pybind.cc 45.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
27
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
28 29 30
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
35
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
37
#include "paddle/fluid/framework/version.h"
38
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
39
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
D
dzhwinter 已提交
40
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
41
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
42
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
43
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
44
#include "paddle/fluid/platform/enforce.h"
45
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
46 47
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
48
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
49 50
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
51
#include "paddle/fluid/pybind/imperative.h"
52 53
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
54
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
55
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
56

57
#include "paddle/fluid/string/to_string.h"
58

D
Dong Zhihong 已提交
59
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
60
#ifndef _WIN32
Y
Yi Wang 已提交
61
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
62
#endif
Y
Yi Wang 已提交
63 64
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
65 66
#endif

M
minqiyang 已提交
67 68
#include "pybind11/stl.h"

69 70 71 72
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
73 74 75
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

76
namespace paddle {
77
namespace pybind {
78
bool IsCompiledWithCUDA() {
79
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
80 81 82 83 84 85
  return false;
#else
  return true;
#endif
}

86
bool IsCompiledWithBrpc() {
87
#ifndef PADDLE_WITH_DISTRIBUTE
88 89
  return false;
#endif
90 91 92 93 94 95

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
96 97
}

Y
update  
Yancey1989 已提交
98
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
99
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
100 101 102 103 104 105
  return true;
#else
  return false;
#endif
}

106
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
107 108 109
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
110
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
111
  m.doc() = "C++ core of PaddlePaddle";
112

113 114 115 116
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

117
  BindException(&m);
Y
Yu Yang 已提交
118

S
sneaxiy 已提交
119
  m.def(
S
sneaxiy 已提交
120
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
121 122 123 124
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
125 126 127
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

M
minqiyang 已提交
128 129
  py::class_<imperative::VarBase, std::shared_ptr<imperative::VarBase>>(
      m, "VarBase", R"DOC()DOC")
130 131
      // .def(py::init<>())
      .def(py::init<bool>(), py::arg("stop_gradient") = false)
132
      .def("_run_backward",
X
Xin Pan 已提交
133
           [](imperative::VarBase &self) { self.RunBackward(); })
M
minqiyang 已提交
134
      .def("_grad_name", &imperative::VarBase::GradName)
135
      .def("_grad", &imperative::VarBase::Grad)
M
minqiyang 已提交
136 137 138 139 140 141
      .def_property("grad_value",
                    [](const imperative::VarBase &self) { return self.grads_; },
                    [](imperative::VarBase &self, framework::Variable *grad) {
                      self.grads_ = grad;
                    },
                    py::return_value_policy::reference)
M
minqiyang 已提交
142 143 144 145 146 147
      .def_property("value",
                    [](const imperative::VarBase &self) { return self.var_; },
                    [](imperative::VarBase &self, framework::Variable *var) {
                      self.var_ = var;
                    },
                    py::return_value_policy::reference)
148 149 150 151 152 153
      .def_property(
          "desc",
          [](const imperative::VarBase &self) { return self.var_desc_; },
          [](imperative::VarBase &self, framework::VarDesc *var_desc) {
            self.var_desc_ = var_desc;
          },
154 155 156 157 158 159
          py::return_value_policy::reference)
      .def_property(
          "stop_gradient",
          [](const imperative::VarBase &self) { return self.stop_gradient_; },
          [](imperative::VarBase &self, bool stop_gradient) {
            self.stop_gradient_ = stop_gradient;
160
          });
161

162
  py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
163 164 165 166 167 168 169 170
      .def(py::init<>())
      .def_property(
          "desc", [](const imperative::OpBase &self) { return self.op_desc_; },
          [](imperative::OpBase &self, framework::OpDesc *op_desc) {
            if (op_desc) {
              self.op_desc_ = op_desc;
            }
          },
X
Xin Pan 已提交
171 172 173 174 175 176 177
          py::return_value_policy::reference)
      .def_property(
          "forward_id",
          [](const imperative::OpBase &self) { return self.forward_id_; },
          [](imperative::OpBase &self, int forward_id) {
            self.forward_id_ = forward_id;
          },
X
Xin Pan 已提交
178 179 180 181 182 183 184
          py::return_value_policy::reference)
      .def_property(
          "backward_id",
          [](const imperative::OpBase &self) { return self.backward_id_; },
          [](imperative::OpBase &self, int backward_id) {
            self.backward_id_ = backward_id;
          },
185 186
          py::return_value_policy::reference);

X
Xin Pan 已提交
187
  py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
188
  layer.def(py::init<>())
X
Xin Pan 已提交
189 190 191
      .def("forward", [](imperative::Layer &self,
                         const std::vector<imperative::VarBase> &inputs) {
        return self.Forward(inputs);
X
Xin Pan 已提交
192
      });
X
Xin Pan 已提交
193 194 195

  py::class_<paddle::imperative::PyLayer>(m, "PyLayer")
      .def(py::init<>())
X
Xin Pan 已提交
196 197
      .def_static(
          "apply",
X
Xin Pan 已提交
198
          [](int func_id, const std::vector<imperative::VarBase *> &inputs)
X
Xin Pan 已提交
199 200 201 202 203 204 205
              -> std::vector<imperative::VarBase *> {
                return imperative::PyLayer::Apply(func_id, inputs);
              },
          py::return_value_policy::take_ownership)
      .def_static("register_func", [](int func_id, const py::object &callable) {
        imperative::PyLayer::RegisterFunc(func_id, callable);
      });
X
Xin Pan 已提交
206

207 208
  BindTracer(&m);

209 210 211
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
212
      .def("_get_dims",
213
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
214
      .def("_set_dims",
Q
qijun 已提交
215
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
216
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
217
           })
Y
yuyang18 已提交
218
      .def("_set_layout",
D
dzhwinter 已提交
219 220 221
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
222
      .def("_alloc_float",
D
dzhwinter 已提交
223
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
224
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
225
           })
Y
yuyang18 已提交
226
      .def("_alloc_float",
Y
Yu Yang 已提交
227
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
228
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
229
           })
Y
yuyang18 已提交
230
      .def("_alloc_int",
Y
Yu Yang 已提交
231
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
232
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
233
           })
Y
yuyang18 已提交
234
      .def("_alloc_int",
D
dzhwinter 已提交
235
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
236
             self.mutable_data<int>(place);
Q
qijun 已提交
237
           })
Y
yuyang18 已提交
238
      .def("_alloc_int",
C
chengduoZH 已提交
239 240 241
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
242
      .def("_alloc_float",
C
chengduoZH 已提交
243 244 245
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
246 247
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
248
      .def("set", PyCPUTensorSetFromArray<double>)
249
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
250
      .def("set", PyCPUTensorSetFromArray<bool>)
251
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
252
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
253
      .def("set", PyCPUTensorSetFromArray<int8_t>)
254
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
255 256
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
257
      .def("set", PyCUDATensorSetFromArray<double>)
258
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
259
      .def("set", PyCUDATensorSetFromArray<bool>)
260
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
261
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
262
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
263 264 265 266 267 268
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
269
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
270
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
271
#endif
272
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
273 274 275 276
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
Y
Yu Yang 已提交
277
      .def("_dtype", [](Tensor &self) { return self.type(); });
Y
Yu Yang 已提交
278

X
Xin Pan 已提交
279 280 281 282 283 284 285 286 287 288 289 290 291
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
292
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
293
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
294
     columns, hence [5, 2].
X
Xin Pan 已提交
295 296 297

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
298 299
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
323 324
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
325 326 327 328 329 330 331 332 333 334 335 336 337 338
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
339
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
340 341 342 343 344
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
345
      .def("set_lod",
346
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
347
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
348
             LoD new_lod;
349 350
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
351 352
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
353
             self.set_lod(new_lod);
D
dangqingqing 已提交
354
           })
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
           })
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
G
gongweibao 已提交
380
      // Set above comments of set_lod.
381 382 383 384 385 386 387 388 389 390 391 392 393
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
      .def("has_valid_recursive_sequence_lengths", [](LoDTensor &self) -> bool {
        // Check that the lod info is valid and match the outermost
        // dimension of the LoDTensor data
        return CheckLoD(self.lod(), vectorize(self.dims()).front());
D
dangqingqing 已提交
394 395
      });

Q
qijun 已提交
396 397 398 399 400 401 402 403 404 405 406
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
407 408
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
409 410
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
411 412 413 414 415 416 417 418 419
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
420
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
421
      .def("rows", [](SelectedRows &self) {
422 423 424 425 426
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
427
      });
Q
qijun 已提交
428

429
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
430 431 432

All parameter, weight, gradient are variables in Paddle.
)DOC")
433
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
434
      .def("set_int",
435 436
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
437 438 439 440 441 442 443
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
444
      .def("get_tensor",
445 446
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
447 448
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
449 450 451
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
452 453 454 455 456
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
457 458 459
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
460
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
461 462 463 464 465
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
466
#endif
Y
Refine  
Yu Yang 已提交
467 468 469 470 471
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
472
           py::return_value_policy::reference);
473

Y
Refine  
Yu Yang 已提交
474
  py::class_<framework::ReaderHolder>(m, "Reader", "")
475
      .def("reset", &framework::ReaderHolder::ResetAll);
Y
Refine  
Yu Yang 已提交
476

S
sneaxiy 已提交
477 478 479 480
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
481 482
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
483
      .def("push",
S
sneaxiy 已提交
484
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
485
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
486
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
487
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
488
           })
S
sneaxiy 已提交
489 490 491 492
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
493

S
sneaxiy 已提交
494
  m.def("init_lod_tensor_blocking_queue",
S
sneaxiy 已提交
495
        [](Variable &var, size_t capacity,
S
sneaxiy 已提交
496
           const std::vector<std::vector<int64_t>> &shapes)
S
sneaxiy 已提交
497
            -> std::shared_ptr<LoDTensorBlockingQueue> {
S
sneaxiy 已提交
498 499 500 501 502 503
              std::vector<DDim> dims(shapes.size());
              std::transform(shapes.begin(), shapes.end(), dims.begin(),
                             [](const std::vector<int64_t> &shape) {
                               return make_ddim(shape);
                             });
              auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
504 505
              holder->InitOnce(capacity, dims,
                               FLAGS_reader_queue_speed_test_mode);
S
sneaxiy 已提交
506
              return holder->GetQueue();
S
sneaxiy 已提交
507
            },
S
sneaxiy 已提交
508
        py::return_value_policy::copy);
S
sneaxiy 已提交
509

S
sneaxiy 已提交
510
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
530 531
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
532
      .def("var",
533
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
534
             return self.Var(name);
Y
Yu Yang 已提交
535
           },
536
           py::return_value_policy::reference)
537
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
538
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
539
           py::return_value_policy::reference)
Y
Yu Yang 已提交
540
      .def("drop_kids", &Scope::DropKids);
541

S
sneaxiy 已提交
542 543 544 545 546 547 548 549
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
        py::return_value_policy::reference);

Y
Yu Yang 已提交
550 551
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
552 553
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
554 555 556 557 558 559 560 561 562 563
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
564 565
    return ret_values;
  });
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
582
  m.def("prune", [](const ProgramDesc &origin,
583
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
584
    ProgramDesc prog_with_targets(origin);
585
    for (const auto &t : targets) {
586
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
587
    }
588
    proto::ProgramDesc pruned_desc;
589
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
590
    return new ProgramDesc(pruned_desc);
591
  });
592 593 594 595
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
596 597 598
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
599 600
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
601
  // clang-format off
Y
Yu Yang 已提交
602
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
603 604
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
605
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
606 607 608
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
609
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
610
                      -> paddle::platform::DeviceContext* {
611
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
612
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
613
#else
Q
qijun 已提交
614
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
615
#endif
C
chengduoZH 已提交
616 617 618 619 620 621 622 623 624 625 626
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
627
// clang-format on
P
peizhilin 已提交
628
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
629 630
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
631
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
632
      .def(py::init<int>())
D
dzhwinter 已提交
633
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
634

635 636 637
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
638

C
chengduoZH 已提交
639 640 641 642
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
643 644 645 646 647 648 649
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
650
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
651
             self = gpu_place;
C
chengduoZH 已提交
652 653
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
654 655
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
656
      });
Y
Yu Yang 已提交
657

Y
Yu Yang 已提交
658 659 660
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
661
                    proto::OpDesc desc;
Y
Yu Yang 已提交
662 663 664 665 666
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
667
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
668
                  })
669
      .def("run",
670
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
671 672 673
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
674
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
675 676 677 678 679
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
680 681 682 683 684 685 686
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
687 688
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
689
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
690
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
691 692 693 694
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
695

F
fengjiayi 已提交
696
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
697
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
698
      .def("close", &Executor::Close)
S
sneaxiy 已提交
699 700 701 702 703
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
704

D
dzhwinter 已提交
705
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
706
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
707 708
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
709

710
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
711
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
712
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
713 714 715 716 717 718
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
719

720
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
721
  m.def("get_fetch_variable", framework::GetFetchVariable);
722
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
723

X
Xin Pan 已提交
724 725
  m.def("_is_program_version_supported", IsProgramVersionSupported);

726 727 728 729 730
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
731

Y
Yu Yang 已提交
732 733 734 735 736 737 738 739 740
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
741
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
742 743
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

D
dzhwinter 已提交
760 761 762
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
763
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
764
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
765
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
766

P
peizhilin 已提交
767
#ifndef _WIN32
D
dangqingqing 已提交
768 769 770
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
771
#endif
P
peizhilin 已提交
772
#endif
Y
Yu Yang 已提交
773

774 775 776 777
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
778
      .value("kAll", platform::ProfilerState::kAll)
779 780 781 782 783 784 785 786 787 788 789 790 791
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
792
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
793
  m.def("reset_profiler", platform::ResetProfiler);
Y
Yu Yang 已提交
794

795 796
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
797 798 799 800 801
      .def(
          "set_str",
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
X
Xin Pan 已提交
802 803 804
      .def("set_int", [](ir::Pass &self, const std::string &name,
                         int val) { self.Set<const int>(name, new int(val)); })
      .def("type", &ir::Pass::Type);
805

X
fix  
Xin Pan 已提交
806 807
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
808 809 810 811 812 813 814 815 816 817 818 819 820 821
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
822
  // -- python binds for parallel executor.
Y
yuyang18 已提交
823
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
824 825 826 827
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
828 829 830 831 832 833 834 835 836 837 838
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
839 840 841

        )DOC");

Y
yuyang18 已提交
842
  exec_strategy.def(py::init())
Y
yuyang18 已提交
843 844 845 846 847
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
848 849 850 851 852 853 854 855 856 857
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
858
      .def_property(
859 860 861 862
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
863 864 865 866
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
867 868 869 870 871
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
872 873 874 875
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
876 877 878 879 880 881 882
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
883 884 885 886 887 888 889 890 891 892 893
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
894 895 896 897 898 899
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
900

Y
yuyang18 已提交
901
  exec_strategy.def_property(
Y
yuyang18 已提交
902 903 904 905 906 907 908
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
909 910
      });

C
chengduo 已提交
911 912 913 914
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
915 916 917 918 919 920 921 922 923 924 925
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
926
)DOC");
Y
yuyang18 已提交
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
943
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
944
            self.reduce_ = strategy;
C
chengduo 已提交
945 946 947 948 949 950 951
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
952 953 954 955 956
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
957
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
958
            self.gradient_scale_ = strategy;
C
chengduo 已提交
959 960 961 962 963 964
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
965 966 967 968
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
969
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
970
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
971 972 973 974
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
F
fengjiayi 已提交
975 976 977
      .def_property(
          "enable_data_balance",
          [](const BuildStrategy &self) { return self.enable_data_balance_; },
C
chengduo 已提交
978
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
979
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
980 981
            self.enable_data_balance_ = b;
          })  // FIXME(chengudo): enable_data_balance seems not important
S
sneaxiy 已提交
982 983 984 985 986 987
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
988
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
989 990 991 992 993 994 995 996 997
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
998
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
999 1000 1001
            self.remove_unnecessary_lock_ = b;
          },
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default False.)DOC")
1002 1003 1004 1005 1006 1007
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
C
chengduo 已提交
1020 1021 1022 1023 1024 1025
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1026
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
1027 1028 1029 1030 1031
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
D
dzhwinter 已提交
1032 1033 1034 1035 1036 1037 1038 1039
      .def_property(
          "memory_optimize",
          [](const BuildStrategy &self) { return self.memory_optimize_; },
          [](BuildStrategy &self, bool b) { self.memory_optimize_ = b; })
      .def_property(
          "memory_early_delete",
          [](const BuildStrategy &self) { return self.memory_early_delete_; },
          [](BuildStrategy &self, bool b) { self.memory_early_delete_ = b; })
1040
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1041
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1042 1043 1044 1045 1046
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1047 1048 1049

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
1050
                  const std::string &, Scope *, std::vector<Scope *> &,
1051 1052
                  const ExecutionStrategy &, const BuildStrategy &, size_t,
                  size_t>())
Y
Yu Yang 已提交
1053 1054 1055 1056
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1057 1058 1059 1060 1061
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1062 1063 1064 1065
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1066 1067 1068 1069 1070 1071
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
1072

1073
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
1074
  BindAsyncExecutor(&m);
L
Luo Tao 已提交
1075
}
1076
}  // namespace pybind
1077
}  // namespace paddle