inference_en.md 23.0 KB
Newer Older
K
Khanh Tran 已提交
1

T
tink2123 已提交
2
# Reasoning based on Python prediction engine
K
Khanh Tran 已提交
3

W
WenmuZhou 已提交
4
The inference model (the model saved by `paddle.jit.save`) is generally a solidified model saved after the model training is completed, and is mostly used to give prediction in deployment.
K
Khanh Tran 已提交
5 6 7

The model saved during the training process is the checkpoints model, which saves the parameters of the model and is mostly used to resume training.

W
WenmuZhou 已提交
8
Compared with the checkpoints model, the inference model will additionally save the structural information of the model. It has superior performance in predicting in deployment and accelerating inferencing, is flexible and convenient, and is suitable for integration with actual systems. For more details, please refer to the document [Classification Framework](https://github.com/PaddlePaddle/PaddleClas/blob/master/docs/zh_CN/extension/paddle_inference.md).
K
Khanh Tran 已提交
9

W
WenmuZhou 已提交
10
Next, we first introduce how to convert a trained model into an inference model, and then we will introduce text detection, text recognition, angle class, and the concatenation of them based on inference model.
K
Khanh Tran 已提交
11

L
licx 已提交
12 13 14
- [CONVERT TRAINING MODEL TO INFERENCE MODEL](#CONVERT)
    - [Convert detection model to inference model](#Convert_detection_model)
    - [Convert recognition model to inference model](#Convert_recognition_model)
W
WenmuZhou 已提交
15 16 17
    - [Convert angle classification model to inference model](#Convert_angle_class_model)


L
licx 已提交
18 19 20 21 22
- [TEXT DETECTION MODEL INFERENCE](#DETECTION_MODEL_INFERENCE)
    - [1. LIGHTWEIGHT CHINESE DETECTION MODEL INFERENCE](#LIGHTWEIGHT_DETECTION)
    - [2. DB TEXT DETECTION MODEL INFERENCE](#DB_DETECTION)
    - [3. EAST TEXT DETECTION MODEL INFERENCE](#EAST_DETECTION)
    - [4. SAST TEXT DETECTION MODEL INFERENCE](#SAST_DETECTION)
W
WenmuZhou 已提交
23 24
    - [5. Multilingual model inference](#Multilingual model inference)

L
licx 已提交
25 26 27 28
- [TEXT RECOGNITION MODEL INFERENCE](#RECOGNITION_MODEL_INFERENCE)
    - [1. LIGHTWEIGHT CHINESE MODEL](#LIGHTWEIGHT_RECOGNITION)
    - [2. CTC-BASED TEXT RECOGNITION MODEL INFERENCE](#CTC-BASED_RECOGNITION)
    - [3. ATTENTION-BASED TEXT RECOGNITION MODEL INFERENCE](#ATTENTION-BASED_RECOGNITION)
W
WenmuZhou 已提交
29 30
    - [4. TEXT RECOGNITION MODEL INFERENCE USING CUSTOM CHARACTERS DICTIONARY](#USING_CUSTOM_CHARACTERS)
    - [5. MULTILINGUAL MODEL INFERENCE](MULTILINGUAL_MODEL_INFERENCE)
W
WenmuZhou 已提交
31 32 33 34 35

- [ANGLE CLASSIFICATION MODEL INFERENCE](#ANGLE_CLASS_MODEL_INFERENCE)
    - [1. ANGLE CLASSIFICATION MODEL INFERENCE](#ANGLE_CLASS_MODEL_INFERENCE)

- [TEXT DETECTION ANGLE CLASSIFICATION AND RECOGNITION INFERENCE CONCATENATION](#CONCATENATION)
L
licx 已提交
36 37
    - [1. LIGHTWEIGHT CHINESE MODEL](#LIGHTWEIGHT_CHINESE_MODEL)
    - [2. OTHER MODELS](#OTHER_MODELS)
W
WenmuZhou 已提交
38

L
licx 已提交
39
<a name="CONVERT"></a>
X
xxxpsyduck 已提交
40
## CONVERT TRAINING MODEL TO INFERENCE MODEL
L
licx 已提交
41
<a name="Convert_detection_model"></a>
X
xxxpsyduck 已提交
42
### Convert detection model to inference model
K
Khanh Tran 已提交
43

X
xxxpsyduck 已提交
44
Download the lightweight Chinese detection model:
K
Khanh Tran 已提交
45
```
W
WenmuZhou 已提交
46
wget -P ./ch_lite/ {link} && tar xf ./ch_lite/ch_ppocr_mobile_v2.0_det_train.tar -C ./ch_lite/
K
Khanh Tran 已提交
47
```
W
WenmuZhou 已提交
48

K
Khanh Tran 已提交
49 50
The above model is a DB algorithm trained with MobileNetV3 as the backbone. To convert the trained model into an inference model, just run the following command:
```
W
WenmuZhou 已提交
51 52 53 54 55
# -c Set the training algorithm yml configuration file
# -o Set optional parameters
# Global.checkpoints parameter Set the training model address to be converted without adding the file suffix .pdmodel, .pdopt or .pdparams.
# Global.load_static_weights needs to be set to False
# Global.save_inference_dir Set the address where the converted model will be saved.
T
tink2123 已提交
56

W
WenmuZhou 已提交
57
python3 tools/export_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o Global.checkpoints=./ch_lite/ch_ppocr_mobile_v2.0_det_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_db/
K
Khanh Tran 已提交
58
```
W
WenmuZhou 已提交
59

W
WenmuZhou 已提交
60 61
When converting to an inference model, the configuration file used is the same as the configuration file used during training. In addition, you also need to set the `Global.checkpoints` parameter in the configuration file.
After the conversion is successful, there are three files in the model save directory:
K
Khanh Tran 已提交
62 63
```
inference/det_db/
64 65 66
    ├── inference.pdiparams         # The parameter file of detection inference model
    ├── inference.pdiparams.info    # The parameter information of detection inference model, which can be ignored
    └── inference.pdmodel           # The program file of detection inference model
K
Khanh Tran 已提交
67 68
```

L
licx 已提交
69
<a name="Convert_recognition_model"></a>
X
xxxpsyduck 已提交
70
### Convert recognition model to inference model
K
Khanh Tran 已提交
71

X
xxxpsyduck 已提交
72
Download the lightweight Chinese recognition model:
K
Khanh Tran 已提交
73
```
W
WenmuZhou 已提交
74
wget -P ./ch_lite/ {link} && tar xf ./ch_lite/ch_ppocr_mobile_v2.0_rec_train.tar -C ./ch_lite/
K
Khanh Tran 已提交
75 76 77 78
```

The recognition model is converted to the inference model in the same way as the detection, as follows:
```
W
WenmuZhou 已提交
79 80 81 82 83
# -c Set the training algorithm yml configuration file
# -o Set optional parameters
# Global.checkpoints parameter Set the training model address to be converted without adding the file suffix .pdmodel, .pdopt or .pdparams.
# Global.load_static_weights needs to be set to False
# Global.save_inference_dir Set the address where the converted model will be saved.
T
tink2123 已提交
84

W
WenmuZhou 已提交
85
python3 tools/export_model.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.checkpoints=./ch_lite/ch_ppocr_mobile_v2.0_rec_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/rec_crnn/
K
Khanh Tran 已提交
86 87 88 89
```

If you have a model trained on your own dataset with a different dictionary file, please make sure that you modify the `character_dict_path` in the configuration file to your dictionary file path.

W
WenmuZhou 已提交
90
After the conversion is successful, there are three files in the model save directory:
K
Khanh Tran 已提交
91
```
W
WenmuZhou 已提交
92
inference/det_db/
93 94 95
    ├── inference.pdiparams         # The parameter file of recognition inference model
    ├── inference.pdiparams.info    # The parameter information of recognition inference model, which can be ignored
    └── inference.pdmodel           # The program file of recognition model
K
Khanh Tran 已提交
96 97
```

W
WenmuZhou 已提交
98 99 100 101 102
<a name="Convert_angle_class_model"></a>
### Convert angle classification model to inference model

Download the angle classification model:
```
W
WenmuZhou 已提交
103
wget -P ./ch_lite/ {link} && tar xf ./ch_lite/ch_ppocr_mobile_v2.0_cls_train.tar -C ./ch_lite/
W
WenmuZhou 已提交
104 105 106 107
```

The angle classification model is converted to the inference model in the same way as the detection, as follows:
```
W
WenmuZhou 已提交
108 109 110 111 112
# -c Set the training algorithm yml configuration file
# -o Set optional parameters
# Global.checkpoints parameter Set the training model address to be converted without adding the file suffix .pdmodel, .pdopt or .pdparams.
# Global.load_static_weights needs to be set to False
# Global.save_inference_dir Set the address where the converted model will be saved.
W
WenmuZhou 已提交
113

W
WenmuZhou 已提交
114
python3 tools/export_model.py -c configs/cls/cls_mv3.yml -o Global.checkpoints=./ch_lite/ch_ppocr_mobile_v2.0_cls_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/cls/
W
WenmuZhou 已提交
115 116 117 118
```

After the conversion is successful, there are two files in the directory:
```
W
WenmuZhou 已提交
119
inference/det_db/
120 121 122
    ├── inference.pdiparams         # The parameter file of angle class inference model
    ├── inference.pdiparams.info    # The parameter information of  angle class inference model, which can be ignored
    └── inference.pdmodel           # The program file of angle class model
W
WenmuZhou 已提交
123 124 125
```


L
licx 已提交
126
<a name="DETECTION_MODEL_INFERENCE"></a>
X
xxxpsyduck 已提交
127
## TEXT DETECTION MODEL INFERENCE
K
Khanh Tran 已提交
128

T
tink2123 已提交
129 130
The following will introduce the lightweight Chinese detection model inference, DB text detection model inference and EAST text detection model inference. The default configuration is based on the inference setting of the DB text detection model.
Because EAST and DB algorithms are very different, when inference, it is necessary to **adapt the EAST text detection algorithm by passing in corresponding parameters**.
K
Khanh Tran 已提交
131

L
licx 已提交
132
<a name="LIGHTWEIGHT_DETECTION"></a>
X
xxxpsyduck 已提交
133
### 1. LIGHTWEIGHT CHINESE DETECTION MODEL INFERENCE
K
Khanh Tran 已提交
134

X
xxxpsyduck 已提交
135
For lightweight Chinese detection model inference, you can execute the following commands:
K
Khanh Tran 已提交
136 137 138 139 140 141 142

```
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/"
```

The visual text detection results are saved to the ./inference_results folder by default, and the name of the result file is prefixed with'det_res'. Examples of results are as follows:

143
![](../imgs_results/det_res_2.jpg)
K
Khanh Tran 已提交
144

W
WenmuZhou 已提交
145 146 147
The size of the image is limited by the parameters `limit_type` and `det_limit_side_len`, `limit_type=max` is to limit the length of the long side <`det_limit_side_len`, and `limit_type=min` is to limit the length of the short side>`det_limit_side_len`,
When the picture does not meet the restriction conditions (for `limit_type=max`and  long side >`det_limit_side_len` or for `min` and short side <`det_limit_side_len`), the image will be scaled proportionally.
This parameter is set to `limit_type='max', det_max_side_len=960` by default. If the resolution of the input picture is relatively large, and you want to use a larger resolution prediction, you can execute the following command:
K
Khanh Tran 已提交
148 149

```
W
WenmuZhou 已提交
150
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/" --det_limit_type=max --det_limit_side_len=1200
K
Khanh Tran 已提交
151 152 153 154 155 156 157
```

If you want to use the CPU for prediction, execute the command as follows
```
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/" --use_gpu=False
```

L
licx 已提交
158
<a name="DB_DETECTION"></a>
X
xxxpsyduck 已提交
159
### 2. DB TEXT DETECTION MODEL INFERENCE
K
Khanh Tran 已提交
160

W
WenmuZhou 已提交
161
First, convert the model saved in the DB text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the ICDAR2015 English dataset as an example ([model download link](link)), you can use the following command to convert:
K
Khanh Tran 已提交
162 163

```
W
WenmuZhou 已提交
164
python3 tools/export_model.py -c configs/det/det_r50_vd_db.yml -o Global.checkpoints=./det_r50_vd_db_v2.0.train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_db
K
Khanh Tran 已提交
165 166 167 168 169 170 171 172 173 174
```

DB text detection model inference, you can execute the following command:

```
python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_db/"
```

The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows:

175
![](../imgs_results/det_res_img_10_db.jpg)
K
Khanh Tran 已提交
176 177 178

**Note**: Since the ICDAR2015 dataset has only 1,000 training images, mainly for English scenes, the above model has very poor detection result on Chinese text images.

L
licx 已提交
179
<a name="EAST_DETECTION"></a>
X
xxxpsyduck 已提交
180
### 3. EAST TEXT DETECTION MODEL INFERENCE
K
Khanh Tran 已提交
181

W
WenmuZhou 已提交
182
First, convert the model saved in the EAST text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the ICDAR2015 English dataset as an example ([model download link](link)), you can use the following command to convert:
K
Khanh Tran 已提交
183 184

```
W
WenmuZhou 已提交
185
python3 tools/export_model.py -c configs/det/det_r50_vd_east.yml -o Global.checkpoints=./det_r50_vd_east_v2.0.train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_east
K
Khanh Tran 已提交
186
```
L
licx 已提交
187
**For EAST text detection model inference, you need to set the parameter ``--det_algorithm="EAST"``**, run the following command:
K
Khanh Tran 已提交
188 189 190 191

```
python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_east/" --det_algorithm="EAST"
```
L
licx 已提交
192

K
Khanh Tran 已提交
193 194
The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows:

195
![](../imgs_results/det_res_img_10_east.jpg)
K
Khanh Tran 已提交
196

L
licx 已提交
197 198 199 200 201 202
**Note**: EAST post-processing locality aware NMS has two versions: Python and C++. The speed of C++ version is obviously faster than that of Python version. Due to the compilation version problem of NMS of C++ version, C++ version NMS will be called only in Python 3.5 environment, and python version NMS will be called in other cases.


<a name="SAST_DETECTION"></a>
### 4. SAST TEXT DETECTION MODEL INFERENCE
#### (1). Quadrangle text detection model (ICDAR2015)  
W
WenmuZhou 已提交
203
First, convert the model saved in the SAST text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the ICDAR2015 English dataset as an example ([model download link](link)), you can use the following command to convert:
L
licx 已提交
204 205

```
W
WenmuZhou 已提交
206
python3 tools/export_model.py -c configs/det/det_r50_vd_sast_icdar15.yml -o Global.checkpoints=./det_r50_vd_sast_icdar15_v2.0.train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_sast_ic15
L
licx 已提交
207 208 209
```

**For SAST quadrangle text detection model inference, you need to set the parameter `--det_algorithm="SAST"`**, run the following command:
K
Khanh Tran 已提交
210

L
licx 已提交
211 212 213 214 215
```
python3 tools/infer/predict_det.py --det_algorithm="SAST" --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_sast_ic15/"
```

The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows:
K
Khanh Tran 已提交
216

L
licx 已提交
217 218 219 220 221 222
![](../imgs_results/det_res_img_10_sast.jpg)

#### (2). Curved text detection model (Total-Text)  
First, convert the model saved in the SAST text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the Total-Text English dataset as an example ([model download link](https://paddleocr.bj.bcebos.com/SAST/sast_r50_vd_total_text.tar)), you can use the following command to convert:

```
W
WenmuZhou 已提交
223
python3 tools/export_model.py -c configs/det/det_r50_vd_sast_totaltext.yml -o Global.checkpoints=./det_r50_vd_sast_totaltext_v2.0.train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_sast_tt
L
licx 已提交
224 225 226 227 228 229 230 231 232 233
```

**For SAST curved text detection model inference, you need to set the parameter `--det_algorithm="SAST"` and `--det_sast_polygon=True`**, run the following command:

```
python3 tools/infer/predict_det.py --det_algorithm="SAST" --image_dir="./doc/imgs_en/img623.jpg" --det_model_dir="./inference/det_sast_tt/" --det_sast_polygon=True
```

The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows:

M
MissPenguin 已提交
234
![](../imgs_results/det_res_img623_sast.jpg)
L
licx 已提交
235 236 237 238

**Note**: SAST post-processing locality aware NMS has two versions: Python and C++. The speed of C++ version is obviously faster than that of Python version. Due to the compilation version problem of NMS of C++ version, C++ version NMS will be called only in Python 3.5 environment, and python version NMS will be called in other cases.

<a name="RECOGNITION_MODEL_INFERENCE"></a>
X
xxxpsyduck 已提交
239
## TEXT RECOGNITION MODEL INFERENCE
K
Khanh Tran 已提交
240

X
xxxpsyduck 已提交
241
The following will introduce the lightweight Chinese recognition model inference, other CTC-based and Attention-based text recognition models inference. For Chinese text recognition, it is recommended to choose the recognition model based on CTC loss. In practice, it is also found that the result of the model based on Attention loss is not as good as the one based on CTC loss. In addition, if the characters dictionary is modified during training, make sure that you use the same characters set during inferencing. Please check below for details.
K
Khanh Tran 已提交
242 243


L
licx 已提交
244
<a name="LIGHTWEIGHT_RECOGNITION"></a>
X
xxxpsyduck 已提交
245
### 1. LIGHTWEIGHT CHINESE TEXT RECOGNITION MODEL REFERENCE
K
Khanh Tran 已提交
246

X
xxxpsyduck 已提交
247
For lightweight Chinese recognition model inference, you can execute the following commands:
K
Khanh Tran 已提交
248 249 250 251 252

```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/ch/word_4.jpg" --rec_model_dir="./inference/rec_crnn/"
```

253
![](../imgs_words/ch/word_4.jpg)
K
Khanh Tran 已提交
254 255 256 257 258 259

After executing the command, the prediction results (recognized text and score) of the above image will be printed on the screen.

Predicts of ./doc/imgs_words/ch/word_4.jpg:['实力活力', 0.89552695]


L
licx 已提交
260
<a name="CTC-BASED_RECOGNITION"></a>
X
xxxpsyduck 已提交
261
### 2. CTC-BASED TEXT RECOGNITION MODEL INFERENCE
K
Khanh Tran 已提交
262

W
WenmuZhou 已提交
263
Taking CRNN as an example, we introduce the recognition model inference based on CTC loss. Rosetta and Star-Net are used in a similar way, No need to set the recognition algorithm parameter rec_algorithm.
K
Khanh Tran 已提交
264

W
WenmuZhou 已提交
265
First, convert the model saved in the CRNN text recognition training process into an inference model. Taking the model based on Resnet34_vd backbone network, using MJSynth and SynthText (two English text recognition synthetic datasets) for training, as an example ([model download address](link)). It can be converted as follow:
K
Khanh Tran 已提交
266 267

```
W
WenmuZhou 已提交
268
python3 tools/export_model.py -c configs/det/rec_r34_vd_none_bilstm_ctc.yml -o Global.checkpoints=./rec_r34_vd_none_bilstm_ctc_v2.0.train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/rec_crnn
K
Khanh Tran 已提交
269 270
```

W
WenmuZhou 已提交
271
For CRNN text recognition model inference, execute the following commands:
K
Khanh Tran 已提交
272 273 274 275

```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./inference/starnet/" --rec_image_shape="3, 32, 100" --rec_char_type="en"
```
X
xxxpsyduck 已提交
276

L
licx 已提交
277
<a name="ATTENTION-BASED_RECOGNITION"></a>
X
xxxpsyduck 已提交
278
### 3. ATTENTION-BASED TEXT RECOGNITION MODEL INFERENCE
279
![](../imgs_words_en/word_336.png)
K
Khanh Tran 已提交
280

W
WenmuZhou 已提交
281
The recognition model based on Attention loss is different from ctc, and additional recognition algorithm parameters need to be set --rec_algorithm="RARE"
K
Khanh Tran 已提交
282
After executing the command, the recognition result of the above image is as follows:
W
WenmuZhou 已提交
283 284 285
```bash
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./inference/rare/" --rec_image_shape="3, 32, 100" --rec_char_type="en" --rec_algorithm="RARE"
```
K
Khanh Tran 已提交
286 287 288

Predicts of ./doc/imgs_words_en/word_336.png:['super', 0.9999555]

X
xxxpsyduck 已提交
289
**Note**:Since the above model refers to [DTRB](https://arxiv.org/abs/1904.01906) text recognition training and evaluation process, it is different from the training of lightweight Chinese recognition model in two aspects:
K
Khanh Tran 已提交
290 291 292 293 294 295 296 297 298 299

- The image resolution used in training is different: the image resolution used in training the above model is [3,32,100], while during our Chinese model training, in order to ensure the recognition effect of long text, the image resolution used in training is [3, 32, 320]. The default shape parameter of the inference stage is the image resolution used in training phase, that is [3, 32, 320]. Therefore, when running inference of the above English model here, you need to set the shape of the recognition image through the parameter `rec_image_shape`.

- Character list: the experiment in the DTRB paper is only for 26 lowercase English characters and 10 numbers, a total of 36 characters. All upper and lower case characters are converted to lower case characters, and characters not in the above list are ignored and considered as spaces. Therefore, no characters dictionary file is used here, but a dictionary is generated by the below command. Therefore, the parameter `rec_char_type` needs to be set during inference, which is specified as "en" in English.

```
self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
dict_character = list(self.character_str)
```

L
licx 已提交
300
<a name="USING_CUSTOM_CHARACTERS"></a>
W
WenmuZhou 已提交
301
### 4. TEXT RECOGNITION MODEL INFERENCE USING CUSTOM CHARACTERS DICTIONARY
X
xxxpsyduck 已提交
302
If the chars dictionary is modified during training, you need to specify the new dictionary path by setting the parameter `rec_char_dict_path` when using your inference model to predict.
L
LDOUBLEV 已提交
303 304 305 306 307

```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_type="en" --rec_char_dict_path="your text dict path"
```

W
WenmuZhou 已提交
308
<a name="MULTILINGUAL_MODEL_INFERENCE"></a>
W
WenmuZhou 已提交
309
### 5. MULTILINGAUL MODEL INFERENCE
W
WenmuZhou 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
If you need to predict other language models, when using inference model prediction, you need to specify the dictionary path used by `--rec_char_dict_path`. At the same time, in order to get the correct visualization results,
You need to specify the visual font path through `--vis_font_path`. There are small language fonts provided by default under the `doc/` path, such as Korean recognition:

```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/korean/1.jpg" --rec_model_dir="./your inference model" --rec_char_type="korean" --rec_char_dict_path="ppocr/utils/dict/korean_dict.txt" --vis_font_path="doc/korean.ttf"
```
![](../imgs_words/korean/1.jpg)

After executing the command, the prediction result of the above figure is:

``` text
2020-09-19 16:15:05,076-INFO:      index: [205 206  38  39]
2020-09-19 16:15:05,077-INFO:      word : 바탕으로
2020-09-19 16:15:05,077-INFO:      score: 0.9171358942985535
```

<a name="ANGLE_CLASSIFICATION_MODEL_INFERENCE"></a>
## ANGLE CLASSIFICATION MODEL INFERENCE

The following will introduce the angle classification model inference.


<a name="ANGLE_CLASS_MODEL_INFERENCE"></a>
### 1.ANGLE CLASSIFICATION MODEL INFERENCE

For angle classification model inference, you can execute the following commands:

```
python3 tools/infer/predict_cls.py --image_dir="./doc/imgs_words/ch/word_4.jpg" --cls_model_dir="./inference/cls/"
```

W
WenmuZhou 已提交
341
![](../imgs_words_en/word_10.png)
W
WenmuZhou 已提交
342 343 344

After executing the command, the prediction results (classification angle and score) of the above image will be printed on the screen.

W
WenmuZhou 已提交
345 346 347 348
```
infer_img: doc/imgs_words_en/word_10.png
     result: ('0', 0.9999995)
```
W
WenmuZhou 已提交
349

L
licx 已提交
350
<a name="CONCATENATION"></a>
W
WenmuZhou 已提交
351
## TEXT DETECTION ANGLE CLASSIFICATION AND RECOGNITION INFERENCE CONCATENATION
K
Khanh Tran 已提交
352

L
licx 已提交
353
<a name="LIGHTWEIGHT_CHINESE_MODEL"></a>
X
xxxpsyduck 已提交
354
### 1. LIGHTWEIGHT CHINESE MODEL
K
Khanh Tran 已提交
355

W
WenmuZhou 已提交
356
When performing prediction, you need to specify the path of a single image or a folder of images through the parameter `image_dir`, the parameter `det_model_dir` specifies the path to detect the inference model, the parameter `cls_model_dir` specifies the path to angle classification inference model and the parameter `rec_model_dir` specifies the path to identify the inference model. The parameter `use_angle_cls` is used to control whether to enable the angle classification model.The visualized recognition results are saved to the `./inference_results` folder by default.
K
Khanh Tran 已提交
357 358

```
W
WenmuZhou 已提交
359 360 361 362 363
# use direction classifier
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/" --cls_model_dir="./inference/cls/" --rec_model_dir="./inference/rec_crnn/" --use_angle_cls=true

# not use use direction classifier
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/" --rec_model_dir="./inference/rec_crnn/"
K
Khanh Tran 已提交
364 365 366 367
```

After executing the command, the recognition result image is as follows:

368
![](../imgs_results/2.jpg)
K
Khanh Tran 已提交
369

L
licx 已提交
370
<a name="OTHER_MODELS"></a>
X
xxxpsyduck 已提交
371
### 2. OTHER MODELS
K
Khanh Tran 已提交
372

L
licx 已提交
373 374 375 376 377
If you want to try other detection algorithms or recognition algorithms, please refer to the above text detection model inference and text recognition model inference, update the corresponding configuration and model.

**Note: due to the limitation of rotation logic of detected box, SAST curved text detection model (using the parameter `det_sast_polygon=True`) is not supported for model combination yet.**

The following command uses the combination of the EAST text detection and STAR-Net text recognition:
K
Khanh Tran 已提交
378 379 380 381 382 383 384

```
python3 tools/infer/predict_system.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_east/" --det_algorithm="EAST" --rec_model_dir="./inference/starnet/" --rec_image_shape="3, 32, 100" --rec_char_type="en"
```

After executing the command, the recognition result image is as follows:

385
![](../imgs_results/img_10.jpg)