EAST text detection and STAR-Net text recognition:
K
Khanh Tran 已提交
408 409 410 411 412 413 414

```
python3 tools/infer/predict_system.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_east/" --det_algorithm="EAST" --rec_model_dir="./inference/starnet/" --rec_image_shape="3, 32, 100" --rec_char_type="en"
```

After executing the command, the recognition result image is as follows:

W
WenmuZhou 已提交
415
![](../imgs_results/img_10_east_starnet.jpg)