program.py 16.1 KB
Newer Older
M
refine  
MissPenguin 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
L
LDOUBLEV 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

W
WenmuZhou 已提交
19
import os
L
LDOUBLEV 已提交
20
import sys
21
import platform
L
LDOUBLEV 已提交
22 23
import yaml
import time
W
WenmuZhou 已提交
24 25 26 27 28 29
import shutil
import paddle
import paddle.distributed as dist
from tqdm import tqdm
from argparse import ArgumentParser, RawDescriptionHelpFormatter

L
LDOUBLEV 已提交
30 31
from ppocr.utils.stats import TrainingStats
from ppocr.utils.save_load import save_model
D
dyning 已提交
32 33 34 35
from ppocr.utils.utility import print_dict
from ppocr.utils.logging import get_logger
from ppocr.data import build_dataloader
import numpy as np
L
LDOUBLEV 已提交
36

D
dyning 已提交
37

L
LDOUBLEV 已提交
38 39 40 41 42 43 44
class ArgsParser(ArgumentParser):
    def __init__(self):
        super(ArgsParser, self).__init__(
            formatter_class=RawDescriptionHelpFormatter)
        self.add_argument("-c", "--config", help="configuration file to use")
        self.add_argument(
            "-o", "--opt", nargs='+', help="set configuration options")
L
LDOUBLEV 已提交
45 46 47 48 49 50 51
        self.add_argument(
            '-p',
            '--profiler_options',
            type=str,
            default=None,
            help='The option of profiler, which should be in format \"key1=value1;key2=value2;key3=value3\".'
        )
L
LDOUBLEV 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

    def parse_args(self, argv=None):
        args = super(ArgsParser, self).parse_args(argv)
        assert args.config is not None, \
            "Please specify --config=configure_file_path."
        args.opt = self._parse_opt(args.opt)
        return args

    def _parse_opt(self, opts):
        config = {}
        if not opts:
            return config
        for s in opts:
            s = s.strip()
            k, v = s.split('=')
            config[k] = yaml.load(v, Loader=yaml.Loader)
        return config


class AttrDict(dict):
    """Single level attribute dict, NOT recursive"""

    def __init__(self, **kwargs):
        super(AttrDict, self).__init__()
        super(AttrDict, self).update(kwargs)

    def __getattr__(self, key):
        if key in self:
            return self[key]
        raise AttributeError("object has no attribute '{}'".format(key))


global_config = AttrDict()

农夫三拳_'s avatar
农夫三拳_ 已提交
86 87
default_config = {'Global': {'debug': False, }}

L
LDOUBLEV 已提交
88 89 90 91 92 93 94 95

def load_config(file_path):
    """
    Load config from yml/yaml file.
    Args:
        file_path (str): Path of the config file to be loaded.
    Returns: global config
    """
农夫三拳_'s avatar
农夫三拳_ 已提交
96
    merge_config(default_config)
L
LDOUBLEV 已提交
97 98
    _, ext = os.path.splitext(file_path)
    assert ext in ['.yml', '.yaml'], "only support yaml files for now"
W
WenmuZhou 已提交
99
    merge_config(yaml.load(open(file_path, 'rb'), Loader=yaml.Loader))
L
LDOUBLEV 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
    return global_config


def merge_config(config):
    """
    Merge config into global config.
    Args:
        config (dict): Config to be merged.
    Returns: global config
    """
    for key, value in config.items():
        if "." not in key:
            if isinstance(value, dict) and key in global_config:
                global_config[key].update(value)
            else:
                global_config[key] = value
        else:
            sub_keys = key.split('.')
T
tink2123 已提交
118 119 120 121
            assert (
                sub_keys[0] in global_config
            ), "the sub_keys can only be one of global_config: {}, but get: {}, please check your running command".format(
                global_config.keys(), sub_keys[0])
L
LDOUBLEV 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
            cur = global_config[sub_keys[0]]
            for idx, sub_key in enumerate(sub_keys[1:]):
                if idx == len(sub_keys) - 2:
                    cur[sub_key] = value
                else:
                    cur = cur[sub_key]


def check_gpu(use_gpu):
    """
    Log error and exit when set use_gpu=true in paddlepaddle
    cpu version.
    """
    err = "Config use_gpu cannot be set as true while you are " \
          "using paddlepaddle cpu version ! \nPlease try: \n" \
          "\t1. Install paddlepaddle-gpu to run model on GPU \n" \
          "\t2. Set use_gpu as false in config file to run " \
          "model on CPU"

    try:
W
WenmuZhou 已提交
142
        if use_gpu and not paddle.is_compiled_with_cuda():
W
WenmuZhou 已提交
143
            print(err)
L
LDOUBLEV 已提交
144 145 146 147 148
            sys.exit(1)
    except Exception as e:
        pass


W
WenmuZhou 已提交
149
def train(config,
D
dyning 已提交
150 151 152
          train_dataloader,
          valid_dataloader,
          device,
W
WenmuZhou 已提交
153 154 155 156 157 158 159 160
          model,
          loss_class,
          optimizer,
          lr_scheduler,
          post_process_class,
          eval_class,
          pre_best_model_dict,
          logger,
L
LDOUBLEV 已提交
161 162
          vdl_writer=None,
          profiler_options=None):
W
WenmuZhou 已提交
163 164
    cal_metric_during_train = config['Global'].get('cal_metric_during_train',
                                                   False)
L
LDOUBLEV 已提交
165 166 167 168
    log_smooth_window = config['Global']['log_smooth_window']
    epoch_num = config['Global']['epoch_num']
    print_batch_step = config['Global']['print_batch_step']
    eval_batch_step = config['Global']['eval_batch_step']
W
WenmuZhou 已提交
169

D
dyning 已提交
170
    global_step = 0
171 172
    if 'global_step' in pre_best_model_dict:
        global_step = pre_best_model_dict['global_step']
L
LDOUBLEV 已提交
173 174 175 176
    start_eval_step = 0
    if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
        start_eval_step = eval_batch_step[0]
        eval_batch_step = eval_batch_step[1]
W
WenmuZhou 已提交
177 178 179 180 181
        if len(valid_dataloader) == 0:
            logger.info(
                'No Images in eval dataset, evaluation during training will be disabled'
            )
            start_eval_step = 1e111
L
LDOUBLEV 已提交
182 183 184
        logger.info(
            "During the training process, after the {}th iteration, an evaluation is run every {} iterations".
            format(start_eval_step, eval_batch_step))
L
LDOUBLEV 已提交
185 186
    save_epoch_step = config['Global']['save_epoch_step']
    save_model_dir = config['Global']['save_model_dir']
187 188
    if not os.path.exists(save_model_dir):
        os.makedirs(save_model_dir)
W
WenmuZhou 已提交
189 190 191 192
    main_indicator = eval_class.main_indicator
    best_model_dict = {main_indicator: 0}
    best_model_dict.update(pre_best_model_dict)
    train_stats = TrainingStats(log_smooth_window, ['lr'])
T
tink2123 已提交
193
    model_average = False
W
WenmuZhou 已提交
194 195
    model.train()

T
tink2123 已提交
196
    use_srn = config['Architecture']['algorithm'] == "SRN"
T
Topdu 已提交
197
    use_nrtr = config['Architecture']['algorithm'] == "NRTR"
A
andyjpaddle 已提交
198
    use_sar = config['Architecture']['algorithm'] == 'SAR'
199
    try:
L
fix bug  
LDOUBLEV 已提交
200
        model_type = config['Architecture']['model_type']
201
    except:
L
fix bug  
LDOUBLEV 已提交
202
        model_type = None
M
refine  
MissPenguin 已提交
203

W
WenmuZhou 已提交
204 205 206
    if 'start_epoch' in best_model_dict:
        start_epoch = best_model_dict['start_epoch']
    else:
T
tink2123 已提交
207
        start_epoch = 1
W
WenmuZhou 已提交
208

T
tink2123 已提交
209
    for epoch in range(start_epoch, epoch_num + 1):
210 211
        train_dataloader = build_dataloader(
            config, 'Train', device, logger, seed=epoch)
W
WenmuZhou 已提交
212 213 214 215
        train_batch_cost = 0.0
        train_reader_cost = 0.0
        batch_sum = 0
        batch_start = time.time()
J
Jane-Ding 已提交
216 217 218
        max_iter = len(train_dataloader) - 1 if platform.system(
        ) == "Windows" else len(train_dataloader)
        for idx, batch in enumerate(train_dataloader):
L
LDOUBLEV 已提交
219
            profiler.add_profiler_step(profiler_options)
W
WenmuZhou 已提交
220
            train_reader_cost += time.time() - batch_start
J
Jane-Ding 已提交
221 222
            if idx >= max_iter:
                break
W
WenmuZhou 已提交
223 224
            lr = optimizer.get_lr()
            images = batch[0]
T
tink2123 已提交
225
            if use_srn:
T
tink2123 已提交
226
                model_average = True
A
andyjpaddle 已提交
227
            if use_srn or model_type == 'table' or use_nrtr or use_sar:
M
refine  
MissPenguin 已提交
228 229 230
                preds = model(images, data=batch[1:])
            else:
                preds = model(images)
W
WenmuZhou 已提交
231 232
            loss = loss_class(preds, batch)
            avg_loss = loss['loss']
D
dyning 已提交
233
            avg_loss.backward()
W
WenmuZhou 已提交
234 235
            optimizer.step()
            optimizer.clear_grad()
W
WenmuZhou 已提交
236 237 238 239

            train_batch_cost += time.time() - batch_start
            batch_sum += len(images)

D
dyning 已提交
240 241
            if not isinstance(lr_scheduler, float):
                lr_scheduler.step()
W
WenmuZhou 已提交
242 243 244 245 246 247

            # logger and visualdl
            stats = {k: v.numpy().mean() for k, v in loss.items()}
            stats['lr'] = lr
            train_stats.update(stats)

L
LDOUBLEV 已提交
248
            if cal_metric_during_train:  # only rec and cls need
W
WenmuZhou 已提交
249
                batch = [item.numpy() for item in batch]
M
MissPenguin 已提交
250 251 252 253 254
                if model_type == 'table':
                    eval_class(preds, batch)
                else:
                    post_result = post_process_class(preds, batch[1])
                    eval_class(post_result, batch)
littletomatodonkey's avatar
fix doc  
littletomatodonkey 已提交
255 256
                metric = eval_class.get_metric()
                train_stats.update(metric)
W
WenmuZhou 已提交
257 258 259 260 261 262

            if vdl_writer is not None and dist.get_rank() == 0:
                for k, v in train_stats.get().items():
                    vdl_writer.add_scalar('TRAIN/{}'.format(k), v, global_step)
                vdl_writer.add_scalar('TRAIN/lr', lr, global_step)

263 264 265
            if dist.get_rank() == 0 and (
                (global_step > 0 and global_step % print_batch_step == 0) or
                (idx >= len(train_dataloader) - 1)):
W
WenmuZhou 已提交
266
                logs = train_stats.log()
W
WenmuZhou 已提交
267
                strs = 'epoch: [{}/{}], iter: {}, {}, reader_cost: {:.5f} s, batch_cost: {:.5f} s, samples: {}, ips: {:.5f}'.format(
W
WenmuZhou 已提交
268 269 270
                    epoch, epoch_num, global_step, logs, train_reader_cost /
                    print_batch_step, train_batch_cost / print_batch_step,
                    batch_sum, batch_sum / train_batch_cost)
W
WenmuZhou 已提交
271
                logger.info(strs)
W
WenmuZhou 已提交
272 273 274
                train_batch_cost = 0.0
                train_reader_cost = 0.0
                batch_sum = 0
W
WenmuZhou 已提交
275 276 277
            # eval
            if global_step > start_eval_step and \
                    (global_step - start_eval_step) % eval_batch_step == 0 and dist.get_rank() == 0:
T
tink2123 已提交
278 279 280 281 282 283 284
                if model_average:
                    Model_Average = paddle.incubate.optimizer.ModelAverage(
                        0.15,
                        parameters=model.parameters(),
                        min_average_window=10000,
                        max_average_window=15625)
                    Model_Average.apply()
T
tink2123 已提交
285 286 287 288 289
                cur_metric = eval(
                    model,
                    valid_dataloader,
                    post_process_class,
                    eval_class,
M
refine  
MissPenguin 已提交
290
                    model_type,
A
andyjpaddle 已提交
291 292
                    use_srn=use_srn,
                    use_sar=use_sar)
L
LDOUBLEV 已提交
293 294 295
                cur_metric_str = 'cur metric, {}'.format(', '.join(
                    ['{}: {}'.format(k, v) for k, v in cur_metric.items()]))
                logger.info(cur_metric_str)
W
WenmuZhou 已提交
296 297 298

                # logger metric
                if vdl_writer is not None:
L
LDOUBLEV 已提交
299
                    for k, v in cur_metric.items():
W
WenmuZhou 已提交
300 301
                        if isinstance(v, (float, int)):
                            vdl_writer.add_scalar('EVAL/{}'.format(k),
L
LDOUBLEV 已提交
302 303
                                                  cur_metric[k], global_step)
                if cur_metric[main_indicator] >= best_model_dict[
W
WenmuZhou 已提交
304
                        main_indicator]:
L
LDOUBLEV 已提交
305
                    best_model_dict.update(cur_metric)
W
WenmuZhou 已提交
306 307 308 309 310 311 312 313 314
                    best_model_dict['best_epoch'] = epoch
                    save_model(
                        model,
                        optimizer,
                        save_model_dir,
                        logger,
                        is_best=True,
                        prefix='best_accuracy',
                        best_model_dict=best_model_dict,
315 316
                        epoch=epoch,
                        global_step=global_step)
L
LDOUBLEV 已提交
317
                best_str = 'best metric, {}'.format(', '.join([
W
WenmuZhou 已提交
318 319 320 321 322 323 324 325 326
                    '{}: {}'.format(k, v) for k, v in best_model_dict.items()
                ]))
                logger.info(best_str)
                # logger best metric
                if vdl_writer is not None:
                    vdl_writer.add_scalar('EVAL/best_{}'.format(main_indicator),
                                          best_model_dict[main_indicator],
                                          global_step)
            global_step += 1
T
tink2123 已提交
327
            optimizer.clear_grad()
328
            batch_start = time.time()
W
WenmuZhou 已提交
329 330 331 332 333 334 335 336 337
        if dist.get_rank() == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
                is_best=False,
                prefix='latest',
                best_model_dict=best_model_dict,
338 339
                epoch=epoch,
                global_step=global_step)
W
WenmuZhou 已提交
340 341 342 343 344 345 346 347 348
        if dist.get_rank() == 0 and epoch > 0 and epoch % save_epoch_step == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
                is_best=False,
                prefix='iter_epoch_{}'.format(epoch),
                best_model_dict=best_model_dict,
349 350
                epoch=epoch,
                global_step=global_step)
L
LDOUBLEV 已提交
351
    best_str = 'best metric, {}'.format(', '.join(
W
WenmuZhou 已提交
352 353 354 355
        ['{}: {}'.format(k, v) for k, v in best_model_dict.items()]))
    logger.info(best_str)
    if dist.get_rank() == 0 and vdl_writer is not None:
        vdl_writer.close()
L
LDOUBLEV 已提交
356 357 358
    return


M
refine  
MissPenguin 已提交
359 360 361 362
def eval(model,
         valid_dataloader,
         post_process_class,
         eval_class,
L
LDOUBLEV 已提交
363
         model_type=None,
A
andyjpaddle 已提交
364 365
         use_srn=False,
         use_sar=False):
W
WenmuZhou 已提交
366 367 368 369
    model.eval()
    with paddle.no_grad():
        total_frame = 0.0
        total_time = 0.0
W
fix bug  
WenmuZhou 已提交
370
        pbar = tqdm(total=len(valid_dataloader), desc='eval model:')
371 372
        max_iter = len(valid_dataloader) - 1 if platform.system(
        ) == "Windows" else len(valid_dataloader)
W
WenmuZhou 已提交
373
        for idx, batch in enumerate(valid_dataloader):
374
            if idx >= max_iter:
W
WenmuZhou 已提交
375
                break
W
fix bug  
WenmuZhou 已提交
376
            images = batch[0]
W
WenmuZhou 已提交
377
            start = time.time()
A
andyjpaddle 已提交
378
            if use_srn or model_type == 'table' or use_sar:
M
refine  
MissPenguin 已提交
379 380 381
                preds = model(images, data=batch[1:])
            else:
                preds = model(images)
W
WenmuZhou 已提交
382 383 384 385
            batch = [item.numpy() for item in batch]
            # Obtain usable results from post-processing methods
            total_time += time.time() - start
            # Evaluate the results of the current batch
M
MissPenguin 已提交
386 387 388 389 390
            if model_type == 'table':
                eval_class(preds, batch)
            else:
                post_result = post_process_class(preds, batch[1])
                eval_class(post_result, batch)
W
fix bug  
WenmuZhou 已提交
391
            pbar.update(1)
W
WenmuZhou 已提交
392
            total_frame += len(images)
L
LDOUBLEV 已提交
393 394
        # Get final metric,eg. acc or hmean
        metric = eval_class.get_metric()
D
dyning 已提交
395

W
fix bug  
WenmuZhou 已提交
396
    pbar.close()
W
WenmuZhou 已提交
397
    model.train()
L
LDOUBLEV 已提交
398 399
    metric['fps'] = total_frame / total_time
    return metric
L
licx 已提交
400

T
tink2123 已提交
401

402
def preprocess(is_train=False):
L
licx 已提交
403
    FLAGS = ArgsParser().parse_args()
L
LDOUBLEV 已提交
404
    profiler_options = FLAGS.profiler_options
L
licx 已提交
405 406 407 408 409 410 411
    config = load_config(FLAGS.config)
    merge_config(FLAGS.opt)

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
    check_gpu(use_gpu)

W
WenmuZhou 已提交
412 413
    alg = config['Architecture']['algorithm']
    assert alg in [
J
Jethong 已提交
414
        'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN',
W
WenmuZhou 已提交
415
        'CLS', 'PGNet', 'Distillation', 'NRTR', 'TableAttn', 'SAR', 'PSE'
W
WenmuZhou 已提交
416
    ]
L
licx 已提交
417

W
WenmuZhou 已提交
418 419
    device = 'gpu:{}'.format(dist.ParallelEnv().dev_id) if use_gpu else 'cpu'
    device = paddle.set_device(device)
D
dyning 已提交
420

D
dyning 已提交
421
    config['Global']['distributed'] = dist.get_world_size() != 1
422 423 424 425 426 427 428 429 430 431 432
    if is_train:
        # save_config
        save_model_dir = config['Global']['save_model_dir']
        os.makedirs(save_model_dir, exist_ok=True)
        with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
            yaml.dump(
                dict(config), f, default_flow_style=False, sort_keys=False)
        log_file = '{}/train.log'.format(save_model_dir)
    else:
        log_file = None
    logger = get_logger(name='root', log_file=log_file)
D
dyning 已提交
433 434
    if config['Global']['use_visualdl']:
        from visualdl import LogWriter
L
fix bug  
LDOUBLEV 已提交
435
        save_model_dir = config['Global']['save_model_dir']
D
dyning 已提交
436 437 438 439 440 441 442 443
        vdl_writer_path = '{}/vdl/'.format(save_model_dir)
        os.makedirs(vdl_writer_path, exist_ok=True)
        vdl_writer = LogWriter(logdir=vdl_writer_path)
    else:
        vdl_writer = None
    print_dict(config, logger)
    logger.info('train with paddle {} and device {}'.format(paddle.__version__,
                                                            device))
L
LDOUBLEV 已提交
444
    return config, device, logger, vdl_writer, profiler_options