distribute_transpiler.py 66.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
typhoonzero 已提交
33
import math
S
seiriosPlus 已提交
34
import random
35
import numpy as np
36
import collections
37
import six
38

39
from .ps_dispatcher import RoundRobin, HashName, PSDispatcher
Y
Yancey 已提交
40
from .. import core, framework
T
typhoonzero 已提交
41
from ..framework import Program, default_main_program, \
Q
Qiyang Min 已提交
42
                        default_startup_program, Block, \
W
Wu Yi 已提交
43
                        Parameter, grad_var_name
44 45
from .details import *
from functools import reduce
46 47 48

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
49
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
50 51 52
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
T
done  
typhoonzero 已提交
53 54


T
typhoonzero 已提交
55 56 57 58 59 60
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
61

T
typhoonzero 已提交
62 63
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
64 65


66 67 68 69
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
70
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
71
    """
72 73 74 75 76 77
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
78
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
79 80 81

    Args:
        var_list (list): List of variables.
82 83
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
84 85
        min_block_size (int): Minimum splitted block size.
    Returns:
86
        blocks (list[(varname, block_id, current_block_size)]): A list
87
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
88 89 90
    """
    blocks = []
    for var in var_list:
91
        split_count = slice_count
T
typhoonzero 已提交
92 93 94 95
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
96
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
97 98 99 100 101 102 103 104 105
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
106
        # update split_count after aligning
T
typhoonzero 已提交
107
        split_count = int(math.ceil(var_numel / float(block_size)))
108
        for block_id in range(split_count):
T
typhoonzero 已提交
109 110 111 112 113 114 115
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
116 117 118 119 120 121 122
class DistributeTranspilerConfig(object):
    """
    slice_var_up (bool): Do Tensor slice for pservers, default is True.
    split_method (PSDispatcher): RoundRobin or HashName can be used
        try to choose the best method to balance loads for pservers.
    min_block_size (int): Minimum splitted element number in block.
        According:https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
123
        We can use bandwidth effiently when data size is larger than 2MB.If you
G
gongweibao 已提交
124 125 126 127 128 129 130 131
        want to change it, please be sure you see the slice_variable function.
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192


Y
gen rst  
yi.wu 已提交
132
class DistributeTranspiler(object):
Y
yi.wu 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.

    The main_program will be transformed to use a remote parameter server
    to do parameter optimization. And the optimization graph will be put
    into a parameter server program.

    Examples:
        .. code-block:: python

           # Define your model before these codes.
           port = os.getenv("PADDLE_PSERVER_PORT", "6174")
           pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
           eplist = []
           for ip in pserver_ips.split(","):
                eplist.append(':'.join([ip, port]))
           pserver_endpoints = ",".join(eplist)
           trainers = int(os.getenv("PADDLE_TRAINERS"))
           current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
           trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
           role = os.getenv("PADDLE_TRAINING_ROLE")

           t = distribute_transpiler.DistributeTranspiler()
           t.transpile(
                trainer_id, pservers=pserver_endpoints, trainers=trainers)
           if role == "PSERVER":
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
           elif role == "TRAINER":
                trainer_program = t.get_trainer_program()
    """
Y
Yancey1989 已提交
167

G
gongweibao 已提交
168 169 170 171 172 173 174 175 176 177 178 179
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

180 181 182 183 184 185 186
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
                  sync_mode=True):
        """
Y
yi.wu 已提交
187 188 189 190 191 192 193 194 195 196 197
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
            pservers (str): comma separated ip:port string for the pserver
                list.
            trainers (int): number of trainers in the distributed job.
            sync_mode (bool): Do sync training or not, default is True.
198 199 200 201
        """
        if program is None:
            program = default_main_program()
        self.origin_program = program
G
gongweibao 已提交
202 203 204
        self.origin_startup_program = default_startup_program().clone()

        self.startup_program = default_startup_program()
205 206 207 208 209 210 211
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
212
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
213
        self.has_distributed_lookup_table = self._has_distributed_lookup_table()
214
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
215
        self.grad_name_to_param_name = dict()
216 217
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
218
            self.grad_name_to_param_name[grad_var.name] = param_var.name
219

T
tangwei12 已提交
220 221 222 223 224 225
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

226
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
227
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
228
        self._init_splited_vars()
229

G
gongweibao 已提交
230
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
231
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
232
        send_vars = []
233 234 235 236 237 238

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
239
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
240

G
gongweibao 已提交
241
        if not self.config.slice_var_up:
242
            random.seed(self.origin_program.random_seed)
S
seiriosPlus 已提交
243
            random.shuffle(grad_var_mapping_items)
244

245 246
        grad_name_to_send_dummy_out = dict()
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
247
            eplist = ps_dispatcher.dispatch(splited_vars)
248

G
gongweibao 已提交
249
            if not self.config.slice_var_up:
250 251
                assert (len(splited_vars) == 1)

252
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
253
            if len(splited_vars) == 1:
254
                splited_grad_varname = splited_vars[0].name
Y
Yancey1989 已提交
255
                index = find_op_by_output_arg(program.global_block(),
256
                                              splited_grad_varname)
Y
Yancey1989 已提交
257
            elif len(splited_vars) > 1:
258
                orig_var = program.global_block().vars[splited_grad_varname]
Y
Yancey1989 已提交
259
                index = find_op_by_output_arg(program.global_block(),
260
                                              splited_grad_varname)
Y
Yancey1989 已提交
261
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
262
                index += 1
Y
Yancey1989 已提交
263 264
            else:
                AssertionError("Can not insert the send op by original "
265
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
266

W
Wu Yi 已提交
267 268
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
269
            grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
270

W
Wu Yi 已提交
271
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
272
                index=index + 1,
273
                type="send",
Y
update  
Yancey1989 已提交
274
                inputs={"X": splited_vars},
275
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
276 277
                attrs={
                    "epmap": eplist,
278
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
279 280
                    OP_ROLE_VAR_ATTR_NAME:
                    [self.grad_name_to_param_name[grad_varname], grad_varname],
281
                    "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
282
                })
Y
update  
Yancey1989 已提交
283 284
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
285 286 287 288 289

        if self.sync_mode:
            program.global_block().append_op(
                type="send_barrier",
                inputs={},
Y
Yancey1989 已提交
290
                outputs={},
Y
Yancey1989 已提交
291 292
                attrs={
                    "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
293
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
294
                })
Y
Yancey1989 已提交
295

G
gongweibao 已提交
296
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
297
        recv_vars = []
Y
update  
Yancey1989 已提交
298
        for _, var in enumerate(send_vars):
299
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
300
        ps_dispatcher.reset()
Y
Yancey1989 已提交
301 302
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
303
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
304 305
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
306

Y
Yancey1989 已提交
307
        # step4: Concat the parameters splits together after recv.
308
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
309 310 311 312
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
313 314
            grad_send_dummy_out = grad_name_to_send_dummy_out[
                self.param_name_to_grad_name[param_varname]]
Y
Yancey1989 已提交
315 316
            program.global_block().append_op(
                type="recv",
317
                inputs={"X": [grad_send_dummy_out]},
Y
Yancey1989 已提交
318 319 320
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
321
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
322 323 324 325
                    OP_ROLE_VAR_ATTR_NAME: [
                        param_varname,
                        self.param_name_to_grad_name[param_varname]
                    ],
326
                    "sync_mode": not self.sync_mode
Y
Yancey1989 已提交
327
                })
T
typhoonzero 已提交
328

Q
qiaolongfei 已提交
329 330 331 332 333 334 335 336 337
        if self.sync_mode:
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
                outputs={},
                attrs={
                    "endpoints": pserver_endpoints,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
338

339
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
340 341
            if len(splited_var) <= 1:
                continue
342
            orig_param = program.global_block().vars[param_varname]
T
typhoonzero 已提交
343
            program.global_block().append_op(
T
typhoonzero 已提交
344
                type="concat",
T
typhoonzero 已提交
345
                inputs={"X": splited_var},
T
typhoonzero 已提交
346
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
347
                attrs={"axis": 0})
T
typhoonzero 已提交
348

G
gongweibao 已提交
349 350
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

351
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
352 353
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
354
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
355

T
typhoonzero 已提交
356
    def get_trainer_program(self):
Y
yi.wu 已提交
357 358 359 360 361 362
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
363
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
364
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
365
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
366
        self.origin_program.__str__()
G
gongweibao 已提交
367

368
        return self.origin_program
T
typhoonzero 已提交
369

G
gongweibao 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
    def _get_trainer_startup_program(self,
                                     recv_vars,
                                     eplist,
                                     startup_program=None):
        """
        Get transpiled trainer side startup program.

        Args:
            startup_program(Program): Startup program.

        Returns:
            Program: trainer side startup program.
        """
        if startup_program is None:
            startup_program = self.startup_program

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
389
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
410
                inputs={"X": []},
G
gongweibao 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
            outputs={},
            attrs={
                "endpoints": self.pserver_endpoints,
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
426
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
427 428 429 430 431 432 433 434 435 436 437 438
            #add concat ops to merge splited parameters received from parameter servers.
            if len(splited_var) <= 1:
                continue
            orig_param = startup_program.global_block().vars[varname]
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
439 440
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
441
        Get parameter server side program.
442

Y
yi.wu 已提交
443 444
        Args:
            endpoint (str): current parameter server endpoint.
445

Y
yi.wu 已提交
446 447
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
448
        """
Y
yi.wu 已提交
449 450 451 452 453
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.

T
typhoonzero 已提交
454 455
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
456
        pserver_program.random_seed = self.origin_program.random_seed
457
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
458 459 460 461 462 463 464 465
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
466 467 468 469 470
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
471 472 473 474 475 476 477 478 479
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
480
            if self.sync_mode and self.trainer_num > 1:
481
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
482 483 484 485 486 487 488 489 490
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
491

Q
qiaolongfei 已提交
492
        # step 3
493
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
494 495 496
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
497
        # step 3.2
T
typhoonzero 已提交
498 499 500 501
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
502 503
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
504
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
505
        # step 3.3
T
typhoonzero 已提交
506
        # Iterate through the ops, and if an op and the optimize ops
507
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
508
        # append it into the sub program.
T
typhoonzero 已提交
509 510 511

        global_ops = []

Y
wip  
yi.wu 已提交
512 513
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
514
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
515
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
516
                                         self.origin_program, merged_var)
Y
wip  
yi.wu 已提交
517
            elif op not in lr_ops:
Q
Qiyang Min 已提交
518
                self._append_pserver_non_opt_ops(block, op)
519 520 521 522 523 524

        def __op_have_grad_input__(op):
            for varname in op.input_arg_names:
                if varname.find("@GRAD") >= 0:
                    return varname
            return ""
T
typhoonzero 已提交
525

Y
Yancey1989 已提交
526
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
527 528 529 530 531 532 533 534
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
Y
Yancey1989 已提交
535
            new_sub_block = program.create_block(lr_block.idx)
Q
Qiyang Min 已提交
536 537 538

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
539
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
540 541

            # clone ops
Y
Yancey1989 已提交
542 543
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
544
                # clone sub_block of op
Y
Yancey1989 已提交
545
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
546 547 548 549

            # reset the block of op
            op.set_attr('sub_block', new_sub_block)

550
        # append lr decay ops to the child block if exists
551
        lr_ops = self._get_lr_ops()
552 553
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
554
        if len(lr_ops) > 0:
Q
qiaolongfei 已提交
555 556
            lr_decay_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
557
            optimize_blocks.append(lr_decay_block)
558
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
559
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
560
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
561 562
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
563

T
typhoonzero 已提交
564
        # append op to the current block
Q
qiaolongfei 已提交
565
        grad_to_block_id = []
Q
qiaolongfei 已提交
566
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
567
        for idx, opt_op in enumerate(opt_op_on_pserver):
568
            per_opt_block = pserver_program.create_block(pre_block_idx)
569
            optimize_blocks.append(per_opt_block)
570
            # append grad merging ops before clip and weight decay
571
            # cases may like:
T
typhoonzero 已提交
572
            # L2Decay op -> clip op -> optimize
573 574 575 576 577 578 579
            for _, op in enumerate(self.optimize_ops):
                # find the origin @GRAD var before clipping
                grad_varname_for_block = __op_have_grad_input__(op)
                if ufind.is_connected(op, opt_op) and grad_varname_for_block:
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
T
typhoonzero 已提交
580
                    break  # append optimize op once then append other ops.
T
typhoonzero 已提交
581 582
            for _, op in enumerate(self.optimize_ops):
                # optimizer is connected to itself
583
                if ufind.is_connected(op, opt_op) and op not in global_ops:
584
                    __append_optimize_op__(op, per_opt_block, grad_to_block_id,
Y
wip  
yi.wu 已提交
585
                                           merged_var, lr_ops)
T
typhoonzero 已提交
586

W
Wu Yi 已提交
587 588
        # dedup grad to ids list
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
589
        # append global ops
590
        if global_ops:
Q
qiaolongfei 已提交
591 592
            opt_state_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
593
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
594
            for glb_op in global_ops:
X
Xi Chen 已提交
595
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
596
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
597

598
        # process distributed lookup_table
Q
qiaolongfei 已提交
599
        prefetch_var_name_to_block_id = []
600 601
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
602
            table_opt_block = self._create_table_optimize_block(
603
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
604
            optimize_blocks.append(table_opt_block)
Q
qiaolongfei 已提交
605
            prefetch_var_name_to_block_id = self._create_prefetch_block(
606
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
607 608
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
609

T
tangwei12 已提交
610 611
            pserver_program._distributed_lookup_table = self.table_name

612 613 614
        # NOTE: if has_distributed_lookup_table is False, then prefetch_block will
        # not be executed, so it's safe to use optimize_block to hold the place
        if self.has_distributed_lookup_table:
Q
qiaolongfei 已提交
615
            assert len(prefetch_var_name_to_block_id) > 0
616
        else:
Q
qiaolongfei 已提交
617
            assert len(prefetch_var_name_to_block_id) == 0
618

619
        attrs = {
620
            "optimize_blocks": optimize_blocks,
621 622 623
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
624
            "grad_to_block_id": grad_to_block_id,
625 626 627 628
        }
        if len(prefetch_var_name_to_block_id) > 0:
            attrs['prefetch_var_name_to_block_id'] \
                = prefetch_var_name_to_block_id
T
tangwei12 已提交
629
            attrs['checkpint_block_id'] = checkpoint_block_id
630

T
typhoonzero 已提交
631 632 633 634 635
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
636
            attrs=attrs)
637

T
tangwei12 已提交
638
        # add distributed attrs
T
tangwei12 已提交
639
        pserver_program._slice_vars_and_attrs = self._get_slice_vars_and_attrs(
T
tangwei12 已提交
640
            endpoint)
641

W
Wu Yi 已提交
642
        pserver_program._sync_with_cpp()
T
typhoonzero 已提交
643 644
        return pserver_program

645 646 647 648
    def get_startup_program(self,
                            endpoint,
                            pserver_program,
                            startup_program=None):
T
typhoonzero 已提交
649 650 651 652
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
653 654 655 656 657

        Args:
            endpoint (str): current pserver endpoint.
            pserver_program (Program): call get_pserver_program first and
                pass the result here.
658 659
            startup_program (Program): if pass None, will use
                default_startup_program
660

Y
yi.wu 已提交
661 662
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
663 664
        """
        s_prog = Program()
665 666 667 668
        if not startup_program:
            orig_s_prog = default_startup_program()
        else:
            orig_s_prog = startup_program
X
Xin Pan 已提交
669
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
670 671 672 673 674 675 676 677 678 679 680
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
681
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
682
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
683
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
684 685 686 687
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
688
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
689 690
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
691 692 693 694 695 696 697 698 699 700
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
701 702

            if op_on_pserver:
703 704 705
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
706 707 708
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
G
gongweibao 已提交
709
                    op.set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
710 711 712 713
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
714
                    attrs=op.all_attrs())
715 716

        # add slice vars
T
tangwei12 已提交
717
        s_prog._slice_vars_and_attrs = self._get_slice_vars_and_attrs(endpoint)
718

T
typhoonzero 已提交
719 720
        return s_prog

T
tangwei12 已提交
721 722 723
    def _get_slice_vars_and_attrs(self, endpoint):
        slice_vars_and_attrs = []
        block_suffix = "block"
724
        for param in self.param_grad_ep_mapping[endpoint]["params"]:
T
tangwei12 已提交
725
            orig_var_name, block_name, _ = self._get_varname_parts(param.name)
T
tangwei12 已提交
726
            if not block_name:
727 728
                continue

T
tangwei12 已提交
729
            block_idx = int(block_name.split(block_suffix)[1])
730 731 732 733 734 735
            orig_var = self.origin_program.global_block().vars[orig_var_name]

            skip_numel = 0
            slice_vars = self.param_var_mapping[orig_var_name]
            for slice_var in slice_vars[:block_idx]:
                skip_numel += reduce(lambda x, y: x * y, slice_var.shape)
T
tangwei12 已提交
736
            slice_vars_and_attrs.append([orig_var, skip_numel, param])
737

T
tangwei12 已提交
738
        return slice_vars_and_attrs
739

740 741
    # ====================== private transpiler functions =====================

Y
yi.wu 已提交
742 743 744 745 746 747 748 749 750
    def _has_distributed_lookup_table(self):
        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
        for op in self.origin_program.global_block().ops:
            if op.type == LOOKUP_TABLE_TYPE:
G
gongweibao 已提交
751
                if op.attr('is_distributed') is True:
Y
yi.wu 已提交
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

        return len(distributed_lookup_table_ops) > 0

    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
803
    def _init_splited_vars(self):
Y
yi.wu 已提交
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
827
        if self.config.slice_var_up:
Y
yi.wu 已提交
828 829
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
830 831 832
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
833
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
834 835
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
836 837 838
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
839 840 841 842
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
843 844
        assert (len(grad_blocks) == len(param_blocks))

845
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
846 847
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
848
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
849 850 851 852
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
853
        # dict(grad_splited_var -> param_splited_var)
854
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
855 856 857 858
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] =  \
859
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
860 861

        # create mapping of endpoint -> split var to create pserver side program
862
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
863 864 865 866 867 868 869 870 871
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

872
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
873 874
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
875
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
Q
qiaolongfei 已提交
876 877 878 879 880 881 882 883 884
        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_input_vars = []

        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_output_vars = []
885 886 887 888 889 890 891 892 893

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

894
                    lookup_table_op_index = list(all_ops).index(op)
895 896 897
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
898
                    ids_var = program.global_block().vars[ids_name[0]]
W
Wu Yi 已提交
899
                    prefetch_input_vars = self._create_splited_vars(
Q
qiaolongfei 已提交
900 901 902 903 904 905
                        source_var=ids_var,
                        block=program.global_block(),
                        tag="_prefetch_in_")
                    self.all_prefetch_input_vars.append(prefetch_input_vars)

                    out_var = program.global_block().vars[out_name[0]]
W
Wu Yi 已提交
906
                    prefetch_output_vars = self._create_splited_vars(
Q
qiaolongfei 已提交
907 908 909 910
                        source_var=out_var,
                        block=program.global_block(),
                        tag="_prefetch_out_")
                    self.all_prefetch_output_vars.append(prefetch_output_vars)
911 912

                    # insert split_ids_op
W
Wu Yi 已提交
913
                    program.global_block()._insert_op(
914
                        index=lookup_table_op_index,
915 916 917 918 919 920 921
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
Q
qiaolongfei 已提交
922
                        outputs={"Out": prefetch_input_vars})
923 924

                    # insert prefetch_op
W
Wu Yi 已提交
925
                    program.global_block()._insert_op(
926
                        index=lookup_table_op_index + 1,
927
                        type="prefetch",
Q
qiaolongfei 已提交
928 929
                        inputs={'X': prefetch_input_vars},
                        outputs={"Out": prefetch_output_vars},
Y
Yancey1989 已提交
930
                        attrs={
931
                            "epmap": pserver_endpoints,
932 933 934
                            # FIXME(qiao) temporarily disable this config because prefetch
                            # is not act as other rpc op, it's more like a forward op
                            # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
935
                        })
936 937

                    # insert concat_op
W
Wu Yi 已提交
938
                    program.global_block()._insert_op(
939 940 941 942 943 944 945
                        index=lookup_table_op_index + 2,
                        type="merge_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ],
946
                            'X': prefetch_output_vars
947
                        },
948 949 950 951 952
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
953
                        })
954 955

                    # delete lookup_table_op
956
                    delete_ops(program.global_block(), [op])
957 958 959
                    # break for loop
                    break

Y
Yancey1989 已提交
960
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
961
        # 2. add split_ids_op and send_op to send gradient to pservers
962 963
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
964
        table_grad_name = grad_var_name(self.table_name)
965 966 967 968
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
969
                program.global_block()._insert_op(
970 971 972 973 974
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
975
                    outputs={"Out": self.trainer_side_table_grad_list})
W
Wu Yi 已提交
976
                program.global_block()._insert_op(
977
                    index=op_index + 2,
978
                    type="send",
979
                    inputs={'X': self.trainer_side_table_grad_list},
980
                    outputs={'Out': []},
Y
Yancey1989 已提交
981
                    attrs={
982
                        "sync_mode": True,
Y
Yancey1989 已提交
983
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
984 985 986 987 988
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
989
                    })
990 991 992 993 994 995
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
        prefetch_var_name_to_block_id = []
        for index in range(len(self.all_prefetch_input_vars)):
            prefetch_block = pserver_program.create_block(optimize_block.idx)
            trainer_ids = self.all_prefetch_input_vars[index][pserver_index]
            pserver_ids = pserver_program.global_block().create_var(
                name=trainer_ids.name,
                type=trainer_ids.type,
                shape=trainer_ids.shape,
                dtype=trainer_ids.dtype)
            trainer_out = self.all_prefetch_output_vars[index][pserver_index]
            pserver_out = pserver_program.global_block().create_var(
                name=trainer_out.name,
                type=trainer_out.type,
                shape=trainer_out.shape,
                dtype=trainer_out.dtype)
            prefetch_block.append_op(
                type="lookup_sparse_table",
                inputs={'Ids': pserver_ids,
                        "W": table_var},
                outputs={"Out": pserver_out},
                attrs={
                    "is_sparse": True,  # has no effect on lookup_table op
                    "is_distributed": True,
                    "padding_idx": -1
                })
            prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
                prefetch_block.idx))
        return prefetch_var_name_to_block_id
1024 1025

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1026
                                     pre_block_idx, grad_to_block_id):
1027 1028
        # STEP: create table optimize block
        # create table param and grad var in pserver program
Y
Yancey1989 已提交
1029 1030
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1031

T
tangwei12 已提交
1032
        zero_dim = int(
T
tangwei12 已提交
1033 1034 1035 1036
            math.ceil(origin_param_var.shape[0] / len(self.pserver_endpoints)))
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1037 1038
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1039
            shape=table_shape,
Y
Yancey1989 已提交
1040 1041 1042
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1043 1044
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1045
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1046
            self.origin_program.global_block().vars[grad_var_name(
1047
                self.table_name)])
1048 1049 1050 1051

        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
1052 1053
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1054
        ][0]
Q
qiaolongfei 已提交
1055
        table_opt_block = pserver_program.create_block(pre_block_idx)
1056

1057 1058 1059
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1060
            pserver_side_table_grad_list = [
1061 1062 1063 1064 1065 1066 1067 1068 1069
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1070
            # append sum op for pserver_side_table_grad_list
1071 1072
            table_opt_block.append_op(
                type="sum",
1073
                inputs={"X": pserver_side_table_grad_list},
1074 1075
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1076 1077
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1078
            origin_grad_name = grad_var.name
1079 1080
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1081 1082
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1083
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1084
            grad_var = pserver_program.global_block()._rename_var(
1085
                origin_grad_name, splited_grad_name)
1086 1087 1088 1089 1090 1091 1092 1093 1094

        lr_var = pserver_program.global_block().vars[table_opt_op.input(
            "LearningRate")[0]]
        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1095
        # only support sgd now
1096 1097 1098 1099
        import logging
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1100
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1101

1102 1103 1104
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1105 1106
        return table_opt_block

T
tangwei12 已提交
1107 1108 1109 1110 1111 1112
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """
        import os

T
tangwei12 已提交
1113
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1114
            name="kLookupTablePath",
T
tangwei12 已提交
1115 1116
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1117

T
tangwei12 已提交
1118
        checkpoint_save_block = pserver_program.create_block(pre_block_idx)
T
tangwei12 已提交
1119
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1120 1121 1122 1123
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1124
            attrs={'file_path': "none"})
T
tangwei12 已提交
1125 1126 1127

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1128 1129 1130 1131 1132
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1133
        Create vars for each split.
T
typhoonzero 已提交
1134 1135
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1136 1137 1138 1139
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1140
        Returns:
1141
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1142
                from original var name to each var split.
T
typhoonzero 已提交
1143
        """
1144 1145

        # varname->[(block_id, current_block_size)]
1146
        block_map = collections.OrderedDict()
1147

1148
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1149 1150
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1151
            if varname not in block_map:
T
typhoonzero 已提交
1152
                block_map[varname] = []
1153
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1154

M
minqiyang 已提交
1155
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1156
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1157
            if len(splited) == 1:
1158
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1159 1160
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1161
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1162 1163 1164 1165 1166
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1167
                continue
T
typhoonzero 已提交
1168
            var_mapping[varname] = []
T
typhoonzero 已提交
1169 1170 1171 1172
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1173

T
typhoonzero 已提交
1174
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1175
                size = block[1]
M
minqiyang 已提交
1176
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1177 1178 1179
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1180
                new_var_name = ""
1181
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1182 1183 1184 1185 1186
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
1187
                var = program.global_block().create_var(
T
typhoonzero 已提交
1188 1189
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1190
                    dtype=orig_var.dtype,
1191
                    type=orig_var.type,
T
typhoonzero 已提交
1192
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1193
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1194
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1195
        return var_mapping
T
done  
typhoonzero 已提交
1196

W
Wu Yi 已提交
1197
    def _create_splited_vars(self, source_var, block, tag):
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1208 1209 1210 1211 1212 1213
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1214
            persistable=persistable)
T
done  
typhoonzero 已提交
1215

Y
Yancey1989 已提交
1216
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
1217 1218 1219 1220
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
W
Wu Yi 已提交
1221
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1222 1223 1224 1225 1226 1227 1228 1229 1230
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"height_sections": height_sections})
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
W
Wu Yi 已提交
1231
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1232 1233 1234 1235 1236 1237 1238 1239 1240
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"sections": sections}  # assume split evenly
            )
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1241

T
typhoonzero 已提交
1242 1243 1244 1245
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1246
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
1262 1263
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
1264 1265 1266 1267 1268
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

1269 1270
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1271
        orig_var_name = ""
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1282
        else:
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
            return
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1310
        else:
1311 1312 1313 1314 1315 1316
            merged_var_name = orig_varname
        merged_var = \
            pserver_block.vars[merged_var_name]
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1317
            for i in range(self.trainer_num):
1318 1319 1320 1321 1322 1323 1324
                per_trainer_name = "%s.trainer_%d" % \
                (merged_var_name, i)
                vars2merge.append(pserver_block.vars[per_trainer_name])

            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1325 1326
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
1327 1328 1329 1330 1331 1332 1333 1334
            # TODO(panyx0718): What if it's SELECTED_ROWS.
            if not merged_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                optimize_block.append_op(
                    type="scale",
                    inputs={"X": merged_var},
                    outputs={"Out": merged_var},
                    attrs={"scale": 1.0 / float(self.trainer_num)})
        return merged_var
T
typhoonzero 已提交
1335

1336
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1337
                            grad_to_block_id, origin_program, merged_var):
1338
        program = optimize_block.program
T
typhoonzero 已提交
1339
        pserver_block = program.global_block()
1340
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

T
typhoonzero 已提交
1351
        for key in opt_op.input_names:
T
typhoonzero 已提交
1352 1353 1354
            if key == "Grad":
                new_inputs[key] = merged_var
            elif key == "Param":
W
Wu Yi 已提交
1355
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
1356 1357
                if not param_block:
                    return
T
typhoonzero 已提交
1358
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1359
                    name=param_block.name,
T
typhoonzero 已提交
1360
                    persistable=True,
T
typhoonzero 已提交
1361 1362 1363
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1364
            elif key == "LearningRate":
1365
                # learning rate variable has already be created by non-optimize op,
1366
                # don't create it once again.
1367
                lr_varname = opt_op.input(key)[0]
1368
                if lr_varname in pserver_block.vars:
1369 1370 1371 1372 1373 1374 1375 1376 1377
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1378

T
typhoonzero 已提交
1379
        for key in opt_op.input_names:
1380
            new_shape = None
W
Wu Yi 已提交
1381
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1382
                continue
1383
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1384 1385 1386 1387
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1388
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1389 1390 1391 1392 1393
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1394

1395
        # change output's ParamOut variable
1396 1397
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1398
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
1399

1400
        optimize_block.append_op(
T
typhoonzero 已提交
1401 1402
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1403
            outputs=outputs,
G
gongweibao 已提交
1404
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1405

1406 1407
    def _is_splited_grad_var(self, var, var_dict):
        grad_block = None
M
minqiyang 已提交
1408
        for _, g in six.iteritems(var_dict):
1409 1410 1411 1412 1413 1414
            if self._orig_varname(g.name) == self._orig_varname(var.name):
                if g.name.find(".trainer_") == -1:
                    grad_block = g
                    break
        return grad_block

Q
Qiyang Min 已提交
1415 1416 1417
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1418
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
1419 1420 1421 1422
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1423
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1424 1425 1426

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1427
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
1428 1429 1430 1431
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1432
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1433

Y
Yancey1989 已提交
1434
        return block.append_op(
G
gongweibao 已提交
1435
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
1436 1437

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1438
        program = optimize_block.program
1439
        # Append the ops for parameters that do not need to be optimized/updated
1440 1441
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1442
        for key, varlist in six.iteritems(inputs):
1443 1444
            if not isinstance(varlist, list):
                varlist = [varlist]
T
typhoonzero 已提交
1445
            for var in varlist:
1446 1447 1448 1449 1450 1451
                # for ops like clipping and weight decay, get the splited var
                # for inputs/outputs
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    inputs[key] = grad_block
1452
                elif var.name not in program.global_block().vars:
1453
                    program.global_block().create_var(
T
typhoonzero 已提交
1454 1455 1456 1457 1458
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1459 1460
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1461
        for key, varlist in six.iteritems(outputs):
1462 1463 1464
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
1465 1466 1467 1468
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    outputs[key] = grad_block
1469
                elif var.name not in program.global_block().vars:
W
Wu Yi 已提交
1470
                    program.global_block()._clone_variable(var)
1471

Y
Yancey1989 已提交
1472
        return optimize_block.append_op(
T
typhoonzero 已提交
1473
            type=opt_op.type,
T
typhoonzero 已提交
1474 1475
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
1476
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1477

1478 1479 1480 1481
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
1482 1483
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
           set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
1484 1485 1486 1487 1488 1489
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
1490 1491
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
1492 1493 1494 1495 1496 1497
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1498
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1499 1500
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
1501 1502 1503 1504 1505 1506 1507
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1508
        if op.input("Param")[0] in param_names:
1509 1510 1511
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1512
                param = op.input("Param")[0]
T
typhoonzero 已提交
1513
                if same_or_split_var(n, param) and n != param:
1514 1515 1516
                    return True
            return False

T
typhoonzero 已提交
1517
    def _get_input_map_from_op(self, varmap, op):
1518
        """Returns a dict from op input name to the vars in varmap."""
1519
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1531
        """Returns a dict from op output name to the vars in varmap."""
1532
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1533 1534 1535 1536 1537 1538 1539 1540 1541
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1542 1543 1544 1545 1546 1547

    def _get_lr_ops(self):
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
1548
            if self._is_optimizer_op(op):
1549 1550 1551 1552
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1553
        block = self.origin_program.global_block()
1554 1555 1556 1557 1558
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1559

1560 1561 1562 1563 1564
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
1565
                    not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
1566 1567 1568 1569 1570 1571
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1572 1573
                    # we only need to append op for once
                    break
1574
        return lr_ops
Y
Yancey1989 已提交
1575

W
Wu Yi 已提交
1576 1577 1578 1579 1580
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
1581 1582
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
1583 1584 1585
            return True
        return False

Y
Yancey1989 已提交
1586
    def _get_optimize_pass(self):
1587
        """
1588
        Get optimizer operators, parameters and gradients from origin_program
1589 1590 1591 1592
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1593 1594 1595
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
1596
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
1597
        for op in block.ops:
W
Wu Yi 已提交
1598
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
1599
                opt_ops.append(op)
1600 1601 1602 1603 1604
                # HACK(wuyi): if we find grad vars from input of optimize
                # ops, we may get the output of clip op. Use syntax "@GRAD"
                # and op_role_var to get the pair.
                for input_name in op.input_arg_names:
                    if input_name.find("@GRAD") != -1 and \
G
gongweibao 已提交
1605 1606
                        op.attr(RPC_OP_ROLE_ATTR_NAME):
                        param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
1607 1608 1609 1610
                        params_grads.append([
                            origin_var_dict[param_name],
                            origin_var_dict[input_name]
                        ])
Y
Yancey1989 已提交
1611 1612 1613
            else:
                pass
        return opt_ops, params_grads