program.py 26.0 KB
Newer Older
M
refine  
MissPenguin 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
L
LDOUBLEV 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

W
WenmuZhou 已提交
19
import os
L
LDOUBLEV 已提交
20
import sys
21
import platform
L
LDOUBLEV 已提交
22 23
import yaml
import time
24
import datetime
W
WenmuZhou 已提交
25 26 27
import paddle
import paddle.distributed as dist
from tqdm import tqdm
X
xiaoting 已提交
28 29
import cv2
import numpy as np
W
WenmuZhou 已提交
30 31
from argparse import ArgumentParser, RawDescriptionHelpFormatter

L
LDOUBLEV 已提交
32 33
from ppocr.utils.stats import TrainingStats
from ppocr.utils.save_load import save_model
34
from ppocr.utils.utility import print_dict, AverageMeter
D
dyning 已提交
35
from ppocr.utils.logging import get_logger
36
from ppocr.utils.loggers import VDLLogger, WandbLogger, Loggers
L
LDOUBLEV 已提交
37
from ppocr.utils import profiler
D
dyning 已提交
38
from ppocr.data import build_dataloader
L
LDOUBLEV 已提交
39

D
dyning 已提交
40

L
LDOUBLEV 已提交
41 42 43 44 45 46 47
class ArgsParser(ArgumentParser):
    def __init__(self):
        super(ArgsParser, self).__init__(
            formatter_class=RawDescriptionHelpFormatter)
        self.add_argument("-c", "--config", help="configuration file to use")
        self.add_argument(
            "-o", "--opt", nargs='+', help="set configuration options")
L
LDOUBLEV 已提交
48 49 50 51 52
        self.add_argument(
            '-p',
            '--profiler_options',
            type=str,
            default=None,
53 54
            help='The option of profiler, which should be in format ' \
                 '\"key1=value1;key2=value2;key3=value3\".'
L
LDOUBLEV 已提交
55
        )
L
LDOUBLEV 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

    def parse_args(self, argv=None):
        args = super(ArgsParser, self).parse_args(argv)
        assert args.config is not None, \
            "Please specify --config=configure_file_path."
        args.opt = self._parse_opt(args.opt)
        return args

    def _parse_opt(self, opts):
        config = {}
        if not opts:
            return config
        for s in opts:
            s = s.strip()
            k, v = s.split('=')
            config[k] = yaml.load(v, Loader=yaml.Loader)
        return config


def load_config(file_path):
    """
    Load config from yml/yaml file.
    Args:
        file_path (str): Path of the config file to be loaded.
    Returns: global config
    """
    _, ext = os.path.splitext(file_path)
    assert ext in ['.yml', '.yaml'], "only support yaml files for now"
84 85
    config = yaml.load(open(file_path, 'rb'), Loader=yaml.Loader)
    return config
L
LDOUBLEV 已提交
86 87


88
def merge_config(config, opts):
L
LDOUBLEV 已提交
89 90 91 92 93 94
    """
    Merge config into global config.
    Args:
        config (dict): Config to be merged.
    Returns: global config
    """
95
    for key, value in opts.items():
L
LDOUBLEV 已提交
96
        if "." not in key:
97 98
            if isinstance(value, dict) and key in config:
                config[key].update(value)
L
LDOUBLEV 已提交
99
            else:
100
                config[key] = value
L
LDOUBLEV 已提交
101 102
        else:
            sub_keys = key.split('.')
T
tink2123 已提交
103
            assert (
104
                sub_keys[0] in config
105 106
            ), "the sub_keys can only be one of global_config: {}, but get: " \
               "{}, please check your running command".format(
107 108
                config.keys(), sub_keys[0])
            cur = config[sub_keys[0]]
L
LDOUBLEV 已提交
109 110 111 112 113
            for idx, sub_key in enumerate(sub_keys[1:]):
                if idx == len(sub_keys) - 2:
                    cur[sub_key] = value
                else:
                    cur = cur[sub_key]
114
    return config
L
LDOUBLEV 已提交
115 116


X
xiaoting 已提交
117
def check_device(use_gpu, use_xpu=False):
L
LDOUBLEV 已提交
118 119 120 121
    """
    Log error and exit when set use_gpu=true in paddlepaddle
    cpu version.
    """
X
xiaoting 已提交
122 123 124 125
    err = "Config {} cannot be set as true while your paddle " \
          "is not compiled with {} ! \nPlease try: \n" \
          "\t1. Install paddlepaddle to run model on {} \n" \
          "\t2. Set {} as false in config file to run " \
L
LDOUBLEV 已提交
126 127 128
          "model on CPU"

    try:
X
xiaoting 已提交
129 130
        if use_gpu and use_xpu:
            print("use_xpu and use_gpu can not both be ture.")
W
WenmuZhou 已提交
131
        if use_gpu and not paddle.is_compiled_with_cuda():
X
xiaoting 已提交
132 133 134 135
            print(err.format("use_gpu", "cuda", "gpu", "use_gpu"))
            sys.exit(1)
        if use_xpu and not paddle.device.is_compiled_with_xpu():
            print(err.format("use_xpu", "xpu", "xpu", "use_xpu"))
L
LDOUBLEV 已提交
136 137 138 139 140
            sys.exit(1)
    except Exception as e:
        pass


141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
def check_xpu(use_xpu):
    """
    Log error and exit when set use_xpu=true in paddlepaddle
    cpu/gpu version.
    """
    err = "Config use_xpu cannot be set as true while you are " \
          "using paddlepaddle cpu/gpu version ! \nPlease try: \n" \
          "\t1. Install paddlepaddle-xpu to run model on XPU \n" \
          "\t2. Set use_xpu as false in config file to run " \
          "model on CPU/GPU"

    try:
        if use_xpu and not paddle.is_compiled_with_xpu():
            print(err)
            sys.exit(1)
    except Exception as e:
        pass

文幕地方's avatar
文幕地方 已提交
159

文幕地方's avatar
文幕地方 已提交
160 161 162 163 164
def to_float32(preds):
    if isinstance(preds, dict):
        for k in preds:
            if isinstance(preds[k], dict) or isinstance(preds[k], list):
                preds[k] = to_float32(preds[k])
文幕地方's avatar
文幕地方 已提交
165 166
            elif isinstance(preds[k], paddle.Tensor):
                preds[k] = preds[k].astype(paddle.float32)
文幕地方's avatar
文幕地方 已提交
167 168 169 170 171 172
    elif isinstance(preds, list):
        for k in range(len(preds)):
            if isinstance(preds[k], dict):
                preds[k] = to_float32(preds[k])
            elif isinstance(preds[k], list):
                preds[k] = to_float32(preds[k])
文幕地方's avatar
文幕地方 已提交
173 174 175 176
            elif isinstance(preds[k], paddle.Tensor):
                preds[k] = preds[k].astype(paddle.float32)
    elif isinstance(preds, paddle.Tensor):
            preds = preds.astype(paddle.float32)
文幕地方's avatar
文幕地方 已提交
177
    return preds
178

文幕地方's avatar
文幕地方 已提交
179

W
WenmuZhou 已提交
180
def train(config,
D
dyning 已提交
181 182 183
          train_dataloader,
          valid_dataloader,
          device,
W
WenmuZhou 已提交
184 185 186 187 188 189 190 191
          model,
          loss_class,
          optimizer,
          lr_scheduler,
          post_process_class,
          eval_class,
          pre_best_model_dict,
          logger,
192
          log_writer=None,
文幕地方's avatar
文幕地方 已提交
193 194
          scaler=None,
          amp_level='O2'):
W
WenmuZhou 已提交
195 196
    cal_metric_during_train = config['Global'].get('cal_metric_during_train',
                                                   False)
197
    calc_epoch_interval = config['Global'].get('calc_epoch_interval', 1)
L
LDOUBLEV 已提交
198 199 200 201
    log_smooth_window = config['Global']['log_smooth_window']
    epoch_num = config['Global']['epoch_num']
    print_batch_step = config['Global']['print_batch_step']
    eval_batch_step = config['Global']['eval_batch_step']
L
LDOUBLEV 已提交
202
    profiler_options = config['profiler_options']
W
WenmuZhou 已提交
203

D
dyning 已提交
204
    global_step = 0
205 206
    if 'global_step' in pre_best_model_dict:
        global_step = pre_best_model_dict['global_step']
L
LDOUBLEV 已提交
207 208 209 210
    start_eval_step = 0
    if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
        start_eval_step = eval_batch_step[0]
        eval_batch_step = eval_batch_step[1]
W
WenmuZhou 已提交
211 212
        if len(valid_dataloader) == 0:
            logger.info(
213 214
                'No Images in eval dataset, evaluation during training ' \
                'will be disabled'
W
WenmuZhou 已提交
215 216
            )
            start_eval_step = 1e111
L
LDOUBLEV 已提交
217
        logger.info(
218 219
            "During the training process, after the {}th iteration, " \
            "an evaluation is run every {} iterations".
L
LDOUBLEV 已提交
220
            format(start_eval_step, eval_batch_step))
L
LDOUBLEV 已提交
221 222
    save_epoch_step = config['Global']['save_epoch_step']
    save_model_dir = config['Global']['save_model_dir']
223 224
    if not os.path.exists(save_model_dir):
        os.makedirs(save_model_dir)
W
WenmuZhou 已提交
225 226 227 228
    main_indicator = eval_class.main_indicator
    best_model_dict = {main_indicator: 0}
    best_model_dict.update(pre_best_model_dict)
    train_stats = TrainingStats(log_smooth_window, ['lr'])
T
tink2123 已提交
229
    model_average = False
W
WenmuZhou 已提交
230 231
    model.train()

T
tink2123 已提交
232
    use_srn = config['Architecture']['algorithm'] == "SRN"
A
andyjpaddle 已提交
233
    extra_input_models = [
234
        "SRN", "NRTR", "SAR", "SEED", "SVTR", "SPIN", "VisionLAN", "RobustScanner"
A
andyjpaddle 已提交
235
    ]
A
andyjpaddle 已提交
236
    extra_input = False
A
andyjpaddle 已提交
237
    if config['Architecture']['algorithm'] == 'Distillation':
A
andyjpaddle 已提交
238 239 240
        for key in config['Architecture']["Models"]:
            extra_input = extra_input or config['Architecture']['Models'][key][
                'algorithm'] in extra_input_models
A
andyjpaddle 已提交
241 242
    else:
        extra_input = config['Architecture']['algorithm'] in extra_input_models
243
    try:
L
fix bug  
LDOUBLEV 已提交
244
        model_type = config['Architecture']['model_type']
245
    except:
L
fix bug  
LDOUBLEV 已提交
246
        model_type = None
A
andyjpaddle 已提交
247

T
tink2123 已提交
248
    algorithm = config['Architecture']['algorithm']
T
tink2123 已提交
249

250 251 252 253
    start_epoch = best_model_dict[
        'start_epoch'] if 'start_epoch' in best_model_dict else 1

    total_samples = 0
254 255
    train_reader_cost = 0.0
    train_batch_cost = 0.0
256
    reader_start = time.time()
257
    eta_meter = AverageMeter()
258 259 260

    max_iter = len(train_dataloader) - 1 if platform.system(
    ) == "Windows" else len(train_dataloader)
W
WenmuZhou 已提交
261

T
tink2123 已提交
262
    for epoch in range(start_epoch, epoch_num + 1):
263 264 265 266 267
        if train_dataloader.dataset.need_reset:
            train_dataloader = build_dataloader(
                config, 'Train', device, logger, seed=epoch)
            max_iter = len(train_dataloader) - 1 if platform.system(
            ) == "Windows" else len(train_dataloader)
X
xiaoting 已提交
268

W
WenmuZhou 已提交
269
        for idx, batch in enumerate(train_dataloader):
L
LDOUBLEV 已提交
270
            profiler.add_profiler_step(profiler_options)
文幕地方's avatar
文幕地方 已提交
271
            train_reader_cost += time.time() - reader_start
J
Jane-Ding 已提交
272
            if idx >= max_iter:
W
WenmuZhou 已提交
273 274 275
                break
            lr = optimizer.get_lr()
            images = batch[0]
T
tink2123 已提交
276
            if use_srn:
T
tink2123 已提交
277
                model_average = True
S
stephon 已提交
278 279
            # use amp
            if scaler:
文幕地方's avatar
文幕地方 已提交
280
                with paddle.amp.auto_cast(level=amp_level):
S
stephon 已提交
281 282
                    if model_type == 'table' or extra_input:
                        preds = model(images, data=batch[1:])
A
andyjpaddle 已提交
283 284
                    elif model_type in ["kie", 'vqa']:
                        preds = model(batch)
S
stephon 已提交
285 286
                    else:
                        preds = model(images)
文幕地方's avatar
文幕地方 已提交
287 288 289 290 291 292
                preds = to_float32(preds)
                loss = loss_class(preds, batch)
                avg_loss = loss['loss']
                scaled_avg_loss = scaler.scale(avg_loss)
                scaled_avg_loss.backward()
                scaler.minimize(optimizer, scaled_avg_loss)
T
tink2123 已提交
293
            else:
S
stephon 已提交
294 295
                if model_type == 'table' or extra_input:
                    preds = model(images, data=batch[1:])
X
xiaoting 已提交
296
                elif model_type in ["kie", 'vqa', 'sr']:
L
LDOUBLEV 已提交
297
                    preds = model(batch)
S
stephon 已提交
298 299
                else:
                    preds = model(images)
文幕地方's avatar
文幕地方 已提交
300 301
                loss = loss_class(preds, batch)
                avg_loss = loss['loss']
S
stephon 已提交
302 303
                avg_loss.backward()
                optimizer.step()
X
xiaoting 已提交
304

W
WenmuZhou 已提交
305
            optimizer.clear_grad()
W
WenmuZhou 已提交
306

307 308
            if cal_metric_during_train and epoch % calc_epoch_interval == 0:  # only rec and cls need
                batch = [item.numpy() for item in batch]
X
xiaoting 已提交
309
                if model_type in ['kie', 'sr']:
310
                    eval_class(preds, batch)
文幕地方's avatar
文幕地方 已提交
311 312 313
                elif model_type in ['table']:
                    post_result = post_process_class(preds, batch)
                    eval_class(post_result, batch)
314
                else:
A
andyjpaddle 已提交
315 316 317 318
                    if config['Loss']['name'] in ['MultiLoss', 'MultiLoss_v2'
                                                  ]:  # for multi head loss
                        post_result = post_process_class(
                            preds['ctc'], batch[1])  # for CTC head out
A
andyjpaddle 已提交
319 320 321
                    elif config['Loss']['name'] in ['VLLoss']:
                        post_result = post_process_class(preds, batch[1],
                                                         batch[-1])
A
andyjpaddle 已提交
322 323
                    else:
                        post_result = post_process_class(preds, batch[1])
324 325 326 327
                    eval_class(post_result, batch)
                metric = eval_class.get_metric()
                train_stats.update(metric)

328 329 330
            train_batch_time = time.time() - reader_start
            train_batch_cost += train_batch_time
            eta_meter.update(train_batch_time)
331
            global_step += 1
文幕地方's avatar
文幕地方 已提交
332
            total_samples += len(images)
W
WenmuZhou 已提交
333

D
dyning 已提交
334 335
            if not isinstance(lr_scheduler, float):
                lr_scheduler.step()
W
WenmuZhou 已提交
336 337 338 339 340 341

            # logger and visualdl
            stats = {k: v.numpy().mean() for k, v in loss.items()}
            stats['lr'] = lr
            train_stats.update(stats)

342
            if log_writer is not None and dist.get_rank() == 0:
文幕地方's avatar
文幕地方 已提交
343 344
                log_writer.log_metrics(
                    metrics=train_stats.get(), prefix="TRAIN", step=global_step)
W
WenmuZhou 已提交
345

346 347 348
            if dist.get_rank() == 0 and (
                (global_step > 0 and global_step % print_batch_step == 0) or
                (idx >= len(train_dataloader) - 1)):
W
WenmuZhou 已提交
349
                logs = train_stats.log()
L
LDOUBLEV 已提交
350

351 352 353 354
                eta_sec = ((epoch_num + 1 - epoch) * \
                    len(train_dataloader) - idx - 1) * eta_meter.avg
                eta_sec_format = str(datetime.timedelta(seconds=int(eta_sec)))
                strs = 'epoch: [{}/{}], global_step: {}, {}, avg_reader_cost: ' \
X
xiaoting 已提交
355 356
                    '{:.5f} s, avg_batch_cost: {:.5f} s, avg_samples: {}, ' \
                    'ips: {:.5f} samples/s, eta: {}'.format(
357 358 359 360 361
                    epoch, epoch_num, global_step, logs,
                    train_reader_cost / print_batch_step,
                    train_batch_cost / print_batch_step,
                    total_samples / print_batch_step,
                    total_samples / train_batch_cost, eta_sec_format)
W
WenmuZhou 已提交
362
                logger.info(strs)
363

文幕地方's avatar
文幕地方 已提交
364
                total_samples = 0
365 366
                train_reader_cost = 0.0
                train_batch_cost = 0.0
W
WenmuZhou 已提交
367 368
            # eval
            if global_step > start_eval_step and \
369 370
                    (global_step - start_eval_step) % eval_batch_step == 0 \
                    and dist.get_rank() == 0:
T
tink2123 已提交
371 372 373 374 375 376 377
                if model_average:
                    Model_Average = paddle.incubate.optimizer.ModelAverage(
                        0.15,
                        parameters=model.parameters(),
                        min_average_window=10000,
                        max_average_window=15625)
                    Model_Average.apply()
T
tink2123 已提交
378 379 380 381 382
                cur_metric = eval(
                    model,
                    valid_dataloader,
                    post_process_class,
                    eval_class,
M
refine  
MissPenguin 已提交
383
                    model_type,
文幕地方's avatar
文幕地方 已提交
384 385
                    extra_input=extra_input,
                    scaler=scaler)
L
LDOUBLEV 已提交
386 387 388
                cur_metric_str = 'cur metric, {}'.format(', '.join(
                    ['{}: {}'.format(k, v) for k, v in cur_metric.items()]))
                logger.info(cur_metric_str)
W
WenmuZhou 已提交
389 390

                # logger metric
391
                if log_writer is not None:
文幕地方's avatar
文幕地方 已提交
392 393
                    log_writer.log_metrics(
                        metrics=cur_metric, prefix="EVAL", step=global_step)
394

L
LDOUBLEV 已提交
395
                if cur_metric[main_indicator] >= best_model_dict[
W
WenmuZhou 已提交
396
                        main_indicator]:
L
LDOUBLEV 已提交
397
                    best_model_dict.update(cur_metric)
W
WenmuZhou 已提交
398 399 400 401 402 403
                    best_model_dict['best_epoch'] = epoch
                    save_model(
                        model,
                        optimizer,
                        save_model_dir,
                        logger,
404
                        config,
W
WenmuZhou 已提交
405 406 407
                        is_best=True,
                        prefix='best_accuracy',
                        best_model_dict=best_model_dict,
408 409
                        epoch=epoch,
                        global_step=global_step)
L
LDOUBLEV 已提交
410
                best_str = 'best metric, {}'.format(', '.join([
W
WenmuZhou 已提交
411 412 413 414
                    '{}: {}'.format(k, v) for k, v in best_model_dict.items()
                ]))
                logger.info(best_str)
                # logger best metric
415
                if log_writer is not None:
文幕地方's avatar
文幕地方 已提交
416 417 418 419 420 421 422 423 424 425 426 427
                    log_writer.log_metrics(
                        metrics={
                            "best_{}".format(main_indicator):
                            best_model_dict[main_indicator]
                        },
                        prefix="EVAL",
                        step=global_step)

                    log_writer.log_model(
                        is_best=True,
                        prefix="best_accuracy",
                        metadata=best_model_dict)
428

文幕地方's avatar
文幕地方 已提交
429
            reader_start = time.time()
W
WenmuZhou 已提交
430 431 432 433 434 435
        if dist.get_rank() == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
436
                config,
W
WenmuZhou 已提交
437 438 439
                is_best=False,
                prefix='latest',
                best_model_dict=best_model_dict,
440 441
                epoch=epoch,
                global_step=global_step)
442

443 444
            if log_writer is not None:
                log_writer.log_model(is_best=False, prefix="latest")
445

W
WenmuZhou 已提交
446 447 448 449 450 451
        if dist.get_rank() == 0 and epoch > 0 and epoch % save_epoch_step == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
452
                config,
W
WenmuZhou 已提交
453 454 455
                is_best=False,
                prefix='iter_epoch_{}'.format(epoch),
                best_model_dict=best_model_dict,
456 457
                epoch=epoch,
                global_step=global_step)
458
            if log_writer is not None:
文幕地方's avatar
文幕地方 已提交
459 460
                log_writer.log_model(
                    is_best=False, prefix='iter_epoch_{}'.format(epoch))
461

L
LDOUBLEV 已提交
462
    best_str = 'best metric, {}'.format(', '.join(
W
WenmuZhou 已提交
463 464
        ['{}: {}'.format(k, v) for k, v in best_model_dict.items()]))
    logger.info(best_str)
465 466
    if dist.get_rank() == 0 and log_writer is not None:
        log_writer.close()
L
LDOUBLEV 已提交
467 468 469
    return


M
refine  
MissPenguin 已提交
470 471 472 473
def eval(model,
         valid_dataloader,
         post_process_class,
         eval_class,
L
LDOUBLEV 已提交
474
         model_type=None,
文幕地方's avatar
文幕地方 已提交
475 476
         extra_input=False,
         scaler=None):
W
WenmuZhou 已提交
477 478 479 480
    model.eval()
    with paddle.no_grad():
        total_frame = 0.0
        total_time = 0.0
文幕地方's avatar
文幕地方 已提交
481 482 483 484 485
        pbar = tqdm(
            total=len(valid_dataloader),
            desc='eval model:',
            position=0,
            leave=True)
486 487
        max_iter = len(valid_dataloader) - 1 if platform.system(
        ) == "Windows" else len(valid_dataloader)
X
xiaoting 已提交
488
        sum_images = 0
W
WenmuZhou 已提交
489
        for idx, batch in enumerate(valid_dataloader):
490
            if idx >= max_iter:
W
WenmuZhou 已提交
491
                break
W
fix bug  
WenmuZhou 已提交
492
            images = batch[0]
W
WenmuZhou 已提交
493
            start = time.time()
文幕地方's avatar
文幕地方 已提交
494 495 496 497 498 499 500 501

            # use amp
            if scaler:
                with paddle.amp.auto_cast(level='O2'):
                    if model_type == 'table' or extra_input:
                        preds = model(images, data=batch[1:])
                    elif model_type in ["kie", 'vqa']:
                        preds = model(batch)
X
xiaoting 已提交
502 503 504 505 506 507 508 509 510 511
                    elif model_type in ['sr']:
                        preds = model(batch)
                        sr_img = preds["sr_img"]
                        lr_img = preds["lr_img"]

                        for i in (range(sr_img.shape[0])):
                            fm_sr = (sr_img[i].numpy() * 255).transpose(
                                1, 2, 0).astype(np.uint8)
                            fm_lr = (lr_img[i].numpy() * 255).transpose(
                                1, 2, 0).astype(np.uint8)
512 513 514 515
                            cv2.imwrite("output/images/{}_{}_sr.jpg".format(
                                sum_images, i), fm_sr)
                            cv2.imwrite("output/images/{}_{}_lr.jpg".format(
                                sum_images, i), fm_lr)
文幕地方's avatar
文幕地方 已提交
516 517
                    else:
                        preds = model(images)
文幕地方's avatar
文幕地方 已提交
518
                preds = to_float32(preds)
X
xiaoting 已提交
519
            else:
文幕地方's avatar
文幕地方 已提交
520 521 522 523
                if model_type == 'table' or extra_input:
                    preds = model(images, data=batch[1:])
                elif model_type in ["kie", 'vqa']:
                    preds = model(batch)
X
xiaoting 已提交
524 525 526 527 528 529 530 531 532 533
                elif model_type in ['sr']:
                    preds = model(batch)
                    sr_img = preds["sr_img"]
                    lr_img = preds["lr_img"]

                    for i in (range(sr_img.shape[0])):
                        fm_sr = (sr_img[i].numpy() * 255).transpose(
                            1, 2, 0).astype(np.uint8)
                        fm_lr = (lr_img[i].numpy() * 255).transpose(
                            1, 2, 0).astype(np.uint8)
534 535 536 537
                        cv2.imwrite("output/images/{}_{}_sr.jpg".format(
                            sum_images, i), fm_sr)
                        cv2.imwrite("output/images/{}_{}_lr.jpg".format(
                            sum_images, i), fm_lr)
文幕地方's avatar
文幕地方 已提交
538 539 540
                else:
                    preds = model(images)

541 542 543 544 545 546
            batch_numpy = []
            for item in batch:
                if isinstance(item, paddle.Tensor):
                    batch_numpy.append(item.numpy())
                else:
                    batch_numpy.append(item)
W
WenmuZhou 已提交
547 548 549
            # Obtain usable results from post-processing methods
            total_time += time.time() - start
            # Evaluate the results of the current batch
文幕地方's avatar
文幕地方 已提交
550
            if model_type in ['kie']:
551
                eval_class(preds, batch_numpy)
文幕地方's avatar
文幕地方 已提交
552
            elif model_type in ['table', 'vqa']:
553 554
                post_result = post_process_class(preds, batch_numpy)
                eval_class(post_result, batch_numpy)
X
xiaoting 已提交
555 556
            elif model_type in ['sr']:
                eval_class(preds, batch_numpy)
M
MissPenguin 已提交
557
            else:
558 559
                post_result = post_process_class(preds, batch_numpy[1])
                eval_class(post_result, batch_numpy)
L
LDOUBLEV 已提交
560

W
fix bug  
WenmuZhou 已提交
561
            pbar.update(1)
W
WenmuZhou 已提交
562
            total_frame += len(images)
X
xiaoting 已提交
563
            sum_images += 1
L
LDOUBLEV 已提交
564 565
        # Get final metric,eg. acc or hmean
        metric = eval_class.get_metric()
D
dyning 已提交
566

W
fix bug  
WenmuZhou 已提交
567
    pbar.close()
W
WenmuZhou 已提交
568
    model.train()
L
LDOUBLEV 已提交
569 570
    metric['fps'] = total_frame / total_time
    return metric
L
licx 已提交
571

T
tink2123 已提交
572

B
Bin Lu 已提交
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
def update_center(char_center, post_result, preds):
    result, label = post_result
    feats, logits = preds
    logits = paddle.argmax(logits, axis=-1)
    feats = feats.numpy()
    logits = logits.numpy()

    for idx_sample in range(len(label)):
        if result[idx_sample][0] == label[idx_sample][0]:
            feat = feats[idx_sample]
            logit = logits[idx_sample]
            for idx_time in range(len(logit)):
                index = logit[idx_time]
                if index in char_center.keys():
                    char_center[index][0] = (
                        char_center[index][0] * char_center[index][1] +
                        feat[idx_time]) / (char_center[index][1] + 1)
                    char_center[index][1] += 1
                else:
                    char_center[index] = [feat[idx_time], 1]
    return char_center


def get_center(model, eval_dataloader, post_process_class):
    pbar = tqdm(total=len(eval_dataloader), desc='get center:')
    max_iter = len(eval_dataloader) - 1 if platform.system(
    ) == "Windows" else len(eval_dataloader)
    char_center = dict()
    for idx, batch in enumerate(eval_dataloader):
        if idx >= max_iter:
            break
        images = batch[0]
        start = time.time()
        preds = model(images)

        batch = [item.numpy() for item in batch]
        # Obtain usable results from post-processing methods
        post_result = post_process_class(preds, batch[1])

        #update char_center
        char_center = update_center(char_center, post_result, preds)
        pbar.update(1)

    pbar.close()
    for key in char_center.keys():
        char_center[key] = char_center[key][0]
    return char_center


622
def preprocess(is_train=False):
L
licx 已提交
623
    FLAGS = ArgsParser().parse_args()
L
LDOUBLEV 已提交
624
    profiler_options = FLAGS.profiler_options
L
licx 已提交
625
    config = load_config(FLAGS.config)
626
    config = merge_config(config, FLAGS.opt)
L
LDOUBLEV 已提交
627
    profile_dic = {"profiler_options": FLAGS.profiler_options}
628
    config = merge_config(config, profile_dic)
L
licx 已提交
629

W
WenmuZhou 已提交
630 631 632 633 634 635 636 637 638 639
    if is_train:
        # save_config
        save_model_dir = config['Global']['save_model_dir']
        os.makedirs(save_model_dir, exist_ok=True)
        with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
            yaml.dump(
                dict(config), f, default_flow_style=False, sort_keys=False)
        log_file = '{}/train.log'.format(save_model_dir)
    else:
        log_file = None
Z
zhoujun 已提交
640
    logger = get_logger(log_file=log_file)
L
licx 已提交
641 642 643

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
X
xiaoting 已提交
644
    use_xpu = config['Global'].get('use_xpu', False)
L
licx 已提交
645

646 647 648 649 650 651
    # check if set use_xpu=True in paddlepaddle cpu/gpu version
    use_xpu = False
    if 'use_xpu' in config['Global']:
        use_xpu = config['Global']['use_xpu']
    check_xpu(use_xpu)

W
WenmuZhou 已提交
652 653
    alg = config['Architecture']['algorithm']
    assert alg in [
J
Jethong 已提交
654
        'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN',
T
tink2123 已提交
655
        'CLS', 'PGNet', 'Distillation', 'NRTR', 'TableAttn', 'SAR', 'PSE',
W
wangjingyeye 已提交
656
        'SEED', 'SDMGR', 'LayoutXLM', 'LayoutLM', 'LayoutLMv2', 'PREN', 'FCE',
657
        'SVTR', 'ViTSTR', 'ABINet', 'DB++', 'TableMaster', 'SPIN', 'VisionLAN',
658
        'Gestalt', 'SLANet', 'RobustScanner'
W
WenmuZhou 已提交
659
    ]
L
licx 已提交
660

661
    if use_xpu:
X
xiaoting 已提交
662 663 664 665 666 667
        device = 'xpu:{0}'.format(os.getenv('FLAGS_selected_xpus', 0))
    else:
        device = 'gpu:{}'.format(dist.ParallelEnv()
                                 .dev_id) if use_gpu else 'cpu'
    check_device(use_gpu, use_xpu)

W
WenmuZhou 已提交
668
    device = paddle.set_device(device)
D
dyning 已提交
669

D
dyning 已提交
670
    config['Global']['distributed'] = dist.get_world_size() != 1
W
WenmuZhou 已提交
671

672 673
    loggers = []

674
    if 'use_visualdl' in config['Global'] and config['Global']['use_visualdl']:
L
fix bug  
LDOUBLEV 已提交
675
        save_model_dir = config['Global']['save_model_dir']
D
dyning 已提交
676
        vdl_writer_path = '{}/vdl/'.format(save_model_dir)
A
andyjpaddle 已提交
677
        log_writer = VDLLogger(vdl_writer_path)
678
        loggers.append(log_writer)
文幕地方's avatar
文幕地方 已提交
679 680
    if ('use_wandb' in config['Global'] and
            config['Global']['use_wandb']) or 'wandb' in config:
681 682 683 684 685 686 687 688
        save_dir = config['Global']['save_model_dir']
        wandb_writer_path = "{}/wandb".format(save_dir)
        if "wandb" in config:
            wandb_params = config['wandb']
        else:
            wandb_params = dict()
        wandb_params.update({'save_dir': save_model_dir})
        log_writer = WandbLogger(**wandb_params, config=config)
689
        loggers.append(log_writer)
D
dyning 已提交
690
    else:
691
        log_writer = None
D
dyning 已提交
692
    print_dict(config, logger)
693 694 695 696 697 698

    if loggers:
        log_writer = Loggers(loggers)
    else:
        log_writer = None

D
dyning 已提交
699 700
    logger.info('train with paddle {} and device {}'.format(paddle.__version__,
                                                            device))
701
    return config, device, logger, log_writer