inference_en.md 23.1 KB
Newer Older
K
Khanh Tran 已提交
1

T
tink2123 已提交
2
# Reasoning based on Python prediction engine
K
Khanh Tran 已提交
3

W
WenmuZhou 已提交
4
The inference model (the model saved by `paddle.jit.save`) is generally a solidified model saved after the model training is completed, and is mostly used to give prediction in deployment.
K
Khanh Tran 已提交
5 6 7

The model saved during the training process is the checkpoints model, which saves the parameters of the model and is mostly used to resume training.

W
WenmuZhou 已提交
8
Compared with the checkpoints model, the inference model will additionally save the structural information of the model. It has superior performance in predicting in deployment and accelerating inferencing, is flexible and convenient, and is suitable for integration with actual systems. For more details, please refer to the document [Classification Framework](https://github.com/PaddlePaddle/PaddleClas/blob/master/docs/zh_CN/extension/paddle_inference.md).
K
Khanh Tran 已提交
9

W
WenmuZhou 已提交
10
Next, we first introduce how to convert a trained model into an inference model, and then we will introduce text detection, text recognition, angle class, and the concatenation of them based on inference model.
K
Khanh Tran 已提交
11

L
licx 已提交
12 13 14
- [CONVERT TRAINING MODEL TO INFERENCE MODEL](#CONVERT)
    - [Convert detection model to inference model](#Convert_detection_model)
    - [Convert recognition model to inference model](#Convert_recognition_model)
W
WenmuZhou 已提交
15 16 17
    - [Convert angle classification model to inference model](#Convert_angle_class_model)


L
licx 已提交
18 19 20 21 22
- [TEXT DETECTION MODEL INFERENCE](#DETECTION_MODEL_INFERENCE)
    - [1. LIGHTWEIGHT CHINESE DETECTION MODEL INFERENCE](#LIGHTWEIGHT_DETECTION)
    - [2. DB TEXT DETECTION MODEL INFERENCE](#DB_DETECTION)
    - [3. EAST TEXT DETECTION MODEL INFERENCE](#EAST_DETECTION)
    - [4. SAST TEXT DETECTION MODEL INFERENCE](#SAST_DETECTION)
W
WenmuZhou 已提交
23 24
    - [5. Multilingual model inference](#Multilingual model inference)

L
licx 已提交
25 26 27
- [TEXT RECOGNITION MODEL INFERENCE](#RECOGNITION_MODEL_INFERENCE)
    - [1. LIGHTWEIGHT CHINESE MODEL](#LIGHTWEIGHT_RECOGNITION)
    - [2. CTC-BASED TEXT RECOGNITION MODEL INFERENCE](#CTC-BASED_RECOGNITION)
W
WenmuZhou 已提交
28 29
    - [3. TEXT RECOGNITION MODEL INFERENCE USING CUSTOM CHARACTERS DICTIONARY](#USING_CUSTOM_CHARACTERS)
    - [4. MULTILINGUAL MODEL INFERENCE](MULTILINGUAL_MODEL_INFERENCE)
W
WenmuZhou 已提交
30 31 32 33 34

- [ANGLE CLASSIFICATION MODEL INFERENCE](#ANGLE_CLASS_MODEL_INFERENCE)
    - [1. ANGLE CLASSIFICATION MODEL INFERENCE](#ANGLE_CLASS_MODEL_INFERENCE)

- [TEXT DETECTION ANGLE CLASSIFICATION AND RECOGNITION INFERENCE CONCATENATION](#CONCATENATION)
L
licx 已提交
35 36
    - [1. LIGHTWEIGHT CHINESE MODEL](#LIGHTWEIGHT_CHINESE_MODEL)
    - [2. OTHER MODELS](#OTHER_MODELS)
W
WenmuZhou 已提交
37

L
licx 已提交
38
<a name="CONVERT"></a>
X
xxxpsyduck 已提交
39
## CONVERT TRAINING MODEL TO INFERENCE MODEL
L
licx 已提交
40
<a name="Convert_detection_model"></a>
X
xxxpsyduck 已提交
41
### Convert detection model to inference model
K
Khanh Tran 已提交
42

X
xxxpsyduck 已提交
43
Download the lightweight Chinese detection model:
K
Khanh Tran 已提交
44
```
W
WenmuZhou 已提交
45
wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar && tar xf ./ch_lite/ch_ppocr_mobile_v2.0_det_train.tar -C ./ch_lite/
K
Khanh Tran 已提交
46
```
W
WenmuZhou 已提交
47

K
Khanh Tran 已提交
48 49
The above model is a DB algorithm trained with MobileNetV3 as the backbone. To convert the trained model into an inference model, just run the following command:
```
W
WenmuZhou 已提交
50 51
# -c Set the training algorithm yml configuration file
# -o Set optional parameters
W
WenmuZhou 已提交
52
# Global.pretrained_model parameter Set the training model address to be converted without adding the file suffix .pdmodel, .pdopt or .pdparams.
W
WenmuZhou 已提交
53 54
# Global.load_static_weights needs to be set to False
# Global.save_inference_dir Set the address where the converted model will be saved.
T
tink2123 已提交
55

W
WenmuZhou 已提交
56
python3 tools/export_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_det_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_db/
K
Khanh Tran 已提交
57
```
W
WenmuZhou 已提交
58

W
WenmuZhou 已提交
59
When converting to an inference model, the configuration file used is the same as the configuration file used during training. In addition, you also need to set the `Global.pretrained_model` parameter in the configuration file.
W
WenmuZhou 已提交
60
After the conversion is successful, there are three files in the model save directory:
K
Khanh Tran 已提交
61 62
```
inference/det_db/
63 64 65
    ├── inference.pdiparams         # The parameter file of detection inference model
    ├── inference.pdiparams.info    # The parameter information of detection inference model, which can be ignored
    └── inference.pdmodel           # The program file of detection inference model
K
Khanh Tran 已提交
66 67
```

L
licx 已提交
68
<a name="Convert_recognition_model"></a>
X
xxxpsyduck 已提交
69
### Convert recognition model to inference model
K
Khanh Tran 已提交
70

X
xxxpsyduck 已提交
71
Download the lightweight Chinese recognition model:
K
Khanh Tran 已提交
72
```
W
WenmuZhou 已提交
73
wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar && tar xf ./ch_lite/ch_ppocr_mobile_v2.0_rec_train.tar -C ./ch_lite/
K
Khanh Tran 已提交
74 75 76 77
```

The recognition model is converted to the inference model in the same way as the detection, as follows:
```
W
WenmuZhou 已提交
78 79
# -c Set the training algorithm yml configuration file
# -o Set optional parameters
W
WenmuZhou 已提交
80
# Global.pretrained_model parameter Set the training model address to be converted without adding the file suffix .pdmodel, .pdopt or .pdparams.
W
WenmuZhou 已提交
81 82
# Global.load_static_weights needs to be set to False
# Global.save_inference_dir Set the address where the converted model will be saved.
T
tink2123 已提交
83

W
WenmuZhou 已提交
84
python3 tools/export_model.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_rec_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/rec_crnn/
K
Khanh Tran 已提交
85 86 87 88
```

If you have a model trained on your own dataset with a different dictionary file, please make sure that you modify the `character_dict_path` in the configuration file to your dictionary file path.

W
WenmuZhou 已提交
89
After the conversion is successful, there are three files in the model save directory:
K
Khanh Tran 已提交
90
```
W
WenmuZhou 已提交
91
inference/det_db/
92 93 94
    ├── inference.pdiparams         # The parameter file of recognition inference model
    ├── inference.pdiparams.info    # The parameter information of recognition inference model, which can be ignored
    └── inference.pdmodel           # The program file of recognition model
K
Khanh Tran 已提交
95 96
```

W
WenmuZhou 已提交
97 98 99 100 101
<a name="Convert_angle_class_model"></a>
### Convert angle classification model to inference model

Download the angle classification model:
```
W
WenmuZhou 已提交
102
wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar && tar xf ./ch_lite/ch_ppocr_mobile_v2.0_cls_train.tar -C ./ch_lite/
W
WenmuZhou 已提交
103 104 105 106
```

The angle classification model is converted to the inference model in the same way as the detection, as follows:
```
W
WenmuZhou 已提交
107 108
# -c Set the training algorithm yml configuration file
# -o Set optional parameters
W
WenmuZhou 已提交
109
# Global.pretrained_model parameter Set the training model address to be converted without adding the file suffix .pdmodel, .pdopt or .pdparams.
W
WenmuZhou 已提交
110 111
# Global.load_static_weights needs to be set to False
# Global.save_inference_dir Set the address where the converted model will be saved.
W
WenmuZhou 已提交
112

W
WenmuZhou 已提交
113
python3 tools/export_model.py -c configs/cls/cls_mv3.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_cls_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/cls/
W
WenmuZhou 已提交
114 115 116 117
```

After the conversion is successful, there are two files in the directory:
```
W
WenmuZhou 已提交
118
inference/det_db/
119 120 121
    ├── inference.pdiparams         # The parameter file of angle class inference model
    ├── inference.pdiparams.info    # The parameter information of  angle class inference model, which can be ignored
    └── inference.pdmodel           # The program file of angle class model
W
WenmuZhou 已提交
122 123 124
```


L
licx 已提交
125
<a name="DETECTION_MODEL_INFERENCE"></a>
X
xxxpsyduck 已提交
126
## TEXT DETECTION MODEL INFERENCE
K
Khanh Tran 已提交
127

T
tink2123 已提交
128 129
The following will introduce the lightweight Chinese detection model inference, DB text detection model inference and EAST text detection model inference. The default configuration is based on the inference setting of the DB text detection model.
Because EAST and DB algorithms are very different, when inference, it is necessary to **adapt the EAST text detection algorithm by passing in corresponding parameters**.
K
Khanh Tran 已提交
130

L
licx 已提交
131
<a name="LIGHTWEIGHT_DETECTION"></a>
X
xxxpsyduck 已提交
132
### 1. LIGHTWEIGHT CHINESE DETECTION MODEL INFERENCE
K
Khanh Tran 已提交
133

X
xxxpsyduck 已提交
134
For lightweight Chinese detection model inference, you can execute the following commands:
K
Khanh Tran 已提交
135 136

```
L
LDOUBLEV 已提交
137 138 139 140 141
# download DB text detection inference model
wget  https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar
tar xf ch_ppocr_mobile_v2.0_det_infer.tar
# predict
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/22.jpg" --det_model_dir="./inference/det_db/"
K
Khanh Tran 已提交
142 143 144 145
```

The visual text detection results are saved to the ./inference_results folder by default, and the name of the result file is prefixed with'det_res'. Examples of results are as follows:

L
LDOUBLEV 已提交
146
![](../imgs_results/det_res_22.jpg)
K
Khanh Tran 已提交
147

L
LDOUBLEV 已提交
148 149 150
You can use the parameters `limit_type` and `det_limit_side_len` to limit the size of the input image,
The optional parameters of `litmit_type` are [`max`, `min`], and
`det_limit_size_len` is a positive integer, generally set to a multiple of 32, such as 960.
K
Khanh Tran 已提交
151

L
LDOUBLEV 已提交
152 153 154 155 156
The default setting of the parameters is `limit_type='max', det_limit_side_len=960`. Indicates that the longest side of the network input image cannot exceed 960,
If this value is exceeded, the image will be resized with the same width ratio to ensure that the longest side is `det_limit_side_len`.
Set as `limit_type='min', det_limit_side_len=960`, it means that the shortest side of the image is limited to 960.

If the resolution of the input picture is relatively large and you want to use a larger resolution prediction, you can set det_limit_side_len to the desired value, such as 1216:
K
Khanh Tran 已提交
157
```
L
LDOUBLEV 已提交
158
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/2s.jpg" --det_model_dir="./inference/det_db/" --det_limit_type=max --det_limit_side_len=1216
K
Khanh Tran 已提交
159 160 161 162
```

If you want to use the CPU for prediction, execute the command as follows
```
L
LDOUBLEV 已提交
163
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/2s.jpg" --det_model_dir="./inference/det_db/" --use_gpu=False
K
Khanh Tran 已提交
164 165
```

L
licx 已提交
166
<a name="DB_DETECTION"></a>
X
xxxpsyduck 已提交
167
### 2. DB TEXT DETECTION MODEL INFERENCE
K
Khanh Tran 已提交
168

W
WenmuZhou 已提交
169
First, convert the model saved in the DB text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the ICDAR2015 English dataset as an example ([model download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar)), you can use the following command to convert:
K
Khanh Tran 已提交
170 171

```
W
WenmuZhou 已提交
172
python3 tools/export_model.py -c configs/det/det_r50_vd_db.yml -o Global.pretrained_model=./det_r50_vd_db_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_db
K
Khanh Tran 已提交
173 174 175 176 177 178 179 180 181 182
```

DB text detection model inference, you can execute the following command:

```
python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_db/"
```

The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows:

183
![](../imgs_results/det_res_img_10_db.jpg)
K
Khanh Tran 已提交
184 185 186

**Note**: Since the ICDAR2015 dataset has only 1,000 training images, mainly for English scenes, the above model has very poor detection result on Chinese text images.

L
licx 已提交
187
<a name="EAST_DETECTION"></a>
X
xxxpsyduck 已提交
188
### 3. EAST TEXT DETECTION MODEL INFERENCE
K
Khanh Tran 已提交
189

W
WenmuZhou 已提交
190
First, convert the model saved in the EAST text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the ICDAR2015 English dataset as an example ([model download link (coming soon)](link)), you can use the following command to convert:
K
Khanh Tran 已提交
191 192

```
W
WenmuZhou 已提交
193
python3 tools/export_model.py -c configs/det/det_r50_vd_east.yml -o Global.pretrained_model=./det_r50_vd_east_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_east
K
Khanh Tran 已提交
194
```
L
licx 已提交
195
**For EAST text detection model inference, you need to set the parameter ``--det_algorithm="EAST"``**, run the following command:
K
Khanh Tran 已提交
196 197 198 199

```
python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_east/" --det_algorithm="EAST"
```
L
licx 已提交
200

K
Khanh Tran 已提交
201 202
The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows:

W
WenmuZhou 已提交
203
(coming soon)
K
Khanh Tran 已提交
204

L
licx 已提交
205 206 207 208 209 210
**Note**: EAST post-processing locality aware NMS has two versions: Python and C++. The speed of C++ version is obviously faster than that of Python version. Due to the compilation version problem of NMS of C++ version, C++ version NMS will be called only in Python 3.5 environment, and python version NMS will be called in other cases.


<a name="SAST_DETECTION"></a>
### 4. SAST TEXT DETECTION MODEL INFERENCE
#### (1). Quadrangle text detection model (ICDAR2015)  
W
WenmuZhou 已提交
211
First, convert the model saved in the SAST text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the ICDAR2015 English dataset as an example ([model download link (coming soon)](link)), you can use the following command to convert:
L
licx 已提交
212 213

```
W
WenmuZhou 已提交
214
python3 tools/export_model.py -c configs/det/det_r50_vd_sast_icdar15.yml -o Global.pretrained_model=./det_r50_vd_sast_icdar15_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_sast_ic15
L
licx 已提交
215 216 217
```

**For SAST quadrangle text detection model inference, you need to set the parameter `--det_algorithm="SAST"`**, run the following command:
K
Khanh Tran 已提交
218

L
licx 已提交
219 220 221 222 223
```
python3 tools/infer/predict_det.py --det_algorithm="SAST" --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_sast_ic15/"
```

The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows:
K
Khanh Tran 已提交
224

W
WenmuZhou 已提交
225
(coming soon)
L
licx 已提交
226 227

#### (2). Curved text detection model (Total-Text)  
W
WenmuZhou 已提交
228
First, convert the model saved in the SAST text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the Total-Text English dataset as an example ([model download link (coming soon)](https://paddleocr.bj.bcebos.com/SAST/sast_r50_vd_total_text.tar)), you can use the following command to convert:
L
licx 已提交
229 230

```
W
WenmuZhou 已提交
231
python3 tools/export_model.py -c configs/det/det_r50_vd_sast_totaltext.yml -o Global.pretrained_model=./det_r50_vd_sast_totaltext_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_sast_tt
L
licx 已提交
232 233 234 235 236 237 238 239 240 241
```

**For SAST curved text detection model inference, you need to set the parameter `--det_algorithm="SAST"` and `--det_sast_polygon=True`**, run the following command:

```
python3 tools/infer/predict_det.py --det_algorithm="SAST" --image_dir="./doc/imgs_en/img623.jpg" --det_model_dir="./inference/det_sast_tt/" --det_sast_polygon=True
```

The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows:

W
WenmuZhou 已提交
242
(coming soon)
L
licx 已提交
243 244 245 246

**Note**: SAST post-processing locality aware NMS has two versions: Python and C++. The speed of C++ version is obviously faster than that of Python version. Due to the compilation version problem of NMS of C++ version, C++ version NMS will be called only in Python 3.5 environment, and python version NMS will be called in other cases.

<a name="RECOGNITION_MODEL_INFERENCE"></a>
X
xxxpsyduck 已提交
247
## TEXT RECOGNITION MODEL INFERENCE
K
Khanh Tran 已提交
248

X
xxxpsyduck 已提交
249
The following will introduce the lightweight Chinese recognition model inference, other CTC-based and Attention-based text recognition models inference. For Chinese text recognition, it is recommended to choose the recognition model based on CTC loss. In practice, it is also found that the result of the model based on Attention loss is not as good as the one based on CTC loss. In addition, if the characters dictionary is modified during training, make sure that you use the same characters set during inferencing. Please check below for details.
K
Khanh Tran 已提交
250 251


L
licx 已提交
252
<a name="LIGHTWEIGHT_RECOGNITION"></a>
X
xxxpsyduck 已提交
253
### 1. LIGHTWEIGHT CHINESE TEXT RECOGNITION MODEL REFERENCE
K
Khanh Tran 已提交
254

X
xxxpsyduck 已提交
255
For lightweight Chinese recognition model inference, you can execute the following commands:
K
Khanh Tran 已提交
256 257 258 259 260

```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/ch/word_4.jpg" --rec_model_dir="./inference/rec_crnn/"
```

261
![](../imgs_words/ch/word_4.jpg)
K
Khanh Tran 已提交
262 263 264

After executing the command, the prediction results (recognized text and score) of the above image will be printed on the screen.

W
WenmuZhou 已提交
265 266 267
```bash
Predicts of ./doc/imgs_words/ch/word_4.jpg:('实力活力', 0.98458153)
```
K
Khanh Tran 已提交
268

L
licx 已提交
269
<a name="CTC-BASED_RECOGNITION"></a>
X
xxxpsyduck 已提交
270
### 2. CTC-BASED TEXT RECOGNITION MODEL INFERENCE
K
Khanh Tran 已提交
271

W
WenmuZhou 已提交
272
Taking CRNN as an example, we introduce the recognition model inference based on CTC loss. Rosetta and Star-Net are used in a similar way, No need to set the recognition algorithm parameter rec_algorithm.
K
Khanh Tran 已提交
273

W
WenmuZhou 已提交
274
First, convert the model saved in the CRNN text recognition training process into an inference model. Taking the model based on Resnet34_vd backbone network, using MJSynth and SynthText (two English text recognition synthetic datasets) for training, as an example ([model download address](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_bilstm_ctc_v2.0_train.tar)). It can be converted as follow:
K
Khanh Tran 已提交
275 276

```
W
WenmuZhou 已提交
277
python3 tools/export_model.py -c configs/det/rec_r34_vd_none_bilstm_ctc.yml -o Global.pretrained_model=./rec_r34_vd_none_bilstm_ctc_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/rec_crnn
K
Khanh Tran 已提交
278 279
```

W
WenmuZhou 已提交
280
For CRNN text recognition model inference, execute the following commands:
K
Khanh Tran 已提交
281 282 283 284

```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./inference/starnet/" --rec_image_shape="3, 32, 100" --rec_char_type="en"
```
X
xxxpsyduck 已提交
285

W
WenmuZhou 已提交
286
![](../imgs_words_en/word_336.png)
K
Khanh Tran 已提交
287

W
WenmuZhou 已提交
288 289 290 291 292
After executing the command, the recognition result of the above image is as follows:

```bash
Predicts of ./doc/imgs_words_en/word_336.png:('super', 0.9999073)
```
X
xxxpsyduck 已提交
293
**Note**:Since the above model refers to [DTRB](https://arxiv.org/abs/1904.01906) text recognition training and evaluation process, it is different from the training of lightweight Chinese recognition model in two aspects:
K
Khanh Tran 已提交
294 295 296 297 298 299 300 301 302 303

- The image resolution used in training is different: the image resolution used in training the above model is [3,32,100], while during our Chinese model training, in order to ensure the recognition effect of long text, the image resolution used in training is [3, 32, 320]. The default shape parameter of the inference stage is the image resolution used in training phase, that is [3, 32, 320]. Therefore, when running inference of the above English model here, you need to set the shape of the recognition image through the parameter `rec_image_shape`.

- Character list: the experiment in the DTRB paper is only for 26 lowercase English characters and 10 numbers, a total of 36 characters. All upper and lower case characters are converted to lower case characters, and characters not in the above list are ignored and considered as spaces. Therefore, no characters dictionary file is used here, but a dictionary is generated by the below command. Therefore, the parameter `rec_char_type` needs to be set during inference, which is specified as "en" in English.

```
self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
dict_character = list(self.character_str)
```

L
licx 已提交
304
<a name="USING_CUSTOM_CHARACTERS"></a>
W
WenmuZhou 已提交
305
### 3. TEXT RECOGNITION MODEL INFERENCE USING CUSTOM CHARACTERS DICTIONARY
W
WenmuZhou 已提交
306
If the text dictionary is modified during training, when using the inference model to predict, you need to specify the dictionary path used by `--rec_char_dict_path`, and set `rec_char_type=ch`
L
LDOUBLEV 已提交
307 308

```
W
WenmuZhou 已提交
309
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_type="ch" --rec_char_dict_path="your text dict path"
L
LDOUBLEV 已提交
310 311
```

W
WenmuZhou 已提交
312
<a name="MULTILINGUAL_MODEL_INFERENCE"></a>
W
WenmuZhou 已提交
313
### 4. MULTILINGAUL MODEL INFERENCE
W
WenmuZhou 已提交
314 315 316 317 318 319 320 321 322 323 324
If you need to predict other language models, when using inference model prediction, you need to specify the dictionary path used by `--rec_char_dict_path`. At the same time, in order to get the correct visualization results,
You need to specify the visual font path through `--vis_font_path`. There are small language fonts provided by default under the `doc/` path, such as Korean recognition:

```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/korean/1.jpg" --rec_model_dir="./your inference model" --rec_char_type="korean" --rec_char_dict_path="ppocr/utils/dict/korean_dict.txt" --vis_font_path="doc/korean.ttf"
```
![](../imgs_words/korean/1.jpg)

After executing the command, the prediction result of the above figure is:

``` text
W
WenmuZhou 已提交
325
Predicts of ./doc/imgs_words/korean/1.jpg:('바탕으로', 0.9948904)
W
WenmuZhou 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338 339
```

<a name="ANGLE_CLASSIFICATION_MODEL_INFERENCE"></a>
## ANGLE CLASSIFICATION MODEL INFERENCE

The following will introduce the angle classification model inference.


<a name="ANGLE_CLASS_MODEL_INFERENCE"></a>
### 1.ANGLE CLASSIFICATION MODEL INFERENCE

For angle classification model inference, you can execute the following commands:

```
W
WenmuZhou 已提交
340
python3 tools/infer/predict_cls.py --image_dir="./doc/imgs_words_en/word_10.png" --cls_model_dir="./inference/cls/"
W
WenmuZhou 已提交
341 342
```

W
WenmuZhou 已提交
343
![](../imgs_words_en/word_10.png)
W
WenmuZhou 已提交
344 345 346

After executing the command, the prediction results (classification angle and score) of the above image will be printed on the screen.

W
WenmuZhou 已提交
347
```
W
WenmuZhou 已提交
348
 Predicts of ./doc/imgs_words_en/word_10.png:['0', 0.9999995]
W
WenmuZhou 已提交
349
```
W
WenmuZhou 已提交
350

L
licx 已提交
351
<a name="CONCATENATION"></a>
W
WenmuZhou 已提交
352
## TEXT DETECTION ANGLE CLASSIFICATION AND RECOGNITION INFERENCE CONCATENATION
K
Khanh Tran 已提交
353

L
licx 已提交
354
<a name="LIGHTWEIGHT_CHINESE_MODEL"></a>
X
xxxpsyduck 已提交
355
### 1. LIGHTWEIGHT CHINESE MODEL
K
Khanh Tran 已提交
356

W
WenmuZhou 已提交
357
When performing prediction, you need to specify the path of a single image or a folder of images through the parameter `image_dir`, the parameter `det_model_dir` specifies the path to detect the inference model, the parameter `cls_model_dir` specifies the path to angle classification inference model and the parameter `rec_model_dir` specifies the path to identify the inference model. The parameter `use_angle_cls` is used to control whether to enable the angle classification model.The visualized recognition results are saved to the `./inference_results` folder by default.
K
Khanh Tran 已提交
358 359

```
W
WenmuZhou 已提交
360 361 362 363 364
# use direction classifier
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/" --cls_model_dir="./inference/cls/" --rec_model_dir="./inference/rec_crnn/" --use_angle_cls=true

# not use use direction classifier
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/" --rec_model_dir="./inference/rec_crnn/"
K
Khanh Tran 已提交
365 366 367 368
```

After executing the command, the recognition result image is as follows:

369
![](../imgs_results/2.jpg)
K
Khanh Tran 已提交
370

L
licx 已提交
371
<a name="OTHER_MODELS"></a>
X
xxxpsyduck 已提交
372
### 2. OTHER MODELS
K
Khanh Tran 已提交
373

L
licx 已提交
374 375 376 377 378
If you want to try other detection algorithms or recognition algorithms, please refer to the above text detection model inference and text recognition model inference, update the corresponding configuration and model.

**Note: due to the limitation of rotation logic of detected box, SAST curved text detection model (using the parameter `det_sast_polygon=True`) is not supported for model combination yet.**

The following command uses the combination of the EAST text detection and STAR-Net text recognition:
K
Khanh Tran 已提交
379 380 381 382 383 384 385

```
python3 tools/infer/predict_system.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_east/" --det_algorithm="EAST" --rec_model_dir="./inference/starnet/" --rec_image_shape="3, 32, 100" --rec_char_type="en"
```

After executing the command, the recognition result image is as follows:

W
WenmuZhou 已提交
386
(coming soon)