program.py 16.2 KB
Newer Older
M
refine  
MissPenguin 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
L
LDOUBLEV 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

W
WenmuZhou 已提交
19
import os
L
LDOUBLEV 已提交
20
import sys
21
import platform
L
LDOUBLEV 已提交
22 23
import yaml
import time
W
WenmuZhou 已提交
24 25 26 27 28 29
import shutil
import paddle
import paddle.distributed as dist
from tqdm import tqdm
from argparse import ArgumentParser, RawDescriptionHelpFormatter

L
LDOUBLEV 已提交
30 31
from ppocr.utils.stats import TrainingStats
from ppocr.utils.save_load import save_model
D
dyning 已提交
32 33
from ppocr.utils.utility import print_dict
from ppocr.utils.logging import get_logger
L
LDOUBLEV 已提交
34
from ppocr.utils import profiler
D
dyning 已提交
35 36
from ppocr.data import build_dataloader
import numpy as np
L
LDOUBLEV 已提交
37

D
dyning 已提交
38

L
LDOUBLEV 已提交
39 40 41 42 43 44 45
class ArgsParser(ArgumentParser):
    def __init__(self):
        super(ArgsParser, self).__init__(
            formatter_class=RawDescriptionHelpFormatter)
        self.add_argument("-c", "--config", help="configuration file to use")
        self.add_argument(
            "-o", "--opt", nargs='+', help="set configuration options")
L
LDOUBLEV 已提交
46 47 48 49 50 51 52
        self.add_argument(
            '-p',
            '--profiler_options',
            type=str,
            default=None,
            help='The option of profiler, which should be in format \"key1=value1;key2=value2;key3=value3\".'
        )
L
LDOUBLEV 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

    def parse_args(self, argv=None):
        args = super(ArgsParser, self).parse_args(argv)
        assert args.config is not None, \
            "Please specify --config=configure_file_path."
        args.opt = self._parse_opt(args.opt)
        return args

    def _parse_opt(self, opts):
        config = {}
        if not opts:
            return config
        for s in opts:
            s = s.strip()
            k, v = s.split('=')
            config[k] = yaml.load(v, Loader=yaml.Loader)
        return config


class AttrDict(dict):
    """Single level attribute dict, NOT recursive"""

    def __init__(self, **kwargs):
        super(AttrDict, self).__init__()
        super(AttrDict, self).update(kwargs)

    def __getattr__(self, key):
        if key in self:
            return self[key]
        raise AttributeError("object has no attribute '{}'".format(key))


global_config = AttrDict()

农夫三拳_'s avatar
农夫三拳_ 已提交
87 88
default_config = {'Global': {'debug': False, }}

L
LDOUBLEV 已提交
89 90 91 92 93 94 95 96

def load_config(file_path):
    """
    Load config from yml/yaml file.
    Args:
        file_path (str): Path of the config file to be loaded.
    Returns: global config
    """
农夫三拳_'s avatar
农夫三拳_ 已提交
97
    merge_config(default_config)
L
LDOUBLEV 已提交
98 99
    _, ext = os.path.splitext(file_path)
    assert ext in ['.yml', '.yaml'], "only support yaml files for now"
W
WenmuZhou 已提交
100
    merge_config(yaml.load(open(file_path, 'rb'), Loader=yaml.Loader))
L
LDOUBLEV 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
    return global_config


def merge_config(config):
    """
    Merge config into global config.
    Args:
        config (dict): Config to be merged.
    Returns: global config
    """
    for key, value in config.items():
        if "." not in key:
            if isinstance(value, dict) and key in global_config:
                global_config[key].update(value)
            else:
                global_config[key] = value
        else:
            sub_keys = key.split('.')
T
tink2123 已提交
119 120 121 122
            assert (
                sub_keys[0] in global_config
            ), "the sub_keys can only be one of global_config: {}, but get: {}, please check your running command".format(
                global_config.keys(), sub_keys[0])
L
LDOUBLEV 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
            cur = global_config[sub_keys[0]]
            for idx, sub_key in enumerate(sub_keys[1:]):
                if idx == len(sub_keys) - 2:
                    cur[sub_key] = value
                else:
                    cur = cur[sub_key]


def check_gpu(use_gpu):
    """
    Log error and exit when set use_gpu=true in paddlepaddle
    cpu version.
    """
    err = "Config use_gpu cannot be set as true while you are " \
          "using paddlepaddle cpu version ! \nPlease try: \n" \
          "\t1. Install paddlepaddle-gpu to run model on GPU \n" \
          "\t2. Set use_gpu as false in config file to run " \
          "model on CPU"

    try:
W
WenmuZhou 已提交
143
        if use_gpu and not paddle.is_compiled_with_cuda():
W
WenmuZhou 已提交
144
            print(err)
L
LDOUBLEV 已提交
145 146 147 148 149
            sys.exit(1)
    except Exception as e:
        pass


W
WenmuZhou 已提交
150
def train(config,
D
dyning 已提交
151 152 153
          train_dataloader,
          valid_dataloader,
          device,
W
WenmuZhou 已提交
154 155 156 157 158 159 160 161
          model,
          loss_class,
          optimizer,
          lr_scheduler,
          post_process_class,
          eval_class,
          pre_best_model_dict,
          logger,
L
LDOUBLEV 已提交
162 163
          vdl_writer=None,
          profiler_options=None):
W
WenmuZhou 已提交
164 165
    cal_metric_during_train = config['Global'].get('cal_metric_during_train',
                                                   False)
L
LDOUBLEV 已提交
166 167 168 169
    log_smooth_window = config['Global']['log_smooth_window']
    epoch_num = config['Global']['epoch_num']
    print_batch_step = config['Global']['print_batch_step']
    eval_batch_step = config['Global']['eval_batch_step']
W
WenmuZhou 已提交
170

D
dyning 已提交
171
    global_step = 0
172 173
    if 'global_step' in pre_best_model_dict:
        global_step = pre_best_model_dict['global_step']
L
LDOUBLEV 已提交
174 175 176 177
    start_eval_step = 0
    if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
        start_eval_step = eval_batch_step[0]
        eval_batch_step = eval_batch_step[1]
W
WenmuZhou 已提交
178 179 180 181 182
        if len(valid_dataloader) == 0:
            logger.info(
                'No Images in eval dataset, evaluation during training will be disabled'
            )
            start_eval_step = 1e111
L
LDOUBLEV 已提交
183 184 185
        logger.info(
            "During the training process, after the {}th iteration, an evaluation is run every {} iterations".
            format(start_eval_step, eval_batch_step))
L
LDOUBLEV 已提交
186 187
    save_epoch_step = config['Global']['save_epoch_step']
    save_model_dir = config['Global']['save_model_dir']
188 189
    if not os.path.exists(save_model_dir):
        os.makedirs(save_model_dir)
W
WenmuZhou 已提交
190 191 192 193
    main_indicator = eval_class.main_indicator
    best_model_dict = {main_indicator: 0}
    best_model_dict.update(pre_best_model_dict)
    train_stats = TrainingStats(log_smooth_window, ['lr'])
T
tink2123 已提交
194
    model_average = False
W
WenmuZhou 已提交
195 196
    model.train()

T
tink2123 已提交
197
    use_srn = config['Architecture']['algorithm'] == "SRN"
T
Topdu 已提交
198
    use_nrtr = config['Architecture']['algorithm'] == "NRTR"
A
andyjpaddle 已提交
199
    use_sar = config['Architecture']['algorithm'] == 'SAR'
200
    try:
L
fix bug  
LDOUBLEV 已提交
201
        model_type = config['Architecture']['model_type']
202
    except:
L
fix bug  
LDOUBLEV 已提交
203
        model_type = None
M
refine  
MissPenguin 已提交
204

W
WenmuZhou 已提交
205 206 207
    if 'start_epoch' in best_model_dict:
        start_epoch = best_model_dict['start_epoch']
    else:
T
tink2123 已提交
208
        start_epoch = 1
W
WenmuZhou 已提交
209

T
tink2123 已提交
210
    for epoch in range(start_epoch, epoch_num + 1):
211 212
        train_dataloader = build_dataloader(
            config, 'Train', device, logger, seed=epoch)
W
WenmuZhou 已提交
213 214 215 216
        train_batch_cost = 0.0
        train_reader_cost = 0.0
        batch_sum = 0
        batch_start = time.time()
J
Jane-Ding 已提交
217 218 219
        max_iter = len(train_dataloader) - 1 if platform.system(
        ) == "Windows" else len(train_dataloader)
        for idx, batch in enumerate(train_dataloader):
L
LDOUBLEV 已提交
220
            profiler.add_profiler_step(profiler_options)
W
WenmuZhou 已提交
221
            train_reader_cost += time.time() - batch_start
J
Jane-Ding 已提交
222 223
            if idx >= max_iter:
                break
W
WenmuZhou 已提交
224 225
            lr = optimizer.get_lr()
            images = batch[0]
T
tink2123 已提交
226
            if use_srn:
T
tink2123 已提交
227
                model_average = True
A
andyjpaddle 已提交
228
            if use_srn or model_type == 'table' or use_nrtr or use_sar:
M
refine  
MissPenguin 已提交
229 230 231
                preds = model(images, data=batch[1:])
            else:
                preds = model(images)
W
WenmuZhou 已提交
232 233
            loss = loss_class(preds, batch)
            avg_loss = loss['loss']
D
dyning 已提交
234
            avg_loss.backward()
W
WenmuZhou 已提交
235 236
            optimizer.step()
            optimizer.clear_grad()
W
WenmuZhou 已提交
237 238 239 240

            train_batch_cost += time.time() - batch_start
            batch_sum += len(images)

D
dyning 已提交
241 242
            if not isinstance(lr_scheduler, float):
                lr_scheduler.step()
W
WenmuZhou 已提交
243 244 245 246 247 248

            # logger and visualdl
            stats = {k: v.numpy().mean() for k, v in loss.items()}
            stats['lr'] = lr
            train_stats.update(stats)

L
LDOUBLEV 已提交
249
            if cal_metric_during_train:  # only rec and cls need
W
WenmuZhou 已提交
250
                batch = [item.numpy() for item in batch]
M
MissPenguin 已提交
251 252 253 254 255
                if model_type == 'table':
                    eval_class(preds, batch)
                else:
                    post_result = post_process_class(preds, batch[1])
                    eval_class(post_result, batch)
littletomatodonkey's avatar
fix doc  
littletomatodonkey 已提交
256 257
                metric = eval_class.get_metric()
                train_stats.update(metric)
W
WenmuZhou 已提交
258 259 260 261 262 263

            if vdl_writer is not None and dist.get_rank() == 0:
                for k, v in train_stats.get().items():
                    vdl_writer.add_scalar('TRAIN/{}'.format(k), v, global_step)
                vdl_writer.add_scalar('TRAIN/lr', lr, global_step)

264 265 266
            if dist.get_rank() == 0 and (
                (global_step > 0 and global_step % print_batch_step == 0) or
                (idx >= len(train_dataloader) - 1)):
W
WenmuZhou 已提交
267
                logs = train_stats.log()
W
WenmuZhou 已提交
268
                strs = 'epoch: [{}/{}], iter: {}, {}, reader_cost: {:.5f} s, batch_cost: {:.5f} s, samples: {}, ips: {:.5f}'.format(
W
WenmuZhou 已提交
269 270 271
                    epoch, epoch_num, global_step, logs, train_reader_cost /
                    print_batch_step, train_batch_cost / print_batch_step,
                    batch_sum, batch_sum / train_batch_cost)
W
WenmuZhou 已提交
272
                logger.info(strs)
W
WenmuZhou 已提交
273 274 275
                train_batch_cost = 0.0
                train_reader_cost = 0.0
                batch_sum = 0
W
WenmuZhou 已提交
276 277 278
            # eval
            if global_step > start_eval_step and \
                    (global_step - start_eval_step) % eval_batch_step == 0 and dist.get_rank() == 0:
T
tink2123 已提交
279 280 281 282 283 284 285
                if model_average:
                    Model_Average = paddle.incubate.optimizer.ModelAverage(
                        0.15,
                        parameters=model.parameters(),
                        min_average_window=10000,
                        max_average_window=15625)
                    Model_Average.apply()
T
tink2123 已提交
286 287 288 289 290
                cur_metric = eval(
                    model,
                    valid_dataloader,
                    post_process_class,
                    eval_class,
M
refine  
MissPenguin 已提交
291
                    model_type,
A
andyjpaddle 已提交
292 293
                    use_srn=use_srn,
                    use_sar=use_sar)
L
LDOUBLEV 已提交
294 295 296
                cur_metric_str = 'cur metric, {}'.format(', '.join(
                    ['{}: {}'.format(k, v) for k, v in cur_metric.items()]))
                logger.info(cur_metric_str)
W
WenmuZhou 已提交
297 298 299

                # logger metric
                if vdl_writer is not None:
L
LDOUBLEV 已提交
300
                    for k, v in cur_metric.items():
W
WenmuZhou 已提交
301 302
                        if isinstance(v, (float, int)):
                            vdl_writer.add_scalar('EVAL/{}'.format(k),
L
LDOUBLEV 已提交
303 304
                                                  cur_metric[k], global_step)
                if cur_metric[main_indicator] >= best_model_dict[
W
WenmuZhou 已提交
305
                        main_indicator]:
L
LDOUBLEV 已提交
306
                    best_model_dict.update(cur_metric)
W
WenmuZhou 已提交
307 308 309 310 311 312 313 314 315
                    best_model_dict['best_epoch'] = epoch
                    save_model(
                        model,
                        optimizer,
                        save_model_dir,
                        logger,
                        is_best=True,
                        prefix='best_accuracy',
                        best_model_dict=best_model_dict,
316 317
                        epoch=epoch,
                        global_step=global_step)
L
LDOUBLEV 已提交
318
                best_str = 'best metric, {}'.format(', '.join([
W
WenmuZhou 已提交
319 320 321 322 323 324 325 326 327
                    '{}: {}'.format(k, v) for k, v in best_model_dict.items()
                ]))
                logger.info(best_str)
                # logger best metric
                if vdl_writer is not None:
                    vdl_writer.add_scalar('EVAL/best_{}'.format(main_indicator),
                                          best_model_dict[main_indicator],
                                          global_step)
            global_step += 1
T
tink2123 已提交
328
            optimizer.clear_grad()
329
            batch_start = time.time()
W
WenmuZhou 已提交
330 331 332 333 334 335 336 337 338
        if dist.get_rank() == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
                is_best=False,
                prefix='latest',
                best_model_dict=best_model_dict,
339 340
                epoch=epoch,
                global_step=global_step)
W
WenmuZhou 已提交
341 342 343 344 345 346 347 348 349
        if dist.get_rank() == 0 and epoch > 0 and epoch % save_epoch_step == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
                is_best=False,
                prefix='iter_epoch_{}'.format(epoch),
                best_model_dict=best_model_dict,
350 351
                epoch=epoch,
                global_step=global_step)
L
LDOUBLEV 已提交
352
    best_str = 'best metric, {}'.format(', '.join(
W
WenmuZhou 已提交
353 354 355 356
        ['{}: {}'.format(k, v) for k, v in best_model_dict.items()]))
    logger.info(best_str)
    if dist.get_rank() == 0 and vdl_writer is not None:
        vdl_writer.close()
L
LDOUBLEV 已提交
357 358 359
    return


M
refine  
MissPenguin 已提交
360 361 362 363
def eval(model,
         valid_dataloader,
         post_process_class,
         eval_class,
L
LDOUBLEV 已提交
364
         model_type=None,
A
andyjpaddle 已提交
365 366
         use_srn=False,
         use_sar=False):
W
WenmuZhou 已提交
367 368 369 370
    model.eval()
    with paddle.no_grad():
        total_frame = 0.0
        total_time = 0.0
W
fix bug  
WenmuZhou 已提交
371
        pbar = tqdm(total=len(valid_dataloader), desc='eval model:')
372 373
        max_iter = len(valid_dataloader) - 1 if platform.system(
        ) == "Windows" else len(valid_dataloader)
W
WenmuZhou 已提交
374
        for idx, batch in enumerate(valid_dataloader):
375
            if idx >= max_iter:
W
WenmuZhou 已提交
376
                break
W
fix bug  
WenmuZhou 已提交
377
            images = batch[0]
W
WenmuZhou 已提交
378
            start = time.time()
A
andyjpaddle 已提交
379
            if use_srn or model_type == 'table' or use_sar:
M
refine  
MissPenguin 已提交
380 381 382
                preds = model(images, data=batch[1:])
            else:
                preds = model(images)
W
WenmuZhou 已提交
383 384 385 386
            batch = [item.numpy() for item in batch]
            # Obtain usable results from post-processing methods
            total_time += time.time() - start
            # Evaluate the results of the current batch
M
MissPenguin 已提交
387 388 389 390 391
            if model_type == 'table':
                eval_class(preds, batch)
            else:
                post_result = post_process_class(preds, batch[1])
                eval_class(post_result, batch)
W
fix bug  
WenmuZhou 已提交
392
            pbar.update(1)
W
WenmuZhou 已提交
393
            total_frame += len(images)
L
LDOUBLEV 已提交
394 395
        # Get final metric,eg. acc or hmean
        metric = eval_class.get_metric()
D
dyning 已提交
396

W
fix bug  
WenmuZhou 已提交
397
    pbar.close()
W
WenmuZhou 已提交
398
    model.train()
L
LDOUBLEV 已提交
399 400
    metric['fps'] = total_frame / total_time
    return metric
L
licx 已提交
401

T
tink2123 已提交
402

403
def preprocess(is_train=False):
L
licx 已提交
404
    FLAGS = ArgsParser().parse_args()
L
LDOUBLEV 已提交
405
    profiler_options = FLAGS.profiler_options
L
licx 已提交
406 407 408 409 410 411 412
    config = load_config(FLAGS.config)
    merge_config(FLAGS.opt)

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
    check_gpu(use_gpu)

W
WenmuZhou 已提交
413 414
    alg = config['Architecture']['algorithm']
    assert alg in [
J
Jethong 已提交
415
        'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN',
W
WenmuZhou 已提交
416
        'CLS', 'PGNet', 'Distillation', 'NRTR', 'TableAttn', 'SAR', 'PSE'
W
WenmuZhou 已提交
417
    ]
L
licx 已提交
418

W
WenmuZhou 已提交
419 420
    device = 'gpu:{}'.format(dist.ParallelEnv().dev_id) if use_gpu else 'cpu'
    device = paddle.set_device(device)
D
dyning 已提交
421

D
dyning 已提交
422
    config['Global']['distributed'] = dist.get_world_size() != 1
423 424 425 426 427 428 429 430 431 432 433
    if is_train:
        # save_config
        save_model_dir = config['Global']['save_model_dir']
        os.makedirs(save_model_dir, exist_ok=True)
        with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
            yaml.dump(
                dict(config), f, default_flow_style=False, sort_keys=False)
        log_file = '{}/train.log'.format(save_model_dir)
    else:
        log_file = None
    logger = get_logger(name='root', log_file=log_file)
D
dyning 已提交
434 435
    if config['Global']['use_visualdl']:
        from visualdl import LogWriter
L
fix bug  
LDOUBLEV 已提交
436
        save_model_dir = config['Global']['save_model_dir']
D
dyning 已提交
437 438 439 440 441 442 443 444
        vdl_writer_path = '{}/vdl/'.format(save_model_dir)
        os.makedirs(vdl_writer_path, exist_ok=True)
        vdl_writer = LogWriter(logdir=vdl_writer_path)
    else:
        vdl_writer = None
    print_dict(config, logger)
    logger.info('train with paddle {} and device {}'.format(paddle.__version__,
                                                            device))
L
LDOUBLEV 已提交
445
    return config, device, logger, vdl_writer, profiler_options