inference_en.md 24.6 KB
Newer Older
K
Khanh Tran 已提交
1

T
tink2123 已提交
2
# Reasoning based on Python prediction engine
K
Khanh Tran 已提交
3

W
WenmuZhou 已提交
4
The inference model (the model saved by `paddle.jit.save`) is generally a solidified model saved after the model training is completed, and is mostly used to give prediction in deployment.
K
Khanh Tran 已提交
5 6 7

The model saved during the training process is the checkpoints model, which saves the parameters of the model and is mostly used to resume training.

W
WenmuZhou 已提交
8
Compared with the checkpoints model, the inference model will additionally save the structural information of the model. It has superior performance in predicting in deployment and accelerating inferencing, is flexible and convenient, and is suitable for integration with actual systems. For more details, please refer to the document [Classification Framework](https://github.com/PaddlePaddle/PaddleClas/blob/master/docs/zh_CN/extension/paddle_inference.md).
K
Khanh Tran 已提交
9

W
WenmuZhou 已提交
10
Next, we first introduce how to convert a trained model into an inference model, and then we will introduce text detection, text recognition, angle class, and the concatenation of them based on inference model.
K
Khanh Tran 已提交
11

L
licx 已提交
12 13 14
- [CONVERT TRAINING MODEL TO INFERENCE MODEL](#CONVERT)
    - [Convert detection model to inference model](#Convert_detection_model)
    - [Convert recognition model to inference model](#Convert_recognition_model)
W
WenmuZhou 已提交
15 16 17
    - [Convert angle classification model to inference model](#Convert_angle_class_model)


L
licx 已提交
18 19 20 21 22
- [TEXT DETECTION MODEL INFERENCE](#DETECTION_MODEL_INFERENCE)
    - [1. LIGHTWEIGHT CHINESE DETECTION MODEL INFERENCE](#LIGHTWEIGHT_DETECTION)
    - [2. DB TEXT DETECTION MODEL INFERENCE](#DB_DETECTION)
    - [3. EAST TEXT DETECTION MODEL INFERENCE](#EAST_DETECTION)
    - [4. SAST TEXT DETECTION MODEL INFERENCE](#SAST_DETECTION)
W
WenmuZhou 已提交
23 24
    - [5. Multilingual model inference](#Multilingual model inference)

L
licx 已提交
25 26 27
- [TEXT RECOGNITION MODEL INFERENCE](#RECOGNITION_MODEL_INFERENCE)
    - [1. LIGHTWEIGHT CHINESE MODEL](#LIGHTWEIGHT_RECOGNITION)
    - [2. CTC-BASED TEXT RECOGNITION MODEL INFERENCE](#CTC-BASED_RECOGNITION)
T
tink2123 已提交
28
    - [3. SRN-BASED TEXT RECOGNITION MODEL INFERENCE](#SRN-BASED_RECOGNITION)
W
WenmuZhou 已提交
29 30
    - [3. TEXT RECOGNITION MODEL INFERENCE USING CUSTOM CHARACTERS DICTIONARY](#USING_CUSTOM_CHARACTERS)
    - [4. MULTILINGUAL MODEL INFERENCE](MULTILINGUAL_MODEL_INFERENCE)
W
WenmuZhou 已提交
31 32 33 34 35

- [ANGLE CLASSIFICATION MODEL INFERENCE](#ANGLE_CLASS_MODEL_INFERENCE)
    - [1. ANGLE CLASSIFICATION MODEL INFERENCE](#ANGLE_CLASS_MODEL_INFERENCE)

- [TEXT DETECTION ANGLE CLASSIFICATION AND RECOGNITION INFERENCE CONCATENATION](#CONCATENATION)
L
licx 已提交
36 37
    - [1. LIGHTWEIGHT CHINESE MODEL](#LIGHTWEIGHT_CHINESE_MODEL)
    - [2. OTHER MODELS](#OTHER_MODELS)
W
WenmuZhou 已提交
38

L
licx 已提交
39
<a name="CONVERT"></a>
X
xxxpsyduck 已提交
40
## CONVERT TRAINING MODEL TO INFERENCE MODEL
L
licx 已提交
41
<a name="Convert_detection_model"></a>
X
xxxpsyduck 已提交
42
### Convert detection model to inference model
K
Khanh Tran 已提交
43

X
xxxpsyduck 已提交
44
Download the lightweight Chinese detection model:
K
Khanh Tran 已提交
45
```
W
WenmuZhou 已提交
46
wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar && tar xf ./ch_lite/ch_ppocr_mobile_v2.0_det_train.tar -C ./ch_lite/
K
Khanh Tran 已提交
47
```
W
WenmuZhou 已提交
48

K
Khanh Tran 已提交
49 50
The above model is a DB algorithm trained with MobileNetV3 as the backbone. To convert the trained model into an inference model, just run the following command:
```
W
WenmuZhou 已提交
51 52
# -c Set the training algorithm yml configuration file
# -o Set optional parameters
W
WenmuZhou 已提交
53
# Global.pretrained_model parameter Set the training model address to be converted without adding the file suffix .pdmodel, .pdopt or .pdparams.
W
WenmuZhou 已提交
54 55
# Global.load_static_weights needs to be set to False
# Global.save_inference_dir Set the address where the converted model will be saved.
T
tink2123 已提交
56

W
WenmuZhou 已提交
57
python3 tools/export_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_det_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_db/
K
Khanh Tran 已提交
58
```
W
WenmuZhou 已提交
59

W
WenmuZhou 已提交
60
When converting to an inference model, the configuration file used is the same as the configuration file used during training. In addition, you also need to set the `Global.pretrained_model` parameter in the configuration file.
W
WenmuZhou 已提交
61
After the conversion is successful, there are three files in the model save directory:
K
Khanh Tran 已提交
62 63
```
inference/det_db/
64 65 66
    ├── inference.pdiparams         # The parameter file of detection inference model
    ├── inference.pdiparams.info    # The parameter information of detection inference model, which can be ignored
    └── inference.pdmodel           # The program file of detection inference model
K
Khanh Tran 已提交
67 68
```

L
licx 已提交
69
<a name="Convert_recognition_model"></a>
X
xxxpsyduck 已提交
70
### Convert recognition model to inference model
K
Khanh Tran 已提交
71

X
xxxpsyduck 已提交
72
Download the lightweight Chinese recognition model:
K
Khanh Tran 已提交
73
```
W
WenmuZhou 已提交
74
wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar && tar xf ./ch_lite/ch_ppocr_mobile_v2.0_rec_train.tar -C ./ch_lite/
K
Khanh Tran 已提交
75 76 77 78
```

The recognition model is converted to the inference model in the same way as the detection, as follows:
```
W
WenmuZhou 已提交
79 80
# -c Set the training algorithm yml configuration file
# -o Set optional parameters
W
WenmuZhou 已提交
81
# Global.pretrained_model parameter Set the training model address to be converted without adding the file suffix .pdmodel, .pdopt or .pdparams.
W
WenmuZhou 已提交
82 83
# Global.load_static_weights needs to be set to False
# Global.save_inference_dir Set the address where the converted model will be saved.
T
tink2123 已提交
84

W
WenmuZhou 已提交
85
python3 tools/export_model.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_rec_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/rec_crnn/
K
Khanh Tran 已提交
86 87 88 89
```

If you have a model trained on your own dataset with a different dictionary file, please make sure that you modify the `character_dict_path` in the configuration file to your dictionary file path.

W
WenmuZhou 已提交
90
After the conversion is successful, there are three files in the model save directory:
K
Khanh Tran 已提交
91
```
W
WenmuZhou 已提交
92
inference/det_db/
93 94 95
    ├── inference.pdiparams         # The parameter file of recognition inference model
    ├── inference.pdiparams.info    # The parameter information of recognition inference model, which can be ignored
    └── inference.pdmodel           # The program file of recognition model
K
Khanh Tran 已提交
96 97
```

W
WenmuZhou 已提交
98 99 100 101 102
<a name="Convert_angle_class_model"></a>
### Convert angle classification model to inference model

Download the angle classification model:
```
W
WenmuZhou 已提交
103
wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar && tar xf ./ch_lite/ch_ppocr_mobile_v2.0_cls_train.tar -C ./ch_lite/
W
WenmuZhou 已提交
104 105 106 107
```

The angle classification model is converted to the inference model in the same way as the detection, as follows:
```
W
WenmuZhou 已提交
108 109
# -c Set the training algorithm yml configuration file
# -o Set optional parameters
W
WenmuZhou 已提交
110
# Global.pretrained_model parameter Set the training model address to be converted without adding the file suffix .pdmodel, .pdopt or .pdparams.
W
WenmuZhou 已提交
111 112
# Global.load_static_weights needs to be set to False
# Global.save_inference_dir Set the address where the converted model will be saved.
W
WenmuZhou 已提交
113

W
WenmuZhou 已提交
114
python3 tools/export_model.py -c configs/cls/cls_mv3.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_cls_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/cls/
W
WenmuZhou 已提交
115 116 117 118
```

After the conversion is successful, there are two files in the directory:
```
W
WenmuZhou 已提交
119
inference/det_db/
120 121 122
    ├── inference.pdiparams         # The parameter file of angle class inference model
    ├── inference.pdiparams.info    # The parameter information of  angle class inference model, which can be ignored
    └── inference.pdmodel           # The program file of angle class model
W
WenmuZhou 已提交
123 124 125
```


L
licx 已提交
126
<a name="DETECTION_MODEL_INFERENCE"></a>
X
xxxpsyduck 已提交
127
## TEXT DETECTION MODEL INFERENCE
K
Khanh Tran 已提交
128

T
tink2123 已提交
129 130
The following will introduce the lightweight Chinese detection model inference, DB text detection model inference and EAST text detection model inference. The default configuration is based on the inference setting of the DB text detection model.
Because EAST and DB algorithms are very different, when inference, it is necessary to **adapt the EAST text detection algorithm by passing in corresponding parameters**.
K
Khanh Tran 已提交
131

L
licx 已提交
132
<a name="LIGHTWEIGHT_DETECTION"></a>
X
xxxpsyduck 已提交
133
### 1. LIGHTWEIGHT CHINESE DETECTION MODEL INFERENCE
K
Khanh Tran 已提交
134

X
xxxpsyduck 已提交
135
For lightweight Chinese detection model inference, you can execute the following commands:
K
Khanh Tran 已提交
136 137

```
L
LDOUBLEV 已提交
138 139 140 141
# download DB text detection inference model
wget  https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar
tar xf ch_ppocr_mobile_v2.0_det_infer.tar
# predict
L
LDOUBLEV 已提交
142
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./inference/det_db/"
K
Khanh Tran 已提交
143 144 145 146
```

The visual text detection results are saved to the ./inference_results folder by default, and the name of the result file is prefixed with'det_res'. Examples of results are as follows:

L
LDOUBLEV 已提交
147
![](../imgs_results/det_res_00018069.jpg)
K
Khanh Tran 已提交
148

L
LDOUBLEV 已提交
149 150 151
You can use the parameters `limit_type` and `det_limit_side_len` to limit the size of the input image,
The optional parameters of `litmit_type` are [`max`, `min`], and
`det_limit_size_len` is a positive integer, generally set to a multiple of 32, such as 960.
K
Khanh Tran 已提交
152

L
LDOUBLEV 已提交
153 154 155 156 157
The default setting of the parameters is `limit_type='max', det_limit_side_len=960`. Indicates that the longest side of the network input image cannot exceed 960,
If this value is exceeded, the image will be resized with the same width ratio to ensure that the longest side is `det_limit_side_len`.
Set as `limit_type='min', det_limit_side_len=960`, it means that the shortest side of the image is limited to 960.

If the resolution of the input picture is relatively large and you want to use a larger resolution prediction, you can set det_limit_side_len to the desired value, such as 1216:
K
Khanh Tran 已提交
158
```
L
LDOUBLEV 已提交
159
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/22.jpg" --det_model_dir="./inference/det_db/" --det_limit_type=max --det_limit_side_len=1216
K
Khanh Tran 已提交
160 161 162 163
```

If you want to use the CPU for prediction, execute the command as follows
```
L
LDOUBLEV 已提交
164
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/22.jpg" --det_model_dir="./inference/det_db/" --use_gpu=False
K
Khanh Tran 已提交
165 166
```

L
licx 已提交
167
<a name="DB_DETECTION"></a>
X
xxxpsyduck 已提交
168
### 2. DB TEXT DETECTION MODEL INFERENCE
K
Khanh Tran 已提交
169

W
WenmuZhou 已提交
170
First, convert the model saved in the DB text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the ICDAR2015 English dataset as an example ([model download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar)), you can use the following command to convert:
K
Khanh Tran 已提交
171 172

```
W
WenmuZhou 已提交
173
python3 tools/export_model.py -c configs/det/det_r50_vd_db.yml -o Global.pretrained_model=./det_r50_vd_db_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_db
K
Khanh Tran 已提交
174 175 176 177 178 179 180 181 182 183
```

DB text detection model inference, you can execute the following command:

```
python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_db/"
```

The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows:

184
![](../imgs_results/det_res_img_10_db.jpg)
K
Khanh Tran 已提交
185 186 187

**Note**: Since the ICDAR2015 dataset has only 1,000 training images, mainly for English scenes, the above model has very poor detection result on Chinese text images.

L
licx 已提交
188
<a name="EAST_DETECTION"></a>
X
xxxpsyduck 已提交
189
### 3. EAST TEXT DETECTION MODEL INFERENCE
K
Khanh Tran 已提交
190

M
MissPenguin 已提交
191
First, convert the model saved in the EAST text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the ICDAR2015 English dataset as an example ([model download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_east_v2.0_train.tar)), you can use the following command to convert:
K
Khanh Tran 已提交
192 193

```
W
WenmuZhou 已提交
194
python3 tools/export_model.py -c configs/det/det_r50_vd_east.yml -o Global.pretrained_model=./det_r50_vd_east_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_east
K
Khanh Tran 已提交
195
```
L
licx 已提交
196
**For EAST text detection model inference, you need to set the parameter ``--det_algorithm="EAST"``**, run the following command:
K
Khanh Tran 已提交
197 198 199 200

```
python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_east/" --det_algorithm="EAST"
```
L
licx 已提交
201

K
Khanh Tran 已提交
202 203
The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows:

M
MissPenguin 已提交
204
![](../imgs_results/det_res_img_10_east.jpg)
K
Khanh Tran 已提交
205

L
licx 已提交
206 207 208 209 210 211
**Note**: EAST post-processing locality aware NMS has two versions: Python and C++. The speed of C++ version is obviously faster than that of Python version. Due to the compilation version problem of NMS of C++ version, C++ version NMS will be called only in Python 3.5 environment, and python version NMS will be called in other cases.


<a name="SAST_DETECTION"></a>
### 4. SAST TEXT DETECTION MODEL INFERENCE
#### (1). Quadrangle text detection model (ICDAR2015)  
M
MissPenguin 已提交
212
First, convert the model saved in the SAST text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the ICDAR2015 English dataset as an example ([model download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar)), you can use the following command to convert:
L
licx 已提交
213 214

```
W
WenmuZhou 已提交
215
python3 tools/export_model.py -c configs/det/det_r50_vd_sast_icdar15.yml -o Global.pretrained_model=./det_r50_vd_sast_icdar15_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_sast_ic15
L
licx 已提交
216 217 218
```

**For SAST quadrangle text detection model inference, you need to set the parameter `--det_algorithm="SAST"`**, run the following command:
K
Khanh Tran 已提交
219

L
licx 已提交
220 221 222 223 224
```
python3 tools/infer/predict_det.py --det_algorithm="SAST" --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_sast_ic15/"
```

The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows:
K
Khanh Tran 已提交
225

M
MissPenguin 已提交
226
![](../imgs_results/det_res_img_10_sast.jpg)
L
licx 已提交
227 228

#### (2). Curved text detection model (Total-Text)  
M
MissPenguin 已提交
229
First, convert the model saved in the SAST text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the Total-Text English dataset as an example ([model download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_totaltext_v2.0_train.tar)), you can use the following command to convert:
L
licx 已提交
230 231

```
W
WenmuZhou 已提交
232
python3 tools/export_model.py -c configs/det/det_r50_vd_sast_totaltext.yml -o Global.pretrained_model=./det_r50_vd_sast_totaltext_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_sast_tt
L
licx 已提交
233 234 235 236 237 238 239 240 241 242
```

**For SAST curved text detection model inference, you need to set the parameter `--det_algorithm="SAST"` and `--det_sast_polygon=True`**, run the following command:

```
python3 tools/infer/predict_det.py --det_algorithm="SAST" --image_dir="./doc/imgs_en/img623.jpg" --det_model_dir="./inference/det_sast_tt/" --det_sast_polygon=True
```

The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows:

M
MissPenguin 已提交
243
![](../imgs_results/det_res_img623_sast.jpg)
L
licx 已提交
244 245 246 247

**Note**: SAST post-processing locality aware NMS has two versions: Python and C++. The speed of C++ version is obviously faster than that of Python version. Due to the compilation version problem of NMS of C++ version, C++ version NMS will be called only in Python 3.5 environment, and python version NMS will be called in other cases.

<a name="RECOGNITION_MODEL_INFERENCE"></a>
X
xxxpsyduck 已提交
248
## TEXT RECOGNITION MODEL INFERENCE
K
Khanh Tran 已提交
249

X
xxxpsyduck 已提交
250
The following will introduce the lightweight Chinese recognition model inference, other CTC-based and Attention-based text recognition models inference. For Chinese text recognition, it is recommended to choose the recognition model based on CTC loss. In practice, it is also found that the result of the model based on Attention loss is not as good as the one based on CTC loss. In addition, if the characters dictionary is modified during training, make sure that you use the same characters set during inferencing. Please check below for details.
K
Khanh Tran 已提交
251 252


L
licx 已提交
253
<a name="LIGHTWEIGHT_RECOGNITION"></a>
X
xxxpsyduck 已提交
254
### 1. LIGHTWEIGHT CHINESE TEXT RECOGNITION MODEL REFERENCE
K
Khanh Tran 已提交
255

X
xxxpsyduck 已提交
256
For lightweight Chinese recognition model inference, you can execute the following commands:
K
Khanh Tran 已提交
257 258

```
W
WenmuZhou 已提交
259 260 261 262
# download CRNN text recognition inference model
wget  https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar
tar xf ch_ppocr_mobile_v2.0_rec_infer.tar
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_10.png" --rec_model_dir="ch_ppocr_mobile_v2.0_rec_infer"
K
Khanh Tran 已提交
263 264
```

W
WenmuZhou 已提交
265
![](../imgs_words_en/word_10.png)
K
Khanh Tran 已提交
266 267 268

After executing the command, the prediction results (recognized text and score) of the above image will be printed on the screen.

W
WenmuZhou 已提交
269
```bash
W
WenmuZhou 已提交
270
Predicts of ./doc/imgs_words_en/word_10.png:('PAIN', 0.9897658)
W
WenmuZhou 已提交
271
```
K
Khanh Tran 已提交
272

L
licx 已提交
273
<a name="CTC-BASED_RECOGNITION"></a>
X
xxxpsyduck 已提交
274
### 2. CTC-BASED TEXT RECOGNITION MODEL INFERENCE
K
Khanh Tran 已提交
275

W
WenmuZhou 已提交
276
Taking CRNN as an example, we introduce the recognition model inference based on CTC loss. Rosetta and Star-Net are used in a similar way, No need to set the recognition algorithm parameter rec_algorithm.
K
Khanh Tran 已提交
277

W
WenmuZhou 已提交
278
First, convert the model saved in the CRNN text recognition training process into an inference model. Taking the model based on Resnet34_vd backbone network, using MJSynth and SynthText (two English text recognition synthetic datasets) for training, as an example ([model download address](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_bilstm_ctc_v2.0_train.tar)). It can be converted as follow:
K
Khanh Tran 已提交
279 280

```
W
WenmuZhou 已提交
281
python3 tools/export_model.py -c configs/det/rec_r34_vd_none_bilstm_ctc.yml -o Global.pretrained_model=./rec_r34_vd_none_bilstm_ctc_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/rec_crnn
K
Khanh Tran 已提交
282 283
```

W
WenmuZhou 已提交
284
For CRNN text recognition model inference, execute the following commands:
K
Khanh Tran 已提交
285 286 287 288

```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./inference/starnet/" --rec_image_shape="3, 32, 100" --rec_char_type="en"
```
X
xxxpsyduck 已提交
289

W
WenmuZhou 已提交
290
![](../imgs_words_en/word_336.png)
K
Khanh Tran 已提交
291

W
WenmuZhou 已提交
292 293 294 295 296
After executing the command, the recognition result of the above image is as follows:

```bash
Predicts of ./doc/imgs_words_en/word_336.png:('super', 0.9999073)
```
X
xxxpsyduck 已提交
297
**Note**:Since the above model refers to [DTRB](https://arxiv.org/abs/1904.01906) text recognition training and evaluation process, it is different from the training of lightweight Chinese recognition model in two aspects:
K
Khanh Tran 已提交
298 299 300 301 302 303 304 305 306 307

- The image resolution used in training is different: the image resolution used in training the above model is [3,32,100], while during our Chinese model training, in order to ensure the recognition effect of long text, the image resolution used in training is [3, 32, 320]. The default shape parameter of the inference stage is the image resolution used in training phase, that is [3, 32, 320]. Therefore, when running inference of the above English model here, you need to set the shape of the recognition image through the parameter `rec_image_shape`.

- Character list: the experiment in the DTRB paper is only for 26 lowercase English characters and 10 numbers, a total of 36 characters. All upper and lower case characters are converted to lower case characters, and characters not in the above list are ignored and considered as spaces. Therefore, no characters dictionary file is used here, but a dictionary is generated by the below command. Therefore, the parameter `rec_char_type` needs to be set during inference, which is specified as "en" in English.

```
self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
dict_character = list(self.character_str)
```

T
tink2123 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
<a name="SRN-BASED_RECOGNITION"></a>
### 3. SRN-BASED TEXT RECOGNITION MODEL INFERENCE

The recognition model based on SRN requires additional setting of the recognition algorithm parameter
--rec_algorithm="SRN". At the same time, it is necessary to ensure that the predicted shape is consistent
with the training, such as: --rec_image_shape="1, 64, 256"

```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" \
                                    --rec_model_dir="./inference/srn/" \
                                    --rec_image_shape="1, 64, 256" \
                                    --rec_char_type="en" \
                                    --rec_algorithm="SRN"
```

L
licx 已提交
323
<a name="USING_CUSTOM_CHARACTERS"></a>
T
tink2123 已提交
324
### 4. TEXT RECOGNITION MODEL INFERENCE USING CUSTOM CHARACTERS DICTIONARY
W
WenmuZhou 已提交
325
If the text dictionary is modified during training, when using the inference model to predict, you need to specify the dictionary path used by `--rec_char_dict_path`, and set `rec_char_type=ch`
L
LDOUBLEV 已提交
326 327

```
W
WenmuZhou 已提交
328
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_type="ch" --rec_char_dict_path="your text dict path"
L
LDOUBLEV 已提交
329 330
```

W
WenmuZhou 已提交
331
<a name="MULTILINGUAL_MODEL_INFERENCE"></a>
T
tink2123 已提交
332
### 5. MULTILINGAUL MODEL INFERENCE
W
WenmuZhou 已提交
333
If you need to predict other language models, when using inference model prediction, you need to specify the dictionary path used by `--rec_char_dict_path`. At the same time, in order to get the correct visualization results,
T
tink2123 已提交
334
You need to specify the visual font path through `--vis_font_path`. There are small language fonts provided by default under the `doc/fonts` path, such as Korean recognition:
W
WenmuZhou 已提交
335 336

```
T
tink2123 已提交
337
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/korean/1.jpg" --rec_model_dir="./your inference model" --rec_char_type="korean" --rec_char_dict_path="ppocr/utils/dict/korean_dict.txt" --vis_font_path="doc/fonts/korean.ttf"
W
WenmuZhou 已提交
338 339 340 341 342 343
```
![](../imgs_words/korean/1.jpg)

After executing the command, the prediction result of the above figure is:

``` text
W
WenmuZhou 已提交
344
Predicts of ./doc/imgs_words/korean/1.jpg:('바탕으로', 0.9948904)
W
WenmuZhou 已提交
345 346 347 348 349 350 351 352 353 354 355 356 357 358
```

<a name="ANGLE_CLASSIFICATION_MODEL_INFERENCE"></a>
## ANGLE CLASSIFICATION MODEL INFERENCE

The following will introduce the angle classification model inference.


<a name="ANGLE_CLASS_MODEL_INFERENCE"></a>
### 1.ANGLE CLASSIFICATION MODEL INFERENCE

For angle classification model inference, you can execute the following commands:

```
W
WenmuZhou 已提交
359
python3 tools/infer/predict_cls.py --image_dir="./doc/imgs_words_en/word_10.png" --cls_model_dir="./inference/cls/"
W
WenmuZhou 已提交
360
```
W
WenmuZhou 已提交
361 362 363 364 365 366
```
# download text angle class inference model:
wget  https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar
tar xf ch_ppocr_mobile_v2.0_cls_infer.tar
python3 tools/infer/predict_cls.py --image_dir="./doc/imgs_words_en/word_10.png" --cls_model_dir="ch_ppocr_mobile_v2.0_cls_infer"
```
W
WenmuZhou 已提交
367
![](../imgs_words_en/word_10.png)
W
WenmuZhou 已提交
368 369 370

After executing the command, the prediction results (classification angle and score) of the above image will be printed on the screen.

W
WenmuZhou 已提交
371
```
W
WenmuZhou 已提交
372
 Predicts of ./doc/imgs_words_en/word_10.png:['0', 0.9999995]
W
WenmuZhou 已提交
373
```
W
WenmuZhou 已提交
374

L
licx 已提交
375
<a name="CONCATENATION"></a>
W
WenmuZhou 已提交
376
## TEXT DETECTION ANGLE CLASSIFICATION AND RECOGNITION INFERENCE CONCATENATION
K
Khanh Tran 已提交
377

L
licx 已提交
378
<a name="LIGHTWEIGHT_CHINESE_MODEL"></a>
X
xxxpsyduck 已提交
379
### 1. LIGHTWEIGHT CHINESE MODEL
K
Khanh Tran 已提交
380

W
WenmuZhou 已提交
381
When performing prediction, you need to specify the path of a single image or a folder of images through the parameter `image_dir`, the parameter `det_model_dir` specifies the path to detect the inference model, the parameter `cls_model_dir` specifies the path to angle classification inference model and the parameter `rec_model_dir` specifies the path to identify the inference model. The parameter `use_angle_cls` is used to control whether to enable the angle classification model.The visualized recognition results are saved to the `./inference_results` folder by default.
K
Khanh Tran 已提交
382 383

```
W
WenmuZhou 已提交
384
# use direction classifier
W
WenmuZhou 已提交
385
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./inference/det_db/" --cls_model_dir="./inference/cls/" --rec_model_dir="./inference/rec_crnn/" --use_angle_cls=true
W
WenmuZhou 已提交
386 387

# not use use direction classifier
W
WenmuZhou 已提交
388
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./inference/det_db/" --rec_model_dir="./inference/rec_crnn/"
K
Khanh Tran 已提交
389 390 391 392
```

After executing the command, the recognition result image is as follows:

W
WenmuZhou 已提交
393
![](../imgs_results/system_res_00018069.jpg)
K
Khanh Tran 已提交
394

L
licx 已提交
395
<a name="OTHER_MODELS"></a>
X
xxxpsyduck 已提交
396
### 2. OTHER MODELS
K
Khanh Tran 已提交
397

L
licx 已提交
398 399 400 401 402
If you want to try other detection algorithms or recognition algorithms, please refer to the above text detection model inference and text recognition model inference, update the corresponding configuration and model.

**Note: due to the limitation of rotation logic of detected box, SAST curved text detection model (using the parameter `det_sast_polygon=True`) is not supported for model combination yet.**

The following command uses the combination of the EAST text detection and STAR-Net text recognition:
K
Khanh Tran 已提交
403 404 405 406 407 408 409

```
python3 tools/infer/predict_system.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_east/" --det_algorithm="EAST" --rec_model_dir="./inference/starnet/" --rec_image_shape="3, 32, 100" --rec_char_type="en"
```

After executing the command, the recognition result image is as follows:

W
WenmuZhou 已提交
410
![](../imgs_results/img_10_east_starnet.jpg)