pybind.cc 46.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
27
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
28 29 30
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
35
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
37
#include "paddle/fluid/framework/version.h"
38
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
39
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
D
dzhwinter 已提交
40
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
41
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
42
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
43
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
44
#include "paddle/fluid/platform/enforce.h"
45
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
46 47
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
48
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
49 50
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
51
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
52
#include "paddle/fluid/pybind/ir.h"
53 54
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
55
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
56
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
57

58
#include "paddle/fluid/string/to_string.h"
59

D
Dong Zhihong 已提交
60
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
61
#ifndef _WIN32
Y
Yi Wang 已提交
62
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
63
#endif
Y
Yi Wang 已提交
64 65
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
66 67
#endif

M
minqiyang 已提交
68 69
#include "pybind11/stl.h"

70 71 72 73
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
74 75 76
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

77
namespace paddle {
78
namespace pybind {
79
bool IsCompiledWithCUDA() {
80
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
81 82 83 84 85 86
  return false;
#else
  return true;
#endif
}

87
bool IsCompiledWithBrpc() {
88
#ifndef PADDLE_WITH_DISTRIBUTE
89 90
  return false;
#endif
91 92 93 94 95 96

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
97 98
}

Y
update  
Yancey1989 已提交
99
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
100
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
101 102 103 104 105 106
  return true;
#else
  return false;
#endif
}

107
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
108 109 110
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
111
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
112
  m.doc() = "C++ core of PaddlePaddle";
113

114 115 116 117
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

118
  BindException(&m);
Y
Yu Yang 已提交
119

S
sneaxiy 已提交
120
  m.def(
S
sneaxiy 已提交
121
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
122 123 124 125
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
126 127 128
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

M
minqiyang 已提交
129
  py::class_<imperative::VarBase>(m, "VarBase", R"DOC()DOC")
130 131
      // .def(py::init<>())
      .def(py::init<bool>(), py::arg("stop_gradient") = false)
132
      .def("_run_backward",
X
Xin Pan 已提交
133
           [](imperative::VarBase &self) { self.RunBackward(); })
M
minqiyang 已提交
134
      .def("_grad_name", &imperative::VarBase::GradName)
M
minqiyang 已提交
135
      .def("_grad_value", &imperative::VarBase::GradValue)
X
Xin Pan 已提交
136
      .def("_clear_gradient", &imperative::VarBase::ClearGradient)
M
minqiyang 已提交
137
      .def("_grad_ivar",
M
minqiyang 已提交
138
           [](const imperative::VarBase &self) { return self.grads_; },
M
minqiyang 已提交
139
           py::return_value_policy::reference)
M
minqiyang 已提交
140
      .def("_copy_to",
P
Paddle CI 已提交
141
           [](const imperative::VarBase &self, const platform::CPUPlace &place,
M
minqiyang 已提交
142 143 144 145 146
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
P
Paddle CI 已提交
147
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
148
      .def("_copy_to",
P
Paddle CI 已提交
149
           [](const imperative::VarBase &self, const platform::CUDAPlace &place,
M
minqiyang 已提交
150 151 152 153 154
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
M
minqiyang 已提交
155
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
156
      .def("value", [](const imperative::VarBase &self) { return self.var_; },
M
minqiyang 已提交
157
           py::return_value_policy::reference)
158 159 160 161 162 163
      .def_property(
          "desc",
          [](const imperative::VarBase &self) { return self.var_desc_; },
          [](imperative::VarBase &self, framework::VarDesc *var_desc) {
            self.var_desc_ = var_desc;
          },
164 165 166
          py::return_value_policy::reference)
      .def_property(
          "stop_gradient",
X
Xin Pan 已提交
167
          [](const imperative::VarBase &self) { return self.IsStopGradient(); },
168
          [](imperative::VarBase &self, bool stop_gradient) {
X
Xin Pan 已提交
169
            self.SetStopGradient(stop_gradient);
170
          });
171

172
  py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
173 174 175 176 177 178 179 180
      .def(py::init<>())
      .def_property(
          "desc", [](const imperative::OpBase &self) { return self.op_desc_; },
          [](imperative::OpBase &self, framework::OpDesc *op_desc) {
            if (op_desc) {
              self.op_desc_ = op_desc;
            }
          },
X
Xin Pan 已提交
181 182 183 184 185 186 187
          py::return_value_policy::reference)
      .def_property(
          "forward_id",
          [](const imperative::OpBase &self) { return self.forward_id_; },
          [](imperative::OpBase &self, int forward_id) {
            self.forward_id_ = forward_id;
          },
X
Xin Pan 已提交
188 189 190 191 192 193 194
          py::return_value_policy::reference)
      .def_property(
          "backward_id",
          [](const imperative::OpBase &self) { return self.backward_id_; },
          [](imperative::OpBase &self, int backward_id) {
            self.backward_id_ = backward_id;
          },
195 196
          py::return_value_policy::reference);

X
Xin Pan 已提交
197
  py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
198
  layer.def(py::init<>())
X
Xin Pan 已提交
199 200 201
      .def("forward", [](imperative::Layer &self,
                         const std::vector<imperative::VarBase> &inputs) {
        return self.Forward(inputs);
X
Xin Pan 已提交
202
      });
X
Xin Pan 已提交
203

X
polish  
Xin Pan 已提交
204
  py::class_<imperative::PyLayer>(m, "PyLayer")
X
Xin Pan 已提交
205
      .def(py::init<>())
X
Xin Pan 已提交
206 207
      .def_static(
          "apply",
X
Xin Pan 已提交
208
          [](int func_id, const std::vector<imperative::VarBase *> &inputs)
X
Xin Pan 已提交
209 210 211 212
              -> std::vector<imperative::VarBase *> {
                return imperative::PyLayer::Apply(func_id, inputs);
              },
          py::return_value_policy::take_ownership)
X
polish  
Xin Pan 已提交
213 214 215 216 217
      .def_static("register_func",
                  [](int func_id, const py::object &callable) {
                    imperative::PyLayer::RegisterFunc(func_id, callable);
                  })
      .def_static("num_funcs", &imperative::PyLayer::NumFuncs);
X
Xin Pan 已提交
218

219 220
  BindTracer(&m);

221 222 223
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
224
      .def("_get_dims",
225
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
226
      .def("_set_dims",
Q
qijun 已提交
227
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
228
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
229
           })
Y
yuyang18 已提交
230
      .def("_set_layout",
D
dzhwinter 已提交
231 232 233
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
234
      .def("_alloc_float",
D
dzhwinter 已提交
235
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
236
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
237
           })
Y
yuyang18 已提交
238
      .def("_alloc_float",
Y
Yu Yang 已提交
239
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
240
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
241
           })
Y
yuyang18 已提交
242
      .def("_alloc_int",
Y
Yu Yang 已提交
243
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
244
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
245
           })
Y
yuyang18 已提交
246
      .def("_alloc_int",
D
dzhwinter 已提交
247
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
248
             self.mutable_data<int>(place);
Q
qijun 已提交
249
           })
Y
yuyang18 已提交
250
      .def("_alloc_int",
C
chengduoZH 已提交
251 252 253
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
254
      .def("_alloc_float",
C
chengduoZH 已提交
255 256 257
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
258 259
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
260
      .def("set", PyCPUTensorSetFromArray<double>)
261
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
262
      .def("set", PyCPUTensorSetFromArray<bool>)
263
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
264
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
265
      .def("set", PyCPUTensorSetFromArray<int8_t>)
266
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
267 268
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
269
      .def("set", PyCUDATensorSetFromArray<double>)
270
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
271
      .def("set", PyCUDATensorSetFromArray<bool>)
272
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
273
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
274
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
275 276 277 278 279 280
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
281
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
282
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
283
#endif
284
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
285 286 287 288
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
Y
Yu Yang 已提交
289
      .def("_dtype", [](Tensor &self) { return self.type(); });
Y
Yu Yang 已提交
290

X
Xin Pan 已提交
291 292 293 294 295 296 297 298 299 300 301 302 303
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
304
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
305
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
306
     columns, hence [5, 2].
X
Xin Pan 已提交
307 308 309

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
310 311
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
335 336
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
337 338 339 340 341 342 343 344 345 346 347 348 349 350
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
351
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
352 353 354 355 356
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
357
      .def("set_lod",
358
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
359
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
360
             LoD new_lod;
361 362
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
363 364
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
365
             self.set_lod(new_lod);
D
dangqingqing 已提交
366
           })
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
           })
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
G
gongweibao 已提交
392
      // Set above comments of set_lod.
393 394 395 396 397 398 399 400 401 402 403 404 405
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
      .def("has_valid_recursive_sequence_lengths", [](LoDTensor &self) -> bool {
        // Check that the lod info is valid and match the outermost
        // dimension of the LoDTensor data
        return CheckLoD(self.lod(), vectorize(self.dims()).front());
D
dangqingqing 已提交
406 407
      });

Q
qijun 已提交
408 409 410 411 412 413 414 415 416 417 418
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
419 420
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
421 422
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
423 424 425 426 427 428 429 430 431
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
432
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
433
      .def("rows", [](SelectedRows &self) {
434 435 436 437 438
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
439
      });
Q
qijun 已提交
440

441
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
442 443 444

All parameter, weight, gradient are variables in Paddle.
)DOC")
445
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
446
      .def("set_int",
447 448
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
449 450 451 452 453 454 455
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
456
      .def("get_tensor",
457 458
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
459 460
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
461 462 463
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
464 465 466 467 468
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
469 470 471
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
472
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
473 474 475 476 477
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
478
#endif
Y
Refine  
Yu Yang 已提交
479 480 481 482 483
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
484
           py::return_value_policy::reference);
485

Y
Refine  
Yu Yang 已提交
486
  py::class_<framework::ReaderHolder>(m, "Reader", "")
487
      .def("reset", &framework::ReaderHolder::ResetAll);
Y
Refine  
Yu Yang 已提交
488

S
sneaxiy 已提交
489 490 491 492
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
493 494
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
495
      .def("push",
S
sneaxiy 已提交
496
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
497
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
498
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
499
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
500
           })
S
sneaxiy 已提交
501 502 503 504
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
505

S
sneaxiy 已提交
506
  m.def("init_lod_tensor_blocking_queue",
S
sneaxiy 已提交
507
        [](Variable &var, size_t capacity,
S
sneaxiy 已提交
508
           const std::vector<std::vector<int64_t>> &shapes)
S
sneaxiy 已提交
509
            -> std::shared_ptr<LoDTensorBlockingQueue> {
S
sneaxiy 已提交
510 511 512 513 514 515
              std::vector<DDim> dims(shapes.size());
              std::transform(shapes.begin(), shapes.end(), dims.begin(),
                             [](const std::vector<int64_t> &shape) {
                               return make_ddim(shape);
                             });
              auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
516 517
              holder->InitOnce(capacity, dims,
                               FLAGS_reader_queue_speed_test_mode);
S
sneaxiy 已提交
518
              return holder->GetQueue();
S
sneaxiy 已提交
519
            },
S
sneaxiy 已提交
520
        py::return_value_policy::copy);
S
sneaxiy 已提交
521

S
sneaxiy 已提交
522
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
542 543
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
544
      .def("var",
545
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
546
             return self.Var(name);
Y
Yu Yang 已提交
547
           },
548
           py::return_value_policy::reference)
549
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
550
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
551
           py::return_value_policy::reference)
Y
Yu Yang 已提交
552
      .def("drop_kids", &Scope::DropKids);
553

S
sneaxiy 已提交
554 555 556 557 558 559 560 561
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
        py::return_value_policy::reference);

Y
Yu Yang 已提交
562 563
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
564 565
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
566 567 568 569 570 571 572 573 574 575
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
576 577
    return ret_values;
  });
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
594
  m.def("prune", [](const ProgramDesc &origin,
595
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
596
    ProgramDesc prog_with_targets(origin);
597
    for (const auto &t : targets) {
598
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
599
    }
600
    proto::ProgramDesc pruned_desc;
601
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
602
    return new ProgramDesc(pruned_desc);
603
  });
604 605 606 607
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
608 609 610
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
611 612
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
613
  // clang-format off
Y
Yu Yang 已提交
614
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
615 616
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
617
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
618 619 620
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
621
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
622
                      -> paddle::platform::DeviceContext* {
623
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
624
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
625
#else
Q
qijun 已提交
626
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
627
#endif
C
chengduoZH 已提交
628 629 630 631 632 633 634 635 636 637 638
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
639
// clang-format on
P
peizhilin 已提交
640
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
641 642
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
643
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
644
      .def(py::init<int>())
D
dzhwinter 已提交
645
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
646

647 648 649
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
650

C
chengduoZH 已提交
651 652 653 654
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
655 656 657 658 659 660 661
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
662
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
663
             self = gpu_place;
C
chengduoZH 已提交
664 665
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
666 667
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
668
      });
Y
Yu Yang 已提交
669

Y
Yu Yang 已提交
670 671 672
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
673
                    proto::OpDesc desc;
Y
Yu Yang 已提交
674 675 676 677 678
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
679
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
680
                  })
681
      .def("run",
682
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
683 684 685
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
686
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
687 688 689 690 691
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
692 693 694 695 696 697 698
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
699 700
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
701
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
702
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
703 704 705 706
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
707

F
fengjiayi 已提交
708
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
709
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
710
      .def("close", &Executor::Close)
S
sneaxiy 已提交
711 712 713 714 715
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
716

D
dzhwinter 已提交
717
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
718
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
719 720
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
721

722
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
723
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
724
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
725 726 727 728 729 730
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
731

732
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
733
  m.def("get_fetch_variable", framework::GetFetchVariable);
734
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
735

X
Xin Pan 已提交
736 737
  m.def("_is_program_version_supported", IsProgramVersionSupported);

738 739 740 741 742
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
743

Y
Yu Yang 已提交
744 745 746 747 748 749 750 751 752
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
753
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
754 755
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

D
dzhwinter 已提交
772 773 774
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
775
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
776
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
777
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
778

P
peizhilin 已提交
779
#ifndef _WIN32
D
dangqingqing 已提交
780 781 782
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
783
#endif
P
peizhilin 已提交
784
#endif
Y
Yu Yang 已提交
785

786 787 788 789
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
790
      .value("kAll", platform::ProfilerState::kAll)
791 792 793 794 795 796 797 798 799 800 801 802 803
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
804
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
805
  m.def("reset_profiler", platform::ResetProfiler);
Y
Yu Yang 已提交
806

807 808
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
809 810 811 812 813
      .def(
          "set_str",
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
X
Xin Pan 已提交
814 815
      .def("set_int", [](ir::Pass &self, const std::string &name,
                         int val) { self.Set<const int>(name, new int(val)); })
F
flame 已提交
816 817 818 819 820 821
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
        std::unique_ptr<ir::Graph> origin_graph(graph.get());
        auto optim_graph = self.Apply(std::move(origin_graph));
        graph.reset(optim_graph.release());
      });
822

X
fix  
Xin Pan 已提交
823 824
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
825 826 827 828 829 830 831 832 833 834 835 836 837 838
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
839
  // -- python binds for parallel executor.
Y
yuyang18 已提交
840
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
841 842 843 844
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
845 846 847 848 849 850 851 852 853 854 855
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
856 857 858

        )DOC");

Y
yuyang18 已提交
859
  exec_strategy.def(py::init())
Y
yuyang18 已提交
860 861 862 863 864
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
865 866 867 868 869 870 871 872 873 874
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
875
      .def_property(
876 877 878 879
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
880 881 882 883
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
884 885 886 887 888
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
889 890 891 892
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
893 894 895 896 897 898 899
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
900 901 902 903 904 905 906 907 908 909 910
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
911 912 913 914 915 916
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
917

Y
yuyang18 已提交
918
  exec_strategy.def_property(
Y
yuyang18 已提交
919 920 921 922 923 924 925
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
926 927
      });

C
chengduo 已提交
928 929 930 931
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
932 933 934 935 936 937 938 939 940 941 942
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
943
)DOC");
Y
yuyang18 已提交
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
960
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
961
            self.reduce_ = strategy;
C
chengduo 已提交
962 963 964 965 966 967 968
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
969 970 971 972 973
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
974
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
975
            self.gradient_scale_ = strategy;
C
chengduo 已提交
976 977 978 979 980 981
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
982 983 984 985
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
986
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
987
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
988 989 990 991
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
S
sneaxiy 已提交
992 993 994 995 996 997
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
998
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
999 1000 1001 1002 1003 1004 1005 1006 1007
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1008
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1009 1010 1011
            self.remove_unnecessary_lock_ = b;
          },
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default False.)DOC")
1012 1013 1014 1015 1016 1017
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
C
chengduo 已提交
1030 1031 1032 1033 1034 1035
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1036
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
1037 1038 1039 1040 1041
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_relu_depthwise_conv_ = b;
          },
          R"DOC(The type is BOOL, fuse_relu_depthwise_conv indicate whether
                      to fuse relu and depthwise_conv2d,
                      it will save GPU memory and may make the execution faster.
                      This options is only available in GPU devices.
                      Default False)DOC")
D
dzhwinter 已提交
1056 1057 1058 1059
      .def_property(
          "memory_optimize",
          [](const BuildStrategy &self) { return self.memory_optimize_; },
          [](BuildStrategy &self, bool b) { self.memory_optimize_ = b; })
1060 1061 1062 1063
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
          [](BuildStrategy &self, bool b) { self.is_distribution_ = b; })
D
dzhwinter 已提交
1064 1065 1066 1067
      .def_property(
          "memory_early_delete",
          [](const BuildStrategy &self) { return self.memory_early_delete_; },
          [](BuildStrategy &self, bool b) { self.memory_early_delete_ = b; })
1068
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1069
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1070 1071 1072 1073 1074
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1075 1076 1077

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
1078
                  const std::string &, Scope *, std::vector<Scope *> &,
1079
                  const ExecutionStrategy &, const BuildStrategy &>())
Y
Yu Yang 已提交
1080 1081 1082 1083
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1084 1085 1086 1087 1088
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1089 1090 1091 1092
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1093 1094 1095 1096 1097 1098
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
1099

1100
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
1101
  BindAsyncExecutor(&m);
F
flame 已提交
1102 1103 1104

  BindGraph(&m);
  BindNode(&m);
L
Luo Tao 已提交
1105
}
1106
}  // namespace pybind
1107
}  // namespace paddle