program.py 26.1 KB
Newer Older
M
refine  
MissPenguin 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
L
LDOUBLEV 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

W
WenmuZhou 已提交
19
import os
L
LDOUBLEV 已提交
20
import sys
21
import platform
L
LDOUBLEV 已提交
22 23
import yaml
import time
24
import datetime
W
WenmuZhou 已提交
25 26 27
import paddle
import paddle.distributed as dist
from tqdm import tqdm
X
xiaoting 已提交
28 29
import cv2
import numpy as np
W
WenmuZhou 已提交
30 31
from argparse import ArgumentParser, RawDescriptionHelpFormatter

L
LDOUBLEV 已提交
32 33
from ppocr.utils.stats import TrainingStats
from ppocr.utils.save_load import save_model
34
from ppocr.utils.utility import print_dict, AverageMeter
D
dyning 已提交
35
from ppocr.utils.logging import get_logger
36
from ppocr.utils.loggers import VDLLogger, WandbLogger, Loggers
L
LDOUBLEV 已提交
37
from ppocr.utils import profiler
D
dyning 已提交
38
from ppocr.data import build_dataloader
L
LDOUBLEV 已提交
39

D
dyning 已提交
40

L
LDOUBLEV 已提交
41 42 43 44 45 46 47
class ArgsParser(ArgumentParser):
    def __init__(self):
        super(ArgsParser, self).__init__(
            formatter_class=RawDescriptionHelpFormatter)
        self.add_argument("-c", "--config", help="configuration file to use")
        self.add_argument(
            "-o", "--opt", nargs='+', help="set configuration options")
L
LDOUBLEV 已提交
48 49 50 51 52
        self.add_argument(
            '-p',
            '--profiler_options',
            type=str,
            default=None,
53 54
            help='The option of profiler, which should be in format ' \
                 '\"key1=value1;key2=value2;key3=value3\".'
L
LDOUBLEV 已提交
55
        )
L
LDOUBLEV 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

    def parse_args(self, argv=None):
        args = super(ArgsParser, self).parse_args(argv)
        assert args.config is not None, \
            "Please specify --config=configure_file_path."
        args.opt = self._parse_opt(args.opt)
        return args

    def _parse_opt(self, opts):
        config = {}
        if not opts:
            return config
        for s in opts:
            s = s.strip()
            k, v = s.split('=')
            config[k] = yaml.load(v, Loader=yaml.Loader)
        return config


def load_config(file_path):
    """
    Load config from yml/yaml file.
    Args:
        file_path (str): Path of the config file to be loaded.
    Returns: global config
    """
    _, ext = os.path.splitext(file_path)
    assert ext in ['.yml', '.yaml'], "only support yaml files for now"
84 85
    config = yaml.load(open(file_path, 'rb'), Loader=yaml.Loader)
    return config
L
LDOUBLEV 已提交
86 87


88
def merge_config(config, opts):
L
LDOUBLEV 已提交
89 90 91 92 93 94
    """
    Merge config into global config.
    Args:
        config (dict): Config to be merged.
    Returns: global config
    """
95
    for key, value in opts.items():
L
LDOUBLEV 已提交
96
        if "." not in key:
97 98
            if isinstance(value, dict) and key in config:
                config[key].update(value)
L
LDOUBLEV 已提交
99
            else:
100
                config[key] = value
L
LDOUBLEV 已提交
101 102
        else:
            sub_keys = key.split('.')
T
tink2123 已提交
103
            assert (
104
                sub_keys[0] in config
105 106
            ), "the sub_keys can only be one of global_config: {}, but get: " \
               "{}, please check your running command".format(
107 108
                config.keys(), sub_keys[0])
            cur = config[sub_keys[0]]
L
LDOUBLEV 已提交
109 110 111 112 113
            for idx, sub_key in enumerate(sub_keys[1:]):
                if idx == len(sub_keys) - 2:
                    cur[sub_key] = value
                else:
                    cur = cur[sub_key]
114
    return config
L
LDOUBLEV 已提交
115 116


X
xiaoting 已提交
117
def check_device(use_gpu, use_xpu=False):
L
LDOUBLEV 已提交
118 119 120 121
    """
    Log error and exit when set use_gpu=true in paddlepaddle
    cpu version.
    """
X
xiaoting 已提交
122 123 124 125
    err = "Config {} cannot be set as true while your paddle " \
          "is not compiled with {} ! \nPlease try: \n" \
          "\t1. Install paddlepaddle to run model on {} \n" \
          "\t2. Set {} as false in config file to run " \
L
LDOUBLEV 已提交
126 127 128
          "model on CPU"

    try:
X
xiaoting 已提交
129 130
        if use_gpu and use_xpu:
            print("use_xpu and use_gpu can not both be ture.")
W
WenmuZhou 已提交
131
        if use_gpu and not paddle.is_compiled_with_cuda():
X
xiaoting 已提交
132 133 134 135
            print(err.format("use_gpu", "cuda", "gpu", "use_gpu"))
            sys.exit(1)
        if use_xpu and not paddle.device.is_compiled_with_xpu():
            print(err.format("use_xpu", "xpu", "xpu", "use_xpu"))
L
LDOUBLEV 已提交
136 137 138 139 140
            sys.exit(1)
    except Exception as e:
        pass


141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
def check_xpu(use_xpu):
    """
    Log error and exit when set use_xpu=true in paddlepaddle
    cpu/gpu version.
    """
    err = "Config use_xpu cannot be set as true while you are " \
          "using paddlepaddle cpu/gpu version ! \nPlease try: \n" \
          "\t1. Install paddlepaddle-xpu to run model on XPU \n" \
          "\t2. Set use_xpu as false in config file to run " \
          "model on CPU/GPU"

    try:
        if use_xpu and not paddle.is_compiled_with_xpu():
            print(err)
            sys.exit(1)
    except Exception as e:
        pass

文幕地方's avatar
文幕地方 已提交
159

文幕地方's avatar
文幕地方 已提交
160 161 162 163 164
def to_float32(preds):
    if isinstance(preds, dict):
        for k in preds:
            if isinstance(preds[k], dict) or isinstance(preds[k], list):
                preds[k] = to_float32(preds[k])
文幕地方's avatar
文幕地方 已提交
165 166
            elif isinstance(preds[k], paddle.Tensor):
                preds[k] = preds[k].astype(paddle.float32)
文幕地方's avatar
文幕地方 已提交
167 168 169 170 171 172
    elif isinstance(preds, list):
        for k in range(len(preds)):
            if isinstance(preds[k], dict):
                preds[k] = to_float32(preds[k])
            elif isinstance(preds[k], list):
                preds[k] = to_float32(preds[k])
文幕地方's avatar
文幕地方 已提交
173 174 175 176
            elif isinstance(preds[k], paddle.Tensor):
                preds[k] = preds[k].astype(paddle.float32)
    elif isinstance(preds, paddle.Tensor):
            preds = preds.astype(paddle.float32)
文幕地方's avatar
文幕地方 已提交
177
    return preds
178

文幕地方's avatar
文幕地方 已提交
179

W
WenmuZhou 已提交
180
def train(config,
D
dyning 已提交
181 182 183
          train_dataloader,
          valid_dataloader,
          device,
W
WenmuZhou 已提交
184 185 186 187 188 189 190 191
          model,
          loss_class,
          optimizer,
          lr_scheduler,
          post_process_class,
          eval_class,
          pre_best_model_dict,
          logger,
192
          log_writer=None,
文幕地方's avatar
文幕地方 已提交
193 194
          scaler=None,
          amp_level='O2'):
W
WenmuZhou 已提交
195 196
    cal_metric_during_train = config['Global'].get('cal_metric_during_train',
                                                   False)
197
    calc_epoch_interval = config['Global'].get('calc_epoch_interval', 1)
L
LDOUBLEV 已提交
198 199 200 201
    log_smooth_window = config['Global']['log_smooth_window']
    epoch_num = config['Global']['epoch_num']
    print_batch_step = config['Global']['print_batch_step']
    eval_batch_step = config['Global']['eval_batch_step']
L
LDOUBLEV 已提交
202
    profiler_options = config['profiler_options']
W
WenmuZhou 已提交
203

D
dyning 已提交
204
    global_step = 0
205 206
    if 'global_step' in pre_best_model_dict:
        global_step = pre_best_model_dict['global_step']
L
LDOUBLEV 已提交
207 208 209 210
    start_eval_step = 0
    if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
        start_eval_step = eval_batch_step[0]
        eval_batch_step = eval_batch_step[1]
W
WenmuZhou 已提交
211 212
        if len(valid_dataloader) == 0:
            logger.info(
213 214
                'No Images in eval dataset, evaluation during training ' \
                'will be disabled'
W
WenmuZhou 已提交
215 216
            )
            start_eval_step = 1e111
L
LDOUBLEV 已提交
217
        logger.info(
218 219
            "During the training process, after the {}th iteration, " \
            "an evaluation is run every {} iterations".
L
LDOUBLEV 已提交
220
            format(start_eval_step, eval_batch_step))
L
LDOUBLEV 已提交
221 222
    save_epoch_step = config['Global']['save_epoch_step']
    save_model_dir = config['Global']['save_model_dir']
223 224
    if not os.path.exists(save_model_dir):
        os.makedirs(save_model_dir)
W
WenmuZhou 已提交
225 226 227 228
    main_indicator = eval_class.main_indicator
    best_model_dict = {main_indicator: 0}
    best_model_dict.update(pre_best_model_dict)
    train_stats = TrainingStats(log_smooth_window, ['lr'])
T
tink2123 已提交
229
    model_average = False
W
WenmuZhou 已提交
230 231
    model.train()

T
tink2123 已提交
232
    use_srn = config['Architecture']['algorithm'] == "SRN"
A
andyjpaddle 已提交
233
    extra_input_models = [
234
        "SRN", "NRTR", "SAR", "SEED", "SVTR", "SPIN", "VisionLAN", "RobustScanner"
A
andyjpaddle 已提交
235
    ]
A
andyjpaddle 已提交
236
    extra_input = False
A
andyjpaddle 已提交
237
    if config['Architecture']['algorithm'] == 'Distillation':
A
andyjpaddle 已提交
238 239 240
        for key in config['Architecture']["Models"]:
            extra_input = extra_input or config['Architecture']['Models'][key][
                'algorithm'] in extra_input_models
A
andyjpaddle 已提交
241 242
    else:
        extra_input = config['Architecture']['algorithm'] in extra_input_models
243
    try:
L
fix bug  
LDOUBLEV 已提交
244
        model_type = config['Architecture']['model_type']
245
    except:
L
fix bug  
LDOUBLEV 已提交
246
        model_type = None
A
andyjpaddle 已提交
247

T
tink2123 已提交
248
    algorithm = config['Architecture']['algorithm']
T
tink2123 已提交
249

250 251 252 253
    start_epoch = best_model_dict[
        'start_epoch'] if 'start_epoch' in best_model_dict else 1

    total_samples = 0
254 255
    train_reader_cost = 0.0
    train_batch_cost = 0.0
256
    reader_start = time.time()
257
    eta_meter = AverageMeter()
258 259 260

    max_iter = len(train_dataloader) - 1 if platform.system(
    ) == "Windows" else len(train_dataloader)
W
WenmuZhou 已提交
261

T
tink2123 已提交
262
    for epoch in range(start_epoch, epoch_num + 1):
263 264 265 266 267
        if train_dataloader.dataset.need_reset:
            train_dataloader = build_dataloader(
                config, 'Train', device, logger, seed=epoch)
            max_iter = len(train_dataloader) - 1 if platform.system(
            ) == "Windows" else len(train_dataloader)
X
xiaoting 已提交
268

W
WenmuZhou 已提交
269
        for idx, batch in enumerate(train_dataloader):
L
LDOUBLEV 已提交
270
            profiler.add_profiler_step(profiler_options)
文幕地方's avatar
文幕地方 已提交
271
            train_reader_cost += time.time() - reader_start
J
Jane-Ding 已提交
272
            if idx >= max_iter:
W
WenmuZhou 已提交
273 274 275
                break
            lr = optimizer.get_lr()
            images = batch[0]
T
tink2123 已提交
276
            if use_srn:
T
tink2123 已提交
277
                model_average = True
S
stephon 已提交
278 279
            # use amp
            if scaler:
文幕地方's avatar
文幕地方 已提交
280 281
                custom_black_list = config['Global'].get('amp_custom_black_list',[])
                with paddle.amp.auto_cast(level=amp_level, custom_black_list=custom_black_list):
S
stephon 已提交
282 283
                    if model_type == 'table' or extra_input:
                        preds = model(images, data=batch[1:])
A
andyjpaddle 已提交
284 285
                    elif model_type in ["kie", 'vqa']:
                        preds = model(batch)
S
stephon 已提交
286 287
                    else:
                        preds = model(images)
文幕地方's avatar
文幕地方 已提交
288 289 290 291 292 293
                preds = to_float32(preds)
                loss = loss_class(preds, batch)
                avg_loss = loss['loss']
                scaled_avg_loss = scaler.scale(avg_loss)
                scaled_avg_loss.backward()
                scaler.minimize(optimizer, scaled_avg_loss)
T
tink2123 已提交
294
            else:
S
stephon 已提交
295 296
                if model_type == 'table' or extra_input:
                    preds = model(images, data=batch[1:])
X
xiaoting 已提交
297
                elif model_type in ["kie", 'vqa', 'sr']:
L
LDOUBLEV 已提交
298
                    preds = model(batch)
S
stephon 已提交
299 300
                else:
                    preds = model(images)
文幕地方's avatar
文幕地方 已提交
301 302
                loss = loss_class(preds, batch)
                avg_loss = loss['loss']
S
stephon 已提交
303 304
                avg_loss.backward()
                optimizer.step()
X
xiaoting 已提交
305

W
WenmuZhou 已提交
306
            optimizer.clear_grad()
W
WenmuZhou 已提交
307

308 309
            if cal_metric_during_train and epoch % calc_epoch_interval == 0:  # only rec and cls need
                batch = [item.numpy() for item in batch]
X
xiaoting 已提交
310
                if model_type in ['kie', 'sr']:
311
                    eval_class(preds, batch)
文幕地方's avatar
文幕地方 已提交
312 313 314
                elif model_type in ['table']:
                    post_result = post_process_class(preds, batch)
                    eval_class(post_result, batch)
315
                else:
A
andyjpaddle 已提交
316 317 318 319
                    if config['Loss']['name'] in ['MultiLoss', 'MultiLoss_v2'
                                                  ]:  # for multi head loss
                        post_result = post_process_class(
                            preds['ctc'], batch[1])  # for CTC head out
A
andyjpaddle 已提交
320 321 322
                    elif config['Loss']['name'] in ['VLLoss']:
                        post_result = post_process_class(preds, batch[1],
                                                         batch[-1])
A
andyjpaddle 已提交
323 324
                    else:
                        post_result = post_process_class(preds, batch[1])
325 326 327 328
                    eval_class(post_result, batch)
                metric = eval_class.get_metric()
                train_stats.update(metric)

329 330 331
            train_batch_time = time.time() - reader_start
            train_batch_cost += train_batch_time
            eta_meter.update(train_batch_time)
332
            global_step += 1
文幕地方's avatar
文幕地方 已提交
333
            total_samples += len(images)
W
WenmuZhou 已提交
334

D
dyning 已提交
335 336
            if not isinstance(lr_scheduler, float):
                lr_scheduler.step()
W
WenmuZhou 已提交
337 338 339 340 341 342

            # logger and visualdl
            stats = {k: v.numpy().mean() for k, v in loss.items()}
            stats['lr'] = lr
            train_stats.update(stats)

343
            if log_writer is not None and dist.get_rank() == 0:
文幕地方's avatar
文幕地方 已提交
344 345
                log_writer.log_metrics(
                    metrics=train_stats.get(), prefix="TRAIN", step=global_step)
W
WenmuZhou 已提交
346

347 348 349
            if dist.get_rank() == 0 and (
                (global_step > 0 and global_step % print_batch_step == 0) or
                (idx >= len(train_dataloader) - 1)):
W
WenmuZhou 已提交
350
                logs = train_stats.log()
L
LDOUBLEV 已提交
351

352 353 354 355
                eta_sec = ((epoch_num + 1 - epoch) * \
                    len(train_dataloader) - idx - 1) * eta_meter.avg
                eta_sec_format = str(datetime.timedelta(seconds=int(eta_sec)))
                strs = 'epoch: [{}/{}], global_step: {}, {}, avg_reader_cost: ' \
X
xiaoting 已提交
356 357
                    '{:.5f} s, avg_batch_cost: {:.5f} s, avg_samples: {}, ' \
                    'ips: {:.5f} samples/s, eta: {}'.format(
358 359 360 361 362
                    epoch, epoch_num, global_step, logs,
                    train_reader_cost / print_batch_step,
                    train_batch_cost / print_batch_step,
                    total_samples / print_batch_step,
                    total_samples / train_batch_cost, eta_sec_format)
W
WenmuZhou 已提交
363
                logger.info(strs)
364

文幕地方's avatar
文幕地方 已提交
365
                total_samples = 0
366 367
                train_reader_cost = 0.0
                train_batch_cost = 0.0
W
WenmuZhou 已提交
368 369
            # eval
            if global_step > start_eval_step and \
370 371
                    (global_step - start_eval_step) % eval_batch_step == 0 \
                    and dist.get_rank() == 0:
T
tink2123 已提交
372 373 374 375 376 377 378
                if model_average:
                    Model_Average = paddle.incubate.optimizer.ModelAverage(
                        0.15,
                        parameters=model.parameters(),
                        min_average_window=10000,
                        max_average_window=15625)
                    Model_Average.apply()
T
tink2123 已提交
379 380 381 382 383
                cur_metric = eval(
                    model,
                    valid_dataloader,
                    post_process_class,
                    eval_class,
M
refine  
MissPenguin 已提交
384
                    model_type,
文幕地方's avatar
文幕地方 已提交
385 386
                    extra_input=extra_input,
                    scaler=scaler)
L
LDOUBLEV 已提交
387 388 389
                cur_metric_str = 'cur metric, {}'.format(', '.join(
                    ['{}: {}'.format(k, v) for k, v in cur_metric.items()]))
                logger.info(cur_metric_str)
W
WenmuZhou 已提交
390 391

                # logger metric
392
                if log_writer is not None:
文幕地方's avatar
文幕地方 已提交
393 394
                    log_writer.log_metrics(
                        metrics=cur_metric, prefix="EVAL", step=global_step)
395

L
LDOUBLEV 已提交
396
                if cur_metric[main_indicator] >= best_model_dict[
W
WenmuZhou 已提交
397
                        main_indicator]:
L
LDOUBLEV 已提交
398
                    best_model_dict.update(cur_metric)
W
WenmuZhou 已提交
399 400 401 402 403 404
                    best_model_dict['best_epoch'] = epoch
                    save_model(
                        model,
                        optimizer,
                        save_model_dir,
                        logger,
405
                        config,
W
WenmuZhou 已提交
406 407 408
                        is_best=True,
                        prefix='best_accuracy',
                        best_model_dict=best_model_dict,
409 410
                        epoch=epoch,
                        global_step=global_step)
L
LDOUBLEV 已提交
411
                best_str = 'best metric, {}'.format(', '.join([
W
WenmuZhou 已提交
412 413 414 415
                    '{}: {}'.format(k, v) for k, v in best_model_dict.items()
                ]))
                logger.info(best_str)
                # logger best metric
416
                if log_writer is not None:
文幕地方's avatar
文幕地方 已提交
417 418 419 420 421 422 423 424 425 426 427 428
                    log_writer.log_metrics(
                        metrics={
                            "best_{}".format(main_indicator):
                            best_model_dict[main_indicator]
                        },
                        prefix="EVAL",
                        step=global_step)

                    log_writer.log_model(
                        is_best=True,
                        prefix="best_accuracy",
                        metadata=best_model_dict)
429

文幕地方's avatar
文幕地方 已提交
430
            reader_start = time.time()
W
WenmuZhou 已提交
431 432 433 434 435 436
        if dist.get_rank() == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
437
                config,
W
WenmuZhou 已提交
438 439 440
                is_best=False,
                prefix='latest',
                best_model_dict=best_model_dict,
441 442
                epoch=epoch,
                global_step=global_step)
443

444 445
            if log_writer is not None:
                log_writer.log_model(is_best=False, prefix="latest")
446

W
WenmuZhou 已提交
447 448 449 450 451 452
        if dist.get_rank() == 0 and epoch > 0 and epoch % save_epoch_step == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
453
                config,
W
WenmuZhou 已提交
454 455 456
                is_best=False,
                prefix='iter_epoch_{}'.format(epoch),
                best_model_dict=best_model_dict,
457 458
                epoch=epoch,
                global_step=global_step)
459
            if log_writer is not None:
文幕地方's avatar
文幕地方 已提交
460 461
                log_writer.log_model(
                    is_best=False, prefix='iter_epoch_{}'.format(epoch))
462

L
LDOUBLEV 已提交
463
    best_str = 'best metric, {}'.format(', '.join(
W
WenmuZhou 已提交
464 465
        ['{}: {}'.format(k, v) for k, v in best_model_dict.items()]))
    logger.info(best_str)
466 467
    if dist.get_rank() == 0 and log_writer is not None:
        log_writer.close()
L
LDOUBLEV 已提交
468 469 470
    return


M
refine  
MissPenguin 已提交
471 472 473 474
def eval(model,
         valid_dataloader,
         post_process_class,
         eval_class,
L
LDOUBLEV 已提交
475
         model_type=None,
文幕地方's avatar
文幕地方 已提交
476 477
         extra_input=False,
         scaler=None):
W
WenmuZhou 已提交
478 479 480 481
    model.eval()
    with paddle.no_grad():
        total_frame = 0.0
        total_time = 0.0
文幕地方's avatar
文幕地方 已提交
482 483 484 485 486
        pbar = tqdm(
            total=len(valid_dataloader),
            desc='eval model:',
            position=0,
            leave=True)
487 488
        max_iter = len(valid_dataloader) - 1 if platform.system(
        ) == "Windows" else len(valid_dataloader)
X
xiaoting 已提交
489
        sum_images = 0
W
WenmuZhou 已提交
490
        for idx, batch in enumerate(valid_dataloader):
491
            if idx >= max_iter:
W
WenmuZhou 已提交
492
                break
W
fix bug  
WenmuZhou 已提交
493
            images = batch[0]
W
WenmuZhou 已提交
494
            start = time.time()
文幕地方's avatar
文幕地方 已提交
495 496 497 498 499 500 501 502

            # use amp
            if scaler:
                with paddle.amp.auto_cast(level='O2'):
                    if model_type == 'table' or extra_input:
                        preds = model(images, data=batch[1:])
                    elif model_type in ["kie", 'vqa']:
                        preds = model(batch)
X
xiaoting 已提交
503 504 505 506 507 508 509 510 511 512
                    elif model_type in ['sr']:
                        preds = model(batch)
                        sr_img = preds["sr_img"]
                        lr_img = preds["lr_img"]

                        for i in (range(sr_img.shape[0])):
                            fm_sr = (sr_img[i].numpy() * 255).transpose(
                                1, 2, 0).astype(np.uint8)
                            fm_lr = (lr_img[i].numpy() * 255).transpose(
                                1, 2, 0).astype(np.uint8)
513 514 515 516
                            cv2.imwrite("output/images/{}_{}_sr.jpg".format(
                                sum_images, i), fm_sr)
                            cv2.imwrite("output/images/{}_{}_lr.jpg".format(
                                sum_images, i), fm_lr)
文幕地方's avatar
文幕地方 已提交
517 518
                    else:
                        preds = model(images)
文幕地方's avatar
文幕地方 已提交
519
                preds = to_float32(preds)
X
xiaoting 已提交
520
            else:
文幕地方's avatar
文幕地方 已提交
521 522 523 524
                if model_type == 'table' or extra_input:
                    preds = model(images, data=batch[1:])
                elif model_type in ["kie", 'vqa']:
                    preds = model(batch)
X
xiaoting 已提交
525 526 527 528 529 530 531 532 533 534
                elif model_type in ['sr']:
                    preds = model(batch)
                    sr_img = preds["sr_img"]
                    lr_img = preds["lr_img"]

                    for i in (range(sr_img.shape[0])):
                        fm_sr = (sr_img[i].numpy() * 255).transpose(
                            1, 2, 0).astype(np.uint8)
                        fm_lr = (lr_img[i].numpy() * 255).transpose(
                            1, 2, 0).astype(np.uint8)
535 536 537 538
                        cv2.imwrite("output/images/{}_{}_sr.jpg".format(
                            sum_images, i), fm_sr)
                        cv2.imwrite("output/images/{}_{}_lr.jpg".format(
                            sum_images, i), fm_lr)
文幕地方's avatar
文幕地方 已提交
539 540 541
                else:
                    preds = model(images)

542 543 544 545 546 547
            batch_numpy = []
            for item in batch:
                if isinstance(item, paddle.Tensor):
                    batch_numpy.append(item.numpy())
                else:
                    batch_numpy.append(item)
W
WenmuZhou 已提交
548 549 550
            # Obtain usable results from post-processing methods
            total_time += time.time() - start
            # Evaluate the results of the current batch
文幕地方's avatar
文幕地方 已提交
551
            if model_type in ['kie']:
552
                eval_class(preds, batch_numpy)
文幕地方's avatar
文幕地方 已提交
553
            elif model_type in ['table', 'vqa']:
554 555
                post_result = post_process_class(preds, batch_numpy)
                eval_class(post_result, batch_numpy)
X
xiaoting 已提交
556 557
            elif model_type in ['sr']:
                eval_class(preds, batch_numpy)
M
MissPenguin 已提交
558
            else:
559 560
                post_result = post_process_class(preds, batch_numpy[1])
                eval_class(post_result, batch_numpy)
L
LDOUBLEV 已提交
561

W
fix bug  
WenmuZhou 已提交
562
            pbar.update(1)
W
WenmuZhou 已提交
563
            total_frame += len(images)
X
xiaoting 已提交
564
            sum_images += 1
L
LDOUBLEV 已提交
565 566
        # Get final metric,eg. acc or hmean
        metric = eval_class.get_metric()
D
dyning 已提交
567

W
fix bug  
WenmuZhou 已提交
568
    pbar.close()
W
WenmuZhou 已提交
569
    model.train()
L
LDOUBLEV 已提交
570 571
    metric['fps'] = total_frame / total_time
    return metric
L
licx 已提交
572

T
tink2123 已提交
573

B
Bin Lu 已提交
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
def update_center(char_center, post_result, preds):
    result, label = post_result
    feats, logits = preds
    logits = paddle.argmax(logits, axis=-1)
    feats = feats.numpy()
    logits = logits.numpy()

    for idx_sample in range(len(label)):
        if result[idx_sample][0] == label[idx_sample][0]:
            feat = feats[idx_sample]
            logit = logits[idx_sample]
            for idx_time in range(len(logit)):
                index = logit[idx_time]
                if index in char_center.keys():
                    char_center[index][0] = (
                        char_center[index][0] * char_center[index][1] +
                        feat[idx_time]) / (char_center[index][1] + 1)
                    char_center[index][1] += 1
                else:
                    char_center[index] = [feat[idx_time], 1]
    return char_center


def get_center(model, eval_dataloader, post_process_class):
    pbar = tqdm(total=len(eval_dataloader), desc='get center:')
    max_iter = len(eval_dataloader) - 1 if platform.system(
    ) == "Windows" else len(eval_dataloader)
    char_center = dict()
    for idx, batch in enumerate(eval_dataloader):
        if idx >= max_iter:
            break
        images = batch[0]
        start = time.time()
        preds = model(images)

        batch = [item.numpy() for item in batch]
        # Obtain usable results from post-processing methods
        post_result = post_process_class(preds, batch[1])

        #update char_center
        char_center = update_center(char_center, post_result, preds)
        pbar.update(1)

    pbar.close()
    for key in char_center.keys():
        char_center[key] = char_center[key][0]
    return char_center


623
def preprocess(is_train=False):
L
licx 已提交
624
    FLAGS = ArgsParser().parse_args()
L
LDOUBLEV 已提交
625
    profiler_options = FLAGS.profiler_options
L
licx 已提交
626
    config = load_config(FLAGS.config)
627
    config = merge_config(config, FLAGS.opt)
L
LDOUBLEV 已提交
628
    profile_dic = {"profiler_options": FLAGS.profiler_options}
629
    config = merge_config(config, profile_dic)
L
licx 已提交
630

W
WenmuZhou 已提交
631 632 633 634 635 636 637 638 639 640
    if is_train:
        # save_config
        save_model_dir = config['Global']['save_model_dir']
        os.makedirs(save_model_dir, exist_ok=True)
        with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
            yaml.dump(
                dict(config), f, default_flow_style=False, sort_keys=False)
        log_file = '{}/train.log'.format(save_model_dir)
    else:
        log_file = None
Z
zhoujun 已提交
641
    logger = get_logger(log_file=log_file)
L
licx 已提交
642 643 644

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
X
xiaoting 已提交
645
    use_xpu = config['Global'].get('use_xpu', False)
L
licx 已提交
646

647 648 649 650 651 652
    # check if set use_xpu=True in paddlepaddle cpu/gpu version
    use_xpu = False
    if 'use_xpu' in config['Global']:
        use_xpu = config['Global']['use_xpu']
    check_xpu(use_xpu)

W
WenmuZhou 已提交
653 654
    alg = config['Architecture']['algorithm']
    assert alg in [
J
Jethong 已提交
655
        'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN',
T
tink2123 已提交
656
        'CLS', 'PGNet', 'Distillation', 'NRTR', 'TableAttn', 'SAR', 'PSE',
W
wangjingyeye 已提交
657
        'SEED', 'SDMGR', 'LayoutXLM', 'LayoutLM', 'LayoutLMv2', 'PREN', 'FCE',
658
        'SVTR', 'ViTSTR', 'ABINet', 'DB++', 'TableMaster', 'SPIN', 'VisionLAN',
659
        'Gestalt', 'SLANet', 'RobustScanner'
W
WenmuZhou 已提交
660
    ]
L
licx 已提交
661

662
    if use_xpu:
X
xiaoting 已提交
663 664 665 666 667 668
        device = 'xpu:{0}'.format(os.getenv('FLAGS_selected_xpus', 0))
    else:
        device = 'gpu:{}'.format(dist.ParallelEnv()
                                 .dev_id) if use_gpu else 'cpu'
    check_device(use_gpu, use_xpu)

W
WenmuZhou 已提交
669
    device = paddle.set_device(device)
D
dyning 已提交
670

D
dyning 已提交
671
    config['Global']['distributed'] = dist.get_world_size() != 1
W
WenmuZhou 已提交
672

673 674
    loggers = []

675
    if 'use_visualdl' in config['Global'] and config['Global']['use_visualdl']:
L
fix bug  
LDOUBLEV 已提交
676
        save_model_dir = config['Global']['save_model_dir']
D
dyning 已提交
677
        vdl_writer_path = '{}/vdl/'.format(save_model_dir)
A
andyjpaddle 已提交
678
        log_writer = VDLLogger(vdl_writer_path)
679
        loggers.append(log_writer)
文幕地方's avatar
文幕地方 已提交
680 681
    if ('use_wandb' in config['Global'] and
            config['Global']['use_wandb']) or 'wandb' in config:
682 683 684 685 686 687 688 689
        save_dir = config['Global']['save_model_dir']
        wandb_writer_path = "{}/wandb".format(save_dir)
        if "wandb" in config:
            wandb_params = config['wandb']
        else:
            wandb_params = dict()
        wandb_params.update({'save_dir': save_model_dir})
        log_writer = WandbLogger(**wandb_params, config=config)
690
        loggers.append(log_writer)
D
dyning 已提交
691
    else:
692
        log_writer = None
D
dyning 已提交
693
    print_dict(config, logger)
694 695 696 697 698 699

    if loggers:
        log_writer = Loggers(loggers)
    else:
        log_writer = None

D
dyning 已提交
700 701
    logger.info('train with paddle {} and device {}'.format(paddle.__version__,
                                                            device))
702
    return config, device, logger, log_writer