pybind.cc 44.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
27
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
28 29 30
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
35
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
37
#include "paddle/fluid/framework/version.h"
38
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
39
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
D
dzhwinter 已提交
40
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
41
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
42
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
43
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
44
#include "paddle/fluid/platform/enforce.h"
45
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
46 47
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
48
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
49 50
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
51
#include "paddle/fluid/pybind/imperative.h"
52 53
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
54
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
55
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
56

57
#include "paddle/fluid/string/to_string.h"
58

D
Dong Zhihong 已提交
59
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
60
#ifndef _WIN32
Y
Yi Wang 已提交
61
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
62
#endif
Y
Yi Wang 已提交
63 64
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
65 66
#endif

M
minqiyang 已提交
67 68
#include "pybind11/stl.h"

69 70 71 72
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
73 74 75
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

76
namespace paddle {
77
namespace pybind {
78
bool IsCompiledWithCUDA() {
79
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
80 81 82 83 84 85
  return false;
#else
  return true;
#endif
}

86
bool IsCompiledWithBrpc() {
87
#ifndef PADDLE_WITH_DISTRIBUTE
88 89
  return false;
#endif
90 91 92 93 94 95

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
96 97
}

Y
update  
Yancey1989 已提交
98
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
99
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
100 101 102 103 104 105
  return true;
#else
  return false;
#endif
}

106
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
107 108 109
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
110
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
111
  m.doc() = "C++ core of PaddlePaddle";
112

113 114 115 116
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

117
  BindException(&m);
Y
Yu Yang 已提交
118

S
sneaxiy 已提交
119
  m.def(
S
sneaxiy 已提交
120
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
121 122 123 124
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
125 126 127
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

M
minqiyang 已提交
128 129
  py::class_<imperative::VarBase, std::shared_ptr<imperative::VarBase>>(
      m, "VarBase", R"DOC()DOC")
130 131
      // .def(py::init<>())
      .def(py::init<bool>(), py::arg("stop_gradient") = false)
132
      .def("_run_backward",
X
Xin Pan 已提交
133
           [](imperative::VarBase &self) { self.RunBackward(); })
M
minqiyang 已提交
134
      .def("_grad_name", &imperative::VarBase::GradName)
135
      .def("_grad", &imperative::VarBase::Grad)
M
minqiyang 已提交
136 137 138 139 140 141
      .def_property("grad_value",
                    [](const imperative::VarBase &self) { return self.grads_; },
                    [](imperative::VarBase &self, framework::Variable *grad) {
                      self.grads_ = grad;
                    },
                    py::return_value_policy::reference)
M
minqiyang 已提交
142 143 144 145 146 147
      .def_property("value",
                    [](const imperative::VarBase &self) { return self.var_; },
                    [](imperative::VarBase &self, framework::Variable *var) {
                      self.var_ = var;
                    },
                    py::return_value_policy::reference)
148 149 150 151 152 153
      .def_property(
          "desc",
          [](const imperative::VarBase &self) { return self.var_desc_; },
          [](imperative::VarBase &self, framework::VarDesc *var_desc) {
            self.var_desc_ = var_desc;
          },
154 155 156 157 158 159
          py::return_value_policy::reference)
      .def_property(
          "stop_gradient",
          [](const imperative::VarBase &self) { return self.stop_gradient_; },
          [](imperative::VarBase &self, bool stop_gradient) {
            self.stop_gradient_ = stop_gradient;
160
          });
161

162
  py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
163 164 165 166 167 168 169 170 171 172
      .def(py::init<>())
      .def_property(
          "desc", [](const imperative::OpBase &self) { return self.op_desc_; },
          [](imperative::OpBase &self, framework::OpDesc *op_desc) {
            if (op_desc) {
              self.op_desc_ = op_desc;
            }
          },
          py::return_value_policy::reference);

X
Xin Pan 已提交
173
  py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
174 175 176 177 178 179
  layer.def(py::init<>())
      .def("forward",
           [](imperative::Layer &self,
              const std::vector<imperative::VarBase> &inputs) {
             return self.Forward(inputs);
           })
X
Xin Pan 已提交
180 181 182 183
      .def("backward", [](imperative::Layer &self,
                          const std::vector<imperative::VarBase> &inputs) {
        return self.Backward(inputs);
      });
184 185
  BindTracer(&m);

186 187 188
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
189
      .def("_get_dims",
190
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
191
      .def("_set_dims",
Q
qijun 已提交
192
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
193
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
194
           })
Y
yuyang18 已提交
195
      .def("_set_layout",
D
dzhwinter 已提交
196 197 198
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
199
      .def("_alloc_float",
D
dzhwinter 已提交
200
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
201
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
202
           })
Y
yuyang18 已提交
203
      .def("_alloc_float",
Y
Yu Yang 已提交
204
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
205
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
206
           })
Y
yuyang18 已提交
207
      .def("_alloc_int",
Y
Yu Yang 已提交
208
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
209
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
210
           })
Y
yuyang18 已提交
211
      .def("_alloc_int",
D
dzhwinter 已提交
212
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
213
             self.mutable_data<int>(place);
Q
qijun 已提交
214
           })
Y
yuyang18 已提交
215
      .def("_alloc_int",
C
chengduoZH 已提交
216 217 218
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
219
      .def("_alloc_float",
C
chengduoZH 已提交
220 221 222
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
223 224
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
225
      .def("set", PyCPUTensorSetFromArray<double>)
226
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
227
      .def("set", PyCPUTensorSetFromArray<bool>)
228
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
229
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
230
      .def("set", PyCPUTensorSetFromArray<int8_t>)
231
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
232 233
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
234
      .def("set", PyCUDATensorSetFromArray<double>)
235
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
236
      .def("set", PyCUDATensorSetFromArray<bool>)
237
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
238
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
239
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
240 241 242 243 244 245
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
246
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
247
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
248
#endif
249
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
250 251 252 253
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
Y
Yu Yang 已提交
254
      .def("_dtype", [](Tensor &self) { return self.type(); });
Y
Yu Yang 已提交
255

X
Xin Pan 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
269
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
270
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
271
     columns, hence [5, 2].
X
Xin Pan 已提交
272 273 274

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
275 276
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
300 301
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
302 303 304 305 306 307 308 309 310 311 312 313 314 315
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
316
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
317 318 319 320 321
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
322
      .def("set_lod",
323
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
324
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
325
             LoD new_lod;
326 327
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
328 329
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
330
             self.set_lod(new_lod);
D
dangqingqing 已提交
331
           })
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
           })
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
G
gongweibao 已提交
357
      // Set above comments of set_lod.
358 359 360 361 362 363 364 365 366 367 368 369 370
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
      .def("has_valid_recursive_sequence_lengths", [](LoDTensor &self) -> bool {
        // Check that the lod info is valid and match the outermost
        // dimension of the LoDTensor data
        return CheckLoD(self.lod(), vectorize(self.dims()).front());
D
dangqingqing 已提交
371 372
      });

Q
qijun 已提交
373 374 375 376 377 378 379 380 381 382 383
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
384 385
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
386 387
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
388 389 390 391 392 393 394 395 396
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
397
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
398
      .def("rows", [](SelectedRows &self) {
399 400 401 402 403
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
404
      });
Q
qijun 已提交
405

406
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
407 408 409

All parameter, weight, gradient are variables in Paddle.
)DOC")
410
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
411
      .def("set_int",
412 413
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
414 415 416 417 418 419 420
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
421
      .def("get_tensor",
422 423
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
424 425
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
426 427 428
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
429 430 431 432 433
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
434 435 436
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
437
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
438 439 440 441 442
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
443
#endif
Y
Refine  
Yu Yang 已提交
444 445 446 447 448
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
449
           py::return_value_policy::reference);
450

Y
Refine  
Yu Yang 已提交
451
  py::class_<framework::ReaderHolder>(m, "Reader", "")
452
      .def("reset", &framework::ReaderHolder::ResetAll);
Y
Refine  
Yu Yang 已提交
453

S
sneaxiy 已提交
454 455 456 457
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
458 459
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
460
      .def("push",
S
sneaxiy 已提交
461
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
462
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
463
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
464
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
465
           })
S
sneaxiy 已提交
466 467 468 469
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
470

S
sneaxiy 已提交
471
  m.def("init_lod_tensor_blocking_queue",
S
sneaxiy 已提交
472
        [](Variable &var, size_t capacity,
S
sneaxiy 已提交
473
           const std::vector<std::vector<int64_t>> &shapes)
S
sneaxiy 已提交
474
            -> std::shared_ptr<LoDTensorBlockingQueue> {
S
sneaxiy 已提交
475 476 477 478 479 480
              std::vector<DDim> dims(shapes.size());
              std::transform(shapes.begin(), shapes.end(), dims.begin(),
                             [](const std::vector<int64_t> &shape) {
                               return make_ddim(shape);
                             });
              auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
481 482
              holder->InitOnce(capacity, dims,
                               FLAGS_reader_queue_speed_test_mode);
S
sneaxiy 已提交
483
              return holder->GetQueue();
S
sneaxiy 已提交
484
            },
S
sneaxiy 已提交
485
        py::return_value_policy::copy);
S
sneaxiy 已提交
486

S
sneaxiy 已提交
487
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
507 508
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
509
      .def("var",
510
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
511
             return self.Var(name);
Y
Yu Yang 已提交
512
           },
513
           py::return_value_policy::reference)
514
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
515
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
516
           py::return_value_policy::reference)
Y
Yu Yang 已提交
517
      .def("drop_kids", &Scope::DropKids);
518

S
sneaxiy 已提交
519 520 521 522 523 524 525 526
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
        py::return_value_policy::reference);

Y
Yu Yang 已提交
527 528
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
529 530
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
531 532 533 534 535 536 537 538 539 540
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
541 542
    return ret_values;
  });
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
559
  m.def("prune", [](const ProgramDesc &origin,
560
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
561
    ProgramDesc prog_with_targets(origin);
562
    for (const auto &t : targets) {
563
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
564
    }
565
    proto::ProgramDesc pruned_desc;
566
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
567
    return new ProgramDesc(pruned_desc);
568
  });
569 570 571 572
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
573 574 575
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
576 577
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
578
  // clang-format off
Y
Yu Yang 已提交
579
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
580 581
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
582
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
583 584 585
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
586
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
587
                      -> paddle::platform::DeviceContext* {
588
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
589
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
590
#else
Q
qijun 已提交
591
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
592
#endif
C
chengduoZH 已提交
593 594 595 596 597 598 599 600 601 602 603
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
604
// clang-format on
P
peizhilin 已提交
605
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
606 607
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
608
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
609
      .def(py::init<int>())
D
dzhwinter 已提交
610
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
611

612 613 614
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
615

C
chengduoZH 已提交
616 617 618 619
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
620 621 622 623 624 625 626
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
627
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
628
             self = gpu_place;
C
chengduoZH 已提交
629 630
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
631 632
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
633
      });
Y
Yu Yang 已提交
634

Y
Yu Yang 已提交
635 636 637
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
638
                    proto::OpDesc desc;
Y
Yu Yang 已提交
639 640 641 642 643
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
644
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
645
                  })
646
      .def("run",
647
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
648 649 650
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
651
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
652 653 654 655 656
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
657 658 659 660 661 662 663
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
664 665
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
666
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
667
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
668 669 670 671
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
672

F
fengjiayi 已提交
673
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
674
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
675
      .def("close", &Executor::Close)
S
sneaxiy 已提交
676 677 678 679 680
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
681

D
dzhwinter 已提交
682
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
683
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
684 685
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
686

687
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
688
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
689
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
690 691 692 693 694 695
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
696

697
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
698
  m.def("get_fetch_variable", framework::GetFetchVariable);
699
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
700

X
Xin Pan 已提交
701 702
  m.def("_is_program_version_supported", IsProgramVersionSupported);

703 704 705 706 707
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
708

Y
Yu Yang 已提交
709 710 711 712 713 714 715 716 717
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
718
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
719 720
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

D
dzhwinter 已提交
737 738 739
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
740
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
741
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
742
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
743

P
peizhilin 已提交
744
#ifndef _WIN32
D
dangqingqing 已提交
745 746 747
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
748
#endif
P
peizhilin 已提交
749
#endif
Y
Yu Yang 已提交
750

751 752 753 754
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
755
      .value("kAll", platform::ProfilerState::kAll)
756 757 758 759 760 761 762 763 764 765 766 767 768
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
769
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
770
  m.def("reset_profiler", platform::ResetProfiler);
Y
Yu Yang 已提交
771

772 773
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
774 775 776 777 778
      .def(
          "set_str",
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
X
Xin Pan 已提交
779 780 781
      .def("set_int", [](ir::Pass &self, const std::string &name,
                         int val) { self.Set<const int>(name, new int(val)); })
      .def("type", &ir::Pass::Type);
782

X
fix  
Xin Pan 已提交
783 784
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
785 786 787 788 789 790 791 792 793 794 795 796 797 798
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
799
  // -- python binds for parallel executor.
Y
yuyang18 已提交
800
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
801 802 803 804
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
805 806 807 808 809 810 811 812 813 814 815
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
816 817 818

        )DOC");

Y
yuyang18 已提交
819
  exec_strategy.def(py::init())
Y
yuyang18 已提交
820 821 822 823 824
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
825 826 827 828 829 830 831 832 833 834
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
835
      .def_property(
836 837 838 839
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
840 841 842 843
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
844 845 846 847 848
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
849 850 851 852
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
853 854 855 856 857 858 859
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
860 861 862 863 864 865 866 867 868 869 870
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
871 872 873 874 875 876
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
877

Y
yuyang18 已提交
878
  exec_strategy.def_property(
Y
yuyang18 已提交
879 880 881 882 883 884 885
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
886 887
      });

C
chengduo 已提交
888 889 890 891
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
892 893 894 895 896 897 898 899 900 901 902
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
903
)DOC");
Y
yuyang18 已提交
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
920
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
921
            self.reduce_ = strategy;
C
chengduo 已提交
922 923 924 925 926 927 928
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
929 930 931 932 933
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
934
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
935
            self.gradient_scale_ = strategy;
C
chengduo 已提交
936 937 938 939 940 941
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
942 943 944 945
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
946
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
947
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
948 949 950 951
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
F
fengjiayi 已提交
952 953 954
      .def_property(
          "enable_data_balance",
          [](const BuildStrategy &self) { return self.enable_data_balance_; },
C
chengduo 已提交
955
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
956
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
957 958
            self.enable_data_balance_ = b;
          })  // FIXME(chengudo): enable_data_balance seems not important
S
sneaxiy 已提交
959 960 961 962 963 964
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
965
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
966 967 968 969 970 971 972 973 974
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
975
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
976 977 978
            self.remove_unnecessary_lock_ = b;
          },
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default False.)DOC")
979 980 981 982 983 984
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
985 986 987 988 989 990 991 992 993 994 995 996
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
C
chengduo 已提交
997 998 999 1000 1001 1002
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1003
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
1004 1005 1006 1007 1008
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
D
dzhwinter 已提交
1009 1010 1011 1012 1013 1014 1015 1016
      .def_property(
          "memory_optimize",
          [](const BuildStrategy &self) { return self.memory_optimize_; },
          [](BuildStrategy &self, bool b) { self.memory_optimize_ = b; })
      .def_property(
          "memory_early_delete",
          [](const BuildStrategy &self) { return self.memory_early_delete_; },
          [](BuildStrategy &self, bool b) { self.memory_early_delete_ = b; })
1017
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1018
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1019 1020 1021 1022 1023
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1024 1025 1026

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
1027
                  const std::string &, Scope *, std::vector<Scope *> &,
1028 1029
                  const ExecutionStrategy &, const BuildStrategy &, size_t,
                  size_t>())
Y
Yu Yang 已提交
1030 1031 1032 1033
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1034 1035 1036 1037 1038
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1039 1040 1041 1042
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1043 1044 1045 1046 1047 1048
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
1049

1050
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
1051
  BindAsyncExecutor(&m);
L
Luo Tao 已提交
1052
}
1053
}  // namespace pybind
1054
}  // namespace paddle