mot_sde_infer.py 24.3 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from IPython import embed
15 16 17 18
import os
import time
import yaml
import cv2
F
Feng Ni 已提交
19
import re
20
import glob
21 22 23 24 25
import numpy as np
from collections import defaultdict
import paddle

from benchmark_utils import PaddleInferBenchmark
26 27 28 29 30 31 32 33
from preprocess import decode_image
from utils import argsparser, Timer, get_current_memory_mb, _is_valid_video, video2frames
from det_infer import Detector, get_test_images, print_arguments, bench_log, PredictConfig, load_predictor

# add python path
import sys
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
sys.path.insert(0, parent_path)
34

35 36 37
from mot.tracker import JDETracker, DeepSORTTracker
from mot.utils import MOTTimer, write_mot_results, flow_statistic, get_crops, clip_box
from visualize import plot_tracking, plot_tracking_dict
38

F
Feng Ni 已提交
39 40 41 42
from mot.mtmct.utils import parse_bias
from mot.mtmct.postprocess import trajectory_fusion, sub_cluster, gen_res, print_mtmct_result
from mot.mtmct.postprocess import get_mtmct_matching_results, save_mtmct_crops, save_mtmct_vis_results

43 44 45 46 47

class SDE_Detector(Detector):
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
48
        tracker_config (str): tracker config path
49
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
50
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
51
        batch_size (int): size of pre batch in inference
52 53 54 55 56 57 58
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
59 60
        reid_model_dir (str): reid model dir, default None for ByteTrack, but set for DeepSORT
        mtmct_dir (str): MTMCT dir, default None, set for doing MTMCT
61 62 63 64
    """

    def __init__(self,
                 model_dir,
65
                 tracker_config=None,
66
                 device='CPU',
67
                 run_mode='paddle',
68 69
                 batch_size=1,
                 trt_min_shape=1,
70 71
                 trt_max_shape=1280,
                 trt_opt_shape=640,
72 73
                 trt_calib_mode=False,
                 cpu_threads=1,
74 75 76 77 78
                 enable_mkldnn=False,
                 output_dir='output',
                 threshold=0.5,
                 reid_model_dir=None,
                 mtmct_dir=None):
79 80 81 82 83 84 85 86 87 88
        super(SDE_Detector, self).__init__(
            model_dir=model_dir,
            device=device,
            run_mode=run_mode,
            batch_size=batch_size,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
            enable_mkldnn=enable_mkldnn,
            output_dir=output_dir,
            threshold=threshold, )
        assert batch_size == 1, "MOT model only supports batch_size=1."
        self.det_times = Timer(with_tracker=True)
        self.num_classes = len(self.pred_config.labels)

        # reid and tracker config
        self.use_reid = False if reid_model_dir is None else True
        if self.use_reid:
            # use DeepSORTTracker
            self.reid_pred_config = self.set_config(reid_model_dir)
            self.reid_predictor, self.config = load_predictor(
                reid_model_dir,
                run_mode=run_mode,
                batch_size=50, # reid_batch_size
                min_subgraph_size=self.reid_pred_config.min_subgraph_size,
                device=device,
                use_dynamic_shape=self.reid_pred_config.use_dynamic_shape,
                trt_min_shape=trt_min_shape,
                trt_max_shape=trt_max_shape,
                trt_opt_shape=trt_opt_shape,
                trt_calib_mode=trt_calib_mode,
                cpu_threads=cpu_threads,
                enable_mkldnn=enable_mkldnn)

            cfg = self.reid_pred_config.tracker
            max_age = cfg.get('max_age', 30)
            max_iou_distance = cfg.get('max_iou_distance', 0.7)

            self.tracker = DeepSORTTracker(
                max_age=max_age,
                max_iou_distance=max_iou_distance,
            )
123
        else:
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
            # use ByteTracker
            self.tracker_config = tracker_config
            cfg = yaml.safe_load(open(self.tracker_config))['tracker']
            min_box_area = cfg.get('min_box_area', 200)
            vertical_ratio = cfg.get('vertical_ratio', 1.6)
            use_byte = cfg.get('use_byte', True)
            match_thres = cfg.get('match_thres', 0.9)
            conf_thres = cfg.get('conf_thres', 0.6)
            low_conf_thres = cfg.get('low_conf_thres', 0.1)

            self.tracker = JDETracker(
                use_byte=use_byte,
                num_classes=self.num_classes,
                min_box_area=min_box_area,
                vertical_ratio=vertical_ratio,
                match_thres=match_thres,
                conf_thres=conf_thres,
                low_conf_thres=low_conf_thres,
            )
        
        self.do_mtmct = False if mtmct_dir is None else True
        self.mtmct_dir = mtmct_dir

    def postprocess(self, inputs, result):
        # postprocess output of predictor
        np_boxes_num = result['boxes_num']
        if np_boxes_num[0] <= 0:
            print('[WARNNING] No object detected.')
            result = {'boxes': np.zeros([0, 6]), 'boxes_num': [0]}
        result = {k: v for k, v in result.items() if v is not None}
        return result

    def reidprocess(self, det_results, repeats=1):
        pred_dets = det_results['boxes']
        pred_xyxys = pred_dets[:, 2:6]

        ori_image = det_results['ori_image']
        ori_image_shape = ori_image.shape[:2]
        pred_xyxys, keep_idx = clip_box(pred_xyxys, ori_image_shape)
163 164

        if len(keep_idx[0]) == 0:
165 166 167
            det_results['boxes'] = np.zeros((1, 6), dtype=np.float32)
            det_results['embeddings'] = None
            return det_results
F
Feng Ni 已提交
168

169 170
        pred_dets = pred_dets[keep_idx[0]]
        pred_xyxys = pred_dets[:, 2:6]
171

172
        w, h = self.tracker.input_size
173
        crops = get_crops(pred_xyxys, ori_image, w, h)
F
Feng Ni 已提交
174

175 176 177 178
        # to keep fast speed, only use topk crops
        crops = crops[:50] # reid_batch_size
        det_results['crops'] = np.array(crops).astype('float32')
        det_results['boxes'] = pred_dets[:50]
F
Feng Ni 已提交
179

180
        input_names = self.reid_predictor.get_input_names()
181
        for i in range(len(input_names)):
182 183
            input_tensor = self.reid_predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(det_results[input_names[i]])
184

W
wangguanzhong 已提交
185
        # model prediction
186
        for i in range(repeats):
187 188 189
            self.reid_predictor.run()
            output_names = self.reid_predictor.get_output_names()
            feature_tensor = self.reid_predictor.get_output_handle(output_names[0])
190 191
            pred_embs = feature_tensor.copy_to_cpu()

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
        det_results['embeddings'] = pred_embs
        return det_results

    def tracking(self, det_results):
        pred_dets = det_results['boxes']
        pred_embs = det_results.get('embeddings', None)

        if self.use_reid:
            # use DeepSORTTracker, only support singe class
            self.tracker.predict()
            online_targets = self.tracker.update(pred_dets, pred_embs)
            online_tlwhs, online_scores, online_ids = [], [], []
            if self.do_mtmct:
                online_tlbrs, online_feats = [], []
            for t in online_targets:
                if not t.is_confirmed() or t.time_since_update > 1:
                    continue
                tlwh = t.to_tlwh()
                tscore = t.score
                tid = t.track_id
                if self.tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                        3] > self.tracker.vertical_ratio:
                    continue
                online_tlwhs.append(tlwh)
                online_scores.append(tscore)
                online_ids.append(tid)
                if self.do_mtmct:
                    online_tlbrs.append(t.to_tlbr())
                    online_feats.append(t.feat)

            tracking_outs = {
                'online_tlwhs': online_tlwhs,
                'online_scores': online_scores,
                'online_ids': online_ids,
            }
            if self.do_mtmct:
                seq_name = det_results['seq_name']
                frame_id = det_results['frame_id']

                tracking_outs['feat_data'] = {}
                for _tlbr, _id, _feat in zip(online_tlbrs, online_ids, online_feats):
                    feat_data = {}
                    feat_data['bbox'] = _tlbr
                    feat_data['frame'] = f"{frame_id:06d}"
                    feat_data['id'] = _id
                    _imgname = f'{seq_name}_{_id}_{frame_id}.jpg'
                    feat_data['imgname'] = _imgname
                    feat_data['feat'] = _feat
                    tracking_outs['feat_data'].update({_imgname: feat_data})
241 242

        else:
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
            # use ByteTracker, support multiple class
            online_tlwhs = defaultdict(list)
            online_scores = defaultdict(list)
            online_ids = defaultdict(list)
            online_targets_dict = self.tracker.update(pred_dets, pred_embs)
            for cls_id in range(self.num_classes):
                online_targets = online_targets_dict[cls_id]
                for t in online_targets:
                    tlwh = t.tlwh
                    tid = t.track_id
                    tscore = t.score
                    if tlwh[2] * tlwh[3] <= self.tracker.min_box_area:
                        continue
                    if self.tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                            3] > self.tracker.vertical_ratio:
                        continue
                    online_tlwhs[cls_id].append(tlwh)
                    online_ids[cls_id].append(tid)
                    online_scores[cls_id].append(tscore)
            tracking_outs = {
                'online_tlwhs': online_tlwhs,
                'online_scores': online_scores,
                'online_ids': online_ids,
            }
        return tracking_outs
268

269 270 271 272 273 274 275 276 277 278 279
    def predict_image(self,
                      image_list,
                      run_benchmark=False,
                      repeats=1,
                      visual=True,
                      seq_name=None):
        num_classes = self.num_classes
        image_list.sort()
        ids2names = self.pred_config.labels
        if self.do_mtmct:
            mot_features_dict = {} # cid_tid_fid feats
280
        else:
281 282 283 284 285 286 287
            mot_results = []
        for frame_id, img_file in enumerate(image_list):
            if self.do_mtmct:
                if frame_id % 10 == 0:
                    print('Tracking frame: %d' % (frame_id))
            batch_image_list = [img_file]  # bs=1 in MOT model
            frame, _ = decode_image(img_file, {})
F
Feng Ni 已提交
288
            if run_benchmark:
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
                # preprocess
                inputs = self.preprocess(batch_image_list)  # warmup
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
                result_warmup = self.predict(repeats=repeats)  # warmup
                self.det_times.inference_time_s.start()
                result = self.predict(repeats=repeats)
                self.det_times.inference_time_s.end(repeats=repeats)

                # postprocess
                result_warmup = self.postprocess(inputs, result)  # warmup
                self.det_times.postprocess_time_s.start()
                det_result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()

                # tracking
                if self.use_reid:
                    det_result['frame_id'] = frame_id
                    det_result['seq_name'] = seq_name
                    det_result['ori_image'] = frame
                    det_result = self.reidprocess(det_result)
                result_warmup = self.tracking(det_result)
                self.det_times.tracking_time_s.start()
                if self.use_reid:
                    det_result = self.reidprocess(det_result)
                tracking_outs = self.tracking(det_result)
                self.det_times.tracking_time_s.end()
                self.det_times.img_num += 1

                cm, gm, gu = get_current_memory_mb()
                self.cpu_mem += cm
                self.gpu_mem += gm
                self.gpu_util += gu
W
wangguanzhong 已提交
325

326
            else:
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                self.det_times.inference_time_s.start()
                result = self.predict()
                self.det_times.inference_time_s.end()

                self.det_times.postprocess_time_s.start()
                det_result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()

                # tracking process
                self.det_times.tracking_time_s.start()
                if self.use_reid:
                    det_result['frame_id'] = frame_id
                    det_result['seq_name'] = seq_name
                    det_result['ori_image'] = frame
                    det_result = self.reidprocess(det_result)
                tracking_outs = self.tracking(det_result)
                self.det_times.tracking_time_s.end()
                self.det_times.img_num += 1
F
Feng Ni 已提交
349 350 351 352

            online_tlwhs = tracking_outs['online_tlwhs']
            online_scores = tracking_outs['online_scores']
            online_ids = tracking_outs['online_ids']
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
            
            if self.do_mtmct:
                feat_data_dict = tracking_outs['feat_data']
                mot_features_dict = dict(mot_features_dict, **feat_data_dict)
            else:
                mot_results.append([online_tlwhs, online_scores, online_ids])

            if visual:
                if frame_id % 10 == 0:
                    print('Tracking frame {}'.format(frame_id))
                frame, _ = decode_image(img_file, {})
                if num_classes == 1:
                    im = plot_tracking(
                        frame,
                        online_tlwhs,
                        online_ids,
                        online_scores,
                        frame_id=frame_id)
                else:
                    im = plot_tracking_dict(
                        frame,
                        num_classes,
                        online_tlwhs,
                        online_ids,
                        online_scores,
                        frame_id=frame_id,
                        ids2names=[])
                save_dir = os.path.join(self.output_dir, seq_name)
                if not os.path.exists(save_dir):
                    os.makedirs(save_dir)
                cv2.imwrite(
                    os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), im)
        
        if self.do_mtmct:
            return mot_features_dict
        else:
            return mot_results
F
Feng Ni 已提交
390

391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
    def predict_video(self, video_file, camera_id):
        video_out_name = 'output.mp4'
        if camera_id != -1:
            capture = cv2.VideoCapture(camera_id)
        else:
            capture = cv2.VideoCapture(video_file)
            video_out_name = os.path.split(video_file)[-1]
        # Get Video info : resolution, fps, frame count
        width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(capture.get(cv2.CAP_PROP_FPS))
        frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
        print("fps: %d, frame_count: %d" % (fps, frame_count))

        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)
        out_path = os.path.join(self.output_dir, video_out_name)
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))

        frame_id = 1
        timer = MOTTimer()
        results = defaultdict(list)  # support single class and multi classes
        num_classes = self.num_classes
        while (1):
            ret, frame = capture.read()
            if not ret:
                break
            if frame_id % 10 == 0:
                print('Tracking frame: %d' % (frame_id))
            frame_id += 1
422

423 424 425
            timer.tic()
            seq_name = video_out_name.split('.')[0]
            mot_results = self.predict_image([frame], visual=False, seq_name=seq_name)
426 427
            timer.toc()

428
            online_tlwhs, online_scores, online_ids = mot_results[0] # bs=1 in MOT model
429
            fps = 1. / timer.duration
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
            if num_classes == 1 and self.use_reid:
                # use DeepSORTTracker, only support singe class
                results[0].append((frame_id + 1, online_tlwhs, online_scores, online_ids))
                im = plot_tracking(
                    frame,
                    online_tlwhs,
                    online_ids,
                    online_scores,
                    frame_id=frame_id,
                    fps=fps)
            else:
                # use ByteTracker, support multiple class
                for cls_id in range(num_classes):
                    results[cls_id].append(
                        (frame_id + 1, online_tlwhs[cls_id], online_scores[cls_id],
                        online_ids[cls_id]))
                im = plot_tracking_dict(
                    frame,
                    num_classes,
                    online_tlwhs,
                    online_ids,
                    online_scores,
                    frame_id=frame_id,
                    fps=fps,
                    ids2names=[])
455

456 457 458 459 460
            writer.write(im)
            if camera_id != -1:
                cv2.imshow('Mask Detection', im)
                if cv2.waitKey(1) & 0xFF == ord('q'):
                    break
461 462
        writer.release()

463 464 465 466 467 468 469
    def predict_mtmct(self, mtmct_dir, mtmct_cfg):
        cameras_bias = mtmct_cfg['cameras_bias']
        cid_bias = parse_bias(cameras_bias)
        scene_cluster = list(cid_bias.keys())
        # 1.zone releated parameters
        use_zone = mtmct_cfg.get('use_zone', False)
        zone_path = mtmct_cfg.get('zone_path', None)
470

471 472 473
        # 2.tricks parameters, can be used for other mtmct dataset
        use_ff = mtmct_cfg.get('use_ff', False)
        use_rerank = mtmct_cfg.get('use_rerank', False)
F
Feng Ni 已提交
474

475 476 477
        # 3.camera releated parameters
        use_camera = mtmct_cfg.get('use_camera', False)
        use_st_filter = mtmct_cfg.get('use_st_filter', False)
F
Feng Ni 已提交
478

479 480 481
        # 4.zone releated parameters
        use_roi = mtmct_cfg.get('use_roi', False)
        roi_dir = mtmct_cfg.get('roi_dir', False)
F
Feng Ni 已提交
482

483 484
        mot_list_breaks = []
        cid_tid_dict = dict()
F
Feng Ni 已提交
485

486 487 488
        output_dir = self.output_dir
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
F
Feng Ni 已提交
489

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
        seqs = os.listdir(mtmct_dir)
        for seq in sorted(seqs):
            fpath = os.path.join(mtmct_dir, seq)
            if os.path.isfile(fpath) and _is_valid_video(fpath):
                seq = seq.split('.')[-2]
                print('ffmpeg processing of video {}'.format(fpath))
                frames_path = video2frames(
                    video_path=fpath, outpath=mtmct_dir, frame_rate=25)
                fpath = os.path.join(mtmct_dir, seq)

            if os.path.isdir(fpath) == False:
                print('{} is not a image folder.'.format(fpath))
                continue
            if os.path.exists(os.path.join(fpath, 'img1')):
                fpath = os.path.join(fpath, 'img1')
            assert os.path.isdir(fpath), '{} should be a directory'.format(fpath)
            image_list = glob.glob(os.path.join(fpath, '*.jpg'))
            image_list.sort()
            assert len(image_list) > 0, '{} has no images.'.format(fpath)
            print('start tracking seq: {}'.format(seq))

            mot_features_dict = self.predict_image(image_list, visual=False, seq_name=seq)

            cid = int(re.sub('[a-z,A-Z]', "", seq))
            tid_data, mot_list_break = trajectory_fusion(
                mot_features_dict,
                cid,
                cid_bias,
                use_zone=use_zone,
                zone_path=zone_path)
            mot_list_breaks.append(mot_list_break)
            # single seq process
            for line in tid_data:
                tracklet = tid_data[line]
                tid = tracklet['tid']
                if (cid, tid) not in cid_tid_dict:
                    cid_tid_dict[(cid, tid)] = tracklet

        map_tid = sub_cluster(
            cid_tid_dict,
F
Feng Ni 已提交
530
            scene_cluster,
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
            use_ff=use_ff,
            use_rerank=use_rerank,
            use_camera=use_camera,
            use_st_filter=use_st_filter)

        pred_mtmct_file = os.path.join(output_dir, 'mtmct_result.txt')
        if use_camera:
            gen_res(pred_mtmct_file, scene_cluster, map_tid, mot_list_breaks)
        else:
            gen_res(
                pred_mtmct_file,
                scene_cluster,
                map_tid,
                mot_list_breaks,
                use_roi=use_roi,
                roi_dir=roi_dir)
F
Feng Ni 已提交
547

548
        camera_results, cid_tid_fid_res = get_mtmct_matching_results(
F
Feng Ni 已提交
549 550 551 552 553 554 555 556
            pred_mtmct_file)

        crops_dir = os.path.join(output_dir, 'mtmct_crops')
        save_mtmct_crops(
            cid_tid_fid_res, images_dir=mtmct_dir, crops_dir=crops_dir)

        save_dir = os.path.join(output_dir, 'mtmct_vis')
        save_mtmct_vis_results(
557
            camera_results,
F
Feng Ni 已提交
558 559 560 561
            images_dir=mtmct_dir,
            save_dir=save_dir,
            save_videos=FLAGS.save_images)

F
Feng Ni 已提交
562

563
def main():
564 565 566 567 568 569 570
    deploy_file = os.path.join(FLAGS.model_dir, 'infer_cfg.yml')
    with open(deploy_file) as f:
        yml_conf = yaml.safe_load(f)
    arch = yml_conf['arch']
    detector = SDE_Detector(
        FLAGS.model_dir,
        FLAGS.tracker_config,
571 572
        device=FLAGS.device,
        run_mode=FLAGS.run_mode,
573
        batch_size=FLAGS.batch_size,
574 575 576 577 578
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
579 580 581 582 583 584
        enable_mkldnn=FLAGS.enable_mkldnn,
        threshold=FLAGS.threshold,
        output_dir=FLAGS.output_dir,
        reid_model_dir=FLAGS.reid_model_dir,
        mtmct_dir=FLAGS.mtmct_dir,
    )
585 586 587

    # predict from video file or camera video stream
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
588
        detector.predict_video(FLAGS.video_file, FLAGS.camera_id)
F
Feng Ni 已提交
589
    elif FLAGS.mtmct_dir is not None:
590
        with open(FLAGS.mtmct_cfg) as f:
F
Feng Ni 已提交
591
            mtmct_cfg = yaml.safe_load(f)
592
        detector.predict_mtmct(FLAGS.mtmct_dir, mtmct_cfg)
593 594
    else:
        # predict from image
595 596
        if FLAGS.image_dir is None and FLAGS.image_file is not None:
            assert FLAGS.batch_size == 1, "--batch_size should be 1 in MOT models."
597
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
598 599
        seq_name = FLAGS.image_dir.split('/')[-1]
        detector.predict_image(img_list, FLAGS.run_benchmark, repeats=10, seq_name=seq_name)
600 601 602 603 604

        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
            mode = FLAGS.run_mode
605 606 607
            model_dir = FLAGS.model_dir
            model_info = {
                'model_name': model_dir.strip('/').split('/')[-1],
608 609
                'precision': mode.split('_')[-1]
            }
610
            bench_log(detector, img_list, model_info, name='MOT')
611 612 613 614 615 616 617 618 619 620 621 622


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"

    main()