pybind.cc 50.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
27
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
28 29 30
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
35
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
37
#include "paddle/fluid/framework/version.h"
38
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
39
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
40
#include "paddle/fluid/memory/allocation/legacy_allocator.h"
D
dzhwinter 已提交
41
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
42
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
43
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
44
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
45
#include "paddle/fluid/platform/enforce.h"
46
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
47 48
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
49
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
50 51
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
52
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
53
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
54
#include "paddle/fluid/pybind/ir.h"
55 56
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
57
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
58
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
59

60
#include "paddle/fluid/string/to_string.h"
61

D
Dong Zhihong 已提交
62
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
63
#ifndef _WIN32
Y
Yi Wang 已提交
64
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
65
#endif
Y
Yi Wang 已提交
66 67
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
68 69
#endif

M
minqiyang 已提交
70 71
#include "pybind11/stl.h"

72 73 74 75
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
76 77 78
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

79
namespace paddle {
80
namespace pybind {
81
bool IsCompiledWithCUDA() {
82
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
83 84 85 86 87 88
  return false;
#else
  return true;
#endif
}

89
bool IsCompiledWithBrpc() {
90
#ifndef PADDLE_WITH_DISTRIBUTE
91 92
  return false;
#endif
93 94 95 96 97 98

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
99 100
}

Y
update  
Yancey1989 已提交
101
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
102
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
103 104 105 106 107 108
  return true;
#else
  return false;
#endif
}

109
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
110 111 112
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
113
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
114
  m.doc() = "C++ core of PaddlePaddle";
115

116 117 118 119
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

120
  BindException(&m);
Y
Yu Yang 已提交
121

S
sneaxiy 已提交
122
  m.def(
S
sneaxiy 已提交
123
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
124 125 126 127
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
128 129 130
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

131 132 133 134 135 136 137
  m.def("get_mem_usage", [](int device) {
    return memory::allocation::GPUMemMonitor.GetMemUsage(device);
  });

  m.def("print_mem_usage",
        []() { return memory::allocation::GPUMemMonitor.PrintMemUsage(); });

M
minqiyang 已提交
138
  py::class_<imperative::VarBase>(m, "VarBase", R"DOC()DOC")
139 140
      // .def(py::init<>())
      .def(py::init<bool>(), py::arg("stop_gradient") = false)
141
      .def("_run_backward",
X
Xin Pan 已提交
142
           [](imperative::VarBase &self) { self.RunBackward(); })
M
minqiyang 已提交
143
      .def("_grad_name", &imperative::VarBase::GradName)
M
minqiyang 已提交
144
      .def("_grad_value", &imperative::VarBase::GradValue)
X
Xin Pan 已提交
145
      .def("_clear_gradient", &imperative::VarBase::ClearGradient)
M
minqiyang 已提交
146
      .def("_grad_ivar",
M
minqiyang 已提交
147
           [](const imperative::VarBase &self) { return self.grads_; },
M
minqiyang 已提交
148
           py::return_value_policy::reference)
M
minqiyang 已提交
149
      .def("_copy_to",
P
Paddle CI 已提交
150
           [](const imperative::VarBase &self, const platform::CPUPlace &place,
M
minqiyang 已提交
151 152 153 154 155
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
P
Paddle CI 已提交
156
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
157
      .def("_copy_to",
P
Paddle CI 已提交
158
           [](const imperative::VarBase &self, const platform::CUDAPlace &place,
M
minqiyang 已提交
159 160 161 162 163
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
M
minqiyang 已提交
164
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
165
      .def("value", [](const imperative::VarBase &self) { return self.var_; },
M
minqiyang 已提交
166
           py::return_value_policy::reference)
167 168 169 170 171 172
      .def_property(
          "desc",
          [](const imperative::VarBase &self) { return self.var_desc_; },
          [](imperative::VarBase &self, framework::VarDesc *var_desc) {
            self.var_desc_ = var_desc;
          },
173 174 175
          py::return_value_policy::reference)
      .def_property(
          "stop_gradient",
X
Xin Pan 已提交
176
          [](const imperative::VarBase &self) { return self.IsStopGradient(); },
177
          [](imperative::VarBase &self, bool stop_gradient) {
X
Xin Pan 已提交
178
            self.SetStopGradient(stop_gradient);
179
          });
180

181
  py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
182 183 184 185 186 187 188 189
      .def(py::init<>())
      .def_property(
          "desc", [](const imperative::OpBase &self) { return self.op_desc_; },
          [](imperative::OpBase &self, framework::OpDesc *op_desc) {
            if (op_desc) {
              self.op_desc_ = op_desc;
            }
          },
X
Xin Pan 已提交
190 191 192 193 194 195 196
          py::return_value_policy::reference)
      .def_property(
          "forward_id",
          [](const imperative::OpBase &self) { return self.forward_id_; },
          [](imperative::OpBase &self, int forward_id) {
            self.forward_id_ = forward_id;
          },
X
Xin Pan 已提交
197 198 199 200 201 202 203
          py::return_value_policy::reference)
      .def_property(
          "backward_id",
          [](const imperative::OpBase &self) { return self.backward_id_; },
          [](imperative::OpBase &self, int backward_id) {
            self.backward_id_ = backward_id;
          },
204 205
          py::return_value_policy::reference);

X
Xin Pan 已提交
206
  py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
207
  layer.def(py::init<>())
X
Xin Pan 已提交
208 209 210
      .def("forward", [](imperative::Layer &self,
                         const std::vector<imperative::VarBase> &inputs) {
        return self.Forward(inputs);
X
Xin Pan 已提交
211
      });
X
Xin Pan 已提交
212

X
polish  
Xin Pan 已提交
213
  py::class_<imperative::PyLayer>(m, "PyLayer")
X
Xin Pan 已提交
214
      .def(py::init<>())
X
Xin Pan 已提交
215 216
      .def_static(
          "apply",
X
Xin Pan 已提交
217
          [](int func_id, const std::vector<imperative::VarBase *> &inputs)
X
Xin Pan 已提交
218 219 220 221
              -> std::vector<imperative::VarBase *> {
                return imperative::PyLayer::Apply(func_id, inputs);
              },
          py::return_value_policy::take_ownership)
X
polish  
Xin Pan 已提交
222 223 224 225 226
      .def_static("register_func",
                  [](int func_id, const py::object &callable) {
                    imperative::PyLayer::RegisterFunc(func_id, callable);
                  })
      .def_static("num_funcs", &imperative::PyLayer::NumFuncs);
X
Xin Pan 已提交
227

228 229
  BindTracer(&m);

230 231 232
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
233
      .def("_get_dims",
234
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
235
      .def("_set_dims",
Q
qijun 已提交
236
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
237
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
238
           })
Y
yuyang18 已提交
239
      .def("_set_layout",
D
dzhwinter 已提交
240 241 242
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
243
      .def("_alloc_float",
D
dzhwinter 已提交
244
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
245
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
246
           })
Y
yuyang18 已提交
247
      .def("_alloc_float",
Y
Yu Yang 已提交
248
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
249
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
250
           })
Y
yuyang18 已提交
251
      .def("_alloc_int",
Y
Yu Yang 已提交
252
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
253
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
254
           })
Y
yuyang18 已提交
255
      .def("_alloc_int",
D
dzhwinter 已提交
256
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
257
             self.mutable_data<int>(place);
Q
qijun 已提交
258
           })
Y
yuyang18 已提交
259
      .def("_alloc_int",
C
chengduoZH 已提交
260 261 262
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
263
      .def("_alloc_float",
C
chengduoZH 已提交
264 265 266
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
267 268
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
269
      .def("set", PyCPUTensorSetFromArray<double>)
270
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
271
      .def("set", PyCPUTensorSetFromArray<bool>)
272
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
273
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
274
      .def("set", PyCPUTensorSetFromArray<int8_t>)
275
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
276 277
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
278
      .def("set", PyCUDATensorSetFromArray<double>)
279
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
280
      .def("set", PyCUDATensorSetFromArray<bool>)
281
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
282
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
283
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
284 285 286 287 288 289
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
290
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
291
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
292
#endif
293
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
294 295 296 297
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
Y
Yu Yang 已提交
298
      .def("_dtype", [](Tensor &self) { return self.type(); });
Y
Yu Yang 已提交
299

X
Xin Pan 已提交
300 301 302 303 304 305 306 307 308 309 310 311 312
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
313
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
314
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
315
     columns, hence [5, 2].
X
Xin Pan 已提交
316 317 318

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
319 320
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
344 345
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
346 347 348 349 350 351 352 353 354 355 356 357 358 359
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
360
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
361 362 363 364 365
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
366
      .def("set_lod",
367
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
368
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
369
             LoD new_lod;
370 371
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
372 373
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
374
             self.set_lod(new_lod);
S
sneaxiy 已提交
375 376 377 378 379 380 381
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
               lod (List[List[int]]): the lod to be set.
           )DOC")
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
397 398 399 400
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
           Set LoD of the LoDTensor according to recursive sequence length.

S
sneaxiy 已提交
401
           For example, if recursive_sequence_lengths=[[2, 3]], meaning that
S
sneaxiy 已提交
402
           there are two sequences with length 2 and 3 respectively, the 
S
sneaxiy 已提交
403
           corresponding lod would be [[0, 2, 2+3]], i.e, [[0, 2, 5]].  
S
sneaxiy 已提交
404 405 406 407

           Args:
                recursive_sequence_lengths (List[List[int]]): sequence lengths. 
           )DOC")
408 409 410 411 412 413 414 415
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
416 417 418 419 420 421 422
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
               out (List[List[int]]): the lod of the LoDTensor.
           )DOC")
G
gongweibao 已提交
423
      // Set above comments of set_lod.
424 425 426 427 428 429 430 431
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
           },
           R"DOC(
           Return the sequence length of the LoDTensor corresponding to LoD.

           Returns:
               out (List[List[int]): the sequence lengths. 
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
           Check whether the lod of the LoDTensor is valid.

           Returns:
               out (bool): whether the lod is valid.
           )DOC");
D
dangqingqing 已提交
451

Q
qijun 已提交
452 453 454 455 456 457 458 459 460 461 462
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
463 464
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
465 466
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
467 468 469 470 471 472 473 474 475
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
476
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
477
      .def("rows", [](SelectedRows &self) {
478 479 480 481 482
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
483
      });
Q
qijun 已提交
484

485
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
486 487 488

All parameter, weight, gradient are variables in Paddle.
)DOC")
489
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
490
      .def("set_int",
491 492
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
493 494 495 496 497 498 499
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
500
      .def("get_tensor",
501 502
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
503 504
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
505 506 507
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
508 509 510 511 512
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
513 514 515
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
516
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
517 518 519 520 521
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
522
#endif
Y
Refine  
Yu Yang 已提交
523 524 525 526 527
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
528
           py::return_value_policy::reference);
529

Y
Refine  
Yu Yang 已提交
530
  py::class_<framework::ReaderHolder>(m, "Reader", "")
Q
Qiao Longfei 已提交
531
      .def("start", &framework::ReaderHolder::Start)
532
      .def("reset", &framework::ReaderHolder::ResetAll);
Y
Refine  
Yu Yang 已提交
533

S
sneaxiy 已提交
534 535 536 537
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
538 539
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
540
      .def("push",
S
sneaxiy 已提交
541
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
542
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
543
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
544
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
545
           })
S
sneaxiy 已提交
546 547 548 549
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
550

S
sneaxiy 已提交
551
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
552 553 554 555 556 557
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
558
        py::return_value_policy::copy);
S
sneaxiy 已提交
559

S
sneaxiy 已提交
560
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
580 581
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
582
      .def("var",
583
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
584
             return self.Var(name);
Y
Yu Yang 已提交
585
           },
S
sneaxiy 已提交
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
           py::arg("name"),
           R"DOC(
           Find or create variable named :code:`name` in the current scope. 

           If the variable named :code:`name` does not exist in the 
           current scope, the variable would be created. Otherwise,
           return the existing variable. 

           Args:
               name (str): the variable name.  
          
           Returns:
               out (core.Variable): the found or created variable. 
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
           Find variable named :code:`name` in the current scope or 
           its parent scope. Return None if not found.
        
           Args:
               name (str): the variable name.
            
           Returns:
               out (core.Variable|None): the found variable or None.   
           )DOC",
612
           py::return_value_policy::reference)
613
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
614 615 616 617 618 619
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
620
           py::return_value_policy::reference)
S
sneaxiy 已提交
621 622 623 624
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
           )DOC");
625

S
sneaxiy 已提交
626 627 628 629 630 631
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
632 633 634 635 636 637
        R"DOC(
        Create a new scope.
        
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
638 639
        py::return_value_policy::reference);

Y
Yu Yang 已提交
640 641
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
642 643
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
644 645 646 647 648 649 650 651 652 653
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
654 655
    return ret_values;
  });
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
672
  m.def("prune", [](const ProgramDesc &origin,
673
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
674
    ProgramDesc prog_with_targets(origin);
675
    for (const auto &t : targets) {
676
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
677
    }
678
    proto::ProgramDesc pruned_desc;
679
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
680
    return new ProgramDesc(pruned_desc);
681
  });
682 683 684 685
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
686 687 688
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
689 690
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
691
  // clang-format off
Y
Yu Yang 已提交
692
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
693 694
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
695
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
696 697 698
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
699
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
700
                      -> paddle::platform::DeviceContext* {
701
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
702
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
703
#else
Q
qijun 已提交
704
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
705
#endif
C
chengduoZH 已提交
706 707 708 709 710 711 712 713 714 715 716
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
717
// clang-format on
P
peizhilin 已提交
718
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
719 720
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
721
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
S
sneaxiy 已提交
722 723 724 725 726 727 728 729 730 731 732 733
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
             PADDLE_ENFORCE(
                 dev_id >= 0 && dev_id < platform::GetCUDADeviceCount(),
                 "Invalid CUDAPlace(%d), must inside [0, %d)", dev_id,
                 platform::GetCUDADeviceCount());
             new (&self) platform::CUDAPlace(dev_id);
#else
             PADDLE_THROW("Cannot use CUDAPlace in CPU only version");
#endif
           })
D
dzhwinter 已提交
734
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
735

736 737 738
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
739

C
chengduoZH 已提交
740
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
S
sneaxiy 已提交
741 742 743 744 745 746
      .def("__init__",
           [](platform::CUDAPinnedPlace &) {
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
           })
C
chengduoZH 已提交
747 748
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
749 750 751 752 753 754 755
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
756
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
757
             self = gpu_place;
C
chengduoZH 已提交
758 759
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
760 761
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
762
      });
Y
Yu Yang 已提交
763

Y
Yu Yang 已提交
764 765 766
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
767
                    proto::OpDesc desc;
Y
Yu Yang 已提交
768 769 770 771 772
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
773
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
774
                  })
775
      .def("run",
776
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
777 778 779
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
780
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
781 782 783 784 785
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
786 787 788 789 790 791 792
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
793 794
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
795
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
796
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
797 798 799 800
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
801

F
fengjiayi 已提交
802
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
803
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
804
      .def("close", &Executor::Close)
S
sneaxiy 已提交
805 806 807 808 809
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
810

D
dzhwinter 已提交
811
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
812
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
813 814
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
815

816
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
817
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
818
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
819 820 821 822 823 824
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
825

826
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
827
  m.def("get_fetch_variable", framework::GetFetchVariable);
828
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
829

X
Xin Pan 已提交
830 831
  m.def("_is_program_version_supported", IsProgramVersionSupported);

832 833 834 835 836
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
837

Y
Yu Yang 已提交
838 839 840 841 842 843 844 845 846
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
847
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
848 849
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
850 851 852 853 854 855 856 857 858 859
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
860 861 862 863 864 865 866
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
           py::arg("tensor"), "Append a LoDensor to LoDTensorArray.");
Y
Yu Yang 已提交
867

D
dzhwinter 已提交
868 869 870
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
871
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
872
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
873
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
874

P
peizhilin 已提交
875
#ifndef _WIN32
D
dangqingqing 已提交
876 877 878
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
879
#endif
P
peizhilin 已提交
880
#endif
Y
Yu Yang 已提交
881

882 883 884 885
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
886
      .value("kAll", platform::ProfilerState::kAll)
887 888 889 890 891 892 893 894 895 896 897 898 899
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
900
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
901
  m.def("reset_profiler", platform::ResetProfiler);
W
WangZhen 已提交
902 903 904 905 906
  m.def("get_pass", [](const py::bytes &binary_str) {
    std::string pass_type(binary_str);
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
907

908 909
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
910
      .def("has", &ir::Pass::Has)
911
      .def("set",
W
WangZhen 已提交
912 913 914 915
           [](ir::Pass &self, const std::string &attr_name,
              const ProgramDesc &attr) {
             return self.Set(attr_name, new ProgramDesc(attr));
           })
916
      .def(
917
          "set",
918 919 920
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
921 922
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
W
WangZhen 已提交
923
      .def("get_program", &ir::Pass::Get<ProgramDesc>)
F
flame 已提交
924 925 926 927
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
        std::unique_ptr<ir::Graph> origin_graph(graph.get());
        auto optim_graph = self.Apply(std::move(origin_graph));
W
WangZhen 已提交
928
        optim_graph.release();
F
flame 已提交
929
      });
930

X
fix  
Xin Pan 已提交
931 932
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
933 934 935 936 937 938 939 940 941 942 943 944 945 946
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
947
  // -- python binds for parallel executor.
Y
yuyang18 已提交
948
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
949 950 951 952
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
953 954 955 956 957 958 959 960 961 962 963
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
964 965 966

        )DOC");

Y
yuyang18 已提交
967
  exec_strategy.def(py::init())
Y
yuyang18 已提交
968 969 970 971 972
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
973 974 975 976 977 978 979 980 981 982
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
983
      .def_property(
984 985 986 987
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
988 989 990 991
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
992 993 994 995 996
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
997 998 999 1000
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
1001 1002 1003 1004 1005 1006 1007
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1019 1020 1021 1022 1023 1024
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1025

Y
yuyang18 已提交
1026
  exec_strategy.def_property(
Y
yuyang18 已提交
1027 1028 1029 1030 1031 1032 1033
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1034 1035
      });

C
chengduo 已提交
1036 1037 1038 1039
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1051
)DOC");
Y
yuyang18 已提交
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
1068
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1069
            self.reduce_ = strategy;
C
chengduo 已提交
1070 1071 1072 1073 1074 1075 1076
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
1077 1078 1079 1080 1081
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
1082
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1083
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1084 1085 1086 1087 1088 1089
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
1090 1091 1092 1093
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
1094
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1095
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1096 1097 1098 1099
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
S
sneaxiy 已提交
1100 1101 1102 1103 1104 1105
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1106
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1107 1108 1109 1110 1111 1112 1113 1114 1115
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1116
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1117 1118
            self.remove_unnecessary_lock_ = b;
          },
S
sneaxiy 已提交
1119
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default True.)DOC")
1120 1121 1122 1123 1124 1125
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
C
chengduo 已提交
1138 1139 1140 1141 1142 1143
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1144
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
1145 1146 1147 1148 1149
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_relu_depthwise_conv_ = b;
          },
          R"DOC(The type is BOOL, fuse_relu_depthwise_conv indicate whether
                      to fuse relu and depthwise_conv2d,
                      it will save GPU memory and may make the execution faster.
                      This options is only available in GPU devices.
                      Default False)DOC")
D
dzhwinter 已提交
1164 1165 1166 1167
      .def_property(
          "memory_optimize",
          [](const BuildStrategy &self) { return self.memory_optimize_; },
          [](BuildStrategy &self, bool b) { self.memory_optimize_ = b; })
1168 1169 1170 1171
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
          [](BuildStrategy &self, bool b) { self.is_distribution_ = b; })
D
dzhwinter 已提交
1172 1173 1174 1175
      .def_property(
          "memory_early_delete",
          [](const BuildStrategy &self) { return self.memory_early_delete_; },
          [](BuildStrategy &self, bool b) { self.memory_early_delete_ = b; })
D
dzhwinter 已提交
1176 1177 1178 1179
      .def_property(
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
1180
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1181
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1182 1183 1184 1185 1186
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1187 1188 1189

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
1190
                  const std::string &, Scope *, std::vector<Scope *> &,
1191
                  const ExecutionStrategy &, const BuildStrategy &>())
Y
Yu Yang 已提交
1192 1193 1194 1195
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1196 1197 1198 1199 1200
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1201 1202 1203 1204
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1205 1206 1207 1208 1209 1210
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
1211

1212
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
1213
  BindAsyncExecutor(&m);
F
flame 已提交
1214 1215
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
1216
  BindInferenceApi(&m);
L
Luo Tao 已提交
1217
}
1218
}  // namespace pybind
1219
}  // namespace paddle