distribute_transpiler.py 22.1 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
typhoonzero 已提交
15
from __future__ import print_function
T
done  
typhoonzero 已提交
16 17 18 19
import framework
from framework import Program, default_main_program, Parameter, Variable
import optimizer
from layer_helper import LayerHelper
T
typhoonzero 已提交
20
from distributed_spliter import *
T
typhoonzero 已提交
21
import math
22
from . import core
T
done  
typhoonzero 已提交
23 24


T
typhoonzero 已提交
25 26 27 28 29 30
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
31

T
typhoonzero 已提交
32 33
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
34 35


T
typhoonzero 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
def split_dense_variable(var_list,
                         pserver_count,
                         min_block_size=1024,
                         max_block_size=1048576):
    """
        We may need to split dense tensor to one or several blocks and put
        them equally onto parameter server. One block is a sub-tensor
        aligned by dim[0] of the tensor.
        
        We need to have a minimal block size so that the calculations in
        the parameter server side can gain better performance. By default
        mininum block size is 1024. The max block size is used to prevent
        too large block that may causing send error.
    """
    blocks = []
    for var in var_list:
        split_count = pserver_count
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
        if max_pserver_count < pserver_count:
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
        # update split_count after align
        split_count = int(math.ceil(var_numel / float(block_size)))
        for block_id in xrange(split_count):
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


T
done  
typhoonzero 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
class DistributeTranspiler:
    def transpile(self,
                  optimize_ops,
                  params_grads,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
                  split_method=round_robin):
        """
            Transpile the program to a distributed data-parallelism programs.
            The main_program will be transform to use a remote parameter server
            to do parameter optimization. And the optimization graph will be put
            in to a parameter server program.

            Use different methods to split trainable varialbles to different
            parameter servers.

            :param optimize_ops: op list of optimization, should be the
                                 return value of Optimizer.minimize
            :type optimize_ops: list
            :param program: program to optimize, default default_main_program
            :param pservers: parameter server endpoints like "m1:6174,m2:6174"
            :type pservers: string
            :return: return a list of programs
        """
T
typhoonzero 已提交
102
        assert (callable(split_method))
T
done  
typhoonzero 已提交
103 104
        if program is None:
            program = default_main_program()
T
typhoonzero 已提交
105
        self.program = program
T
done  
typhoonzero 已提交
106
        self.trainers = trainers
T
typhoonzero 已提交
107
        self.optimize_ops = optimize_ops
T
typhoonzero 已提交
108 109 110 111 112 113
        # steps to transpile:
        # 1. split variable to multiple blocks, align by product(dim[1:]) (width).
        # 2. modify trainer program add split_op to each Grad.
        # 3. append send_op to trainer.
        # 4. append concat_op to trainer to update local weights.
        # 5. create new program as parameter server.
T
typhoonzero 已提交
114
        # 6. create parameter server program by split_method generated endpoint->VarBlock
T
typhoonzero 已提交
115

T
typhoonzero 已提交
116
        pserver_endpoints = pservers.split(",")
T
typhoonzero 已提交
117 118

        # step1
T
typhoonzero 已提交
119 120
        param_list = [pg[0] for pg in params_grads]
        grad_list = [pg[1] for pg in params_grads]
T
typhoonzero 已提交
121
        # TODO: add split selected rows support
T
typhoonzero 已提交
122 123
        grad_blocks = split_dense_variable(grad_list, len(pserver_endpoints))
        param_blocks = split_dense_variable(param_list, len(pserver_endpoints))
T
typhoonzero 已提交
124
        # step2
T
typhoonzero 已提交
125
        grad_var_mapping = self._append_split_op(program, grad_blocks)
T
typhoonzero 已提交
126 127 128

        # step3
        send_inputs = []
T
typhoonzero 已提交
129
        send_outputs = []
T
typhoonzero 已提交
130 131 132 133
        for b in grad_blocks:  # append by order
            varname, block_id, _ = b.split(":")
            send_inputs.append(grad_var_mapping[varname][int(block_id)])

T
typhoonzero 已提交
134 135
        param_var_mapping = self._create_vars_from_blocklist(program,
                                                             param_blocks)
T
typhoonzero 已提交
136 137 138
        for b in param_blocks:
            varname, block_id, _ = b.split(":")
            send_outputs.append(param_var_mapping[varname][int(block_id)])
T
typhoonzero 已提交
139 140 141
        # let send_op know which endpoint to send which var, eplist is of the same
        # order of send_inputs.
        eplist = split_method(send_inputs, pserver_endpoints)
T
typhoonzero 已提交
142
        # create mapping of endpoint -> splited var to create pserver side program
T
typhoonzero 已提交
143 144 145 146 147 148 149 150
        self.param_grad_ep_mapping = dict()
        for i, ep in enumerate(eplist):
            param = send_outputs[i]
            grad = send_inputs[i]
            if not self.param_grad_ep_mapping.has_key(ep):
                self.param_grad_ep_mapping[ep] = {"params": [], "grads": []}
            self.param_grad_ep_mapping[ep]["params"].append(param)
            self.param_grad_ep_mapping[ep]["grads"].append(grad)
T
typhoonzero 已提交
151 152 153 154 155 156

        send_op = program.global_block().append_op(
            type="send",
            inputs={"X": send_inputs},
            outputs={"Out": send_outputs},
            attrs={"endpoints": pserver_endpoints,
T
typhoonzero 已提交
157 158 159
                   "epmap": eplist})
        # step4
        for varname, splited_var in param_var_mapping.iteritems():
T
typhoonzero 已提交
160 161
            if len(splited_var) <= 1:
                continue
T
typhoonzero 已提交
162 163 164
            orig_param = program.global_block().vars[varname]
            concat = program.global_block().append_op(
                type="concat",
T
typhoonzero 已提交
165
                inputs={"X": splited_var},
T
typhoonzero 已提交
166
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
167
                attrs={"axis": 0})
T
typhoonzero 已提交
168 169 170

    def _create_vars_from_blocklist(self, program, block_list):
        block_map = dict()
T
typhoonzero 已提交
171
        var_mapping = dict()
T
typhoonzero 已提交
172 173 174 175 176 177 178
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
            if not block_map.has_key(varname):
                block_map[varname] = []
            block_map[varname].append((long(offset), long(size)))
        for varname, splited in block_map.iteritems():
            orig_var = program.global_block().vars[varname]
T
typhoonzero 已提交
179 180 181 182
            var_mapping[varname] = []
            if len(splited) == 1:
                var_mapping[varname] = [orig_var]
                continue
T
typhoonzero 已提交
183 184 185 186
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
187

T
typhoonzero 已提交
188
            for i, block in enumerate(splited):
T
typhoonzero 已提交
189
                size = block[1]
T
typhoonzero 已提交
190 191 192 193
                rows = size / orig_dim1_flatten
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
194 195 196 197
                var = program.global_block().create_var(
                    name="%s.block%d" % (varname, i),
                    psersistable=False,
                    dtype=orig_var.dtype,
T
typhoonzero 已提交
198
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
199
                var_mapping[varname].append(var)
T
typhoonzero 已提交
200
        return var_mapping
T
done  
typhoonzero 已提交
201 202 203 204 205 206 207 208 209

    def _clone_var(self, block, var):
        assert isinstance(var, Variable)
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
T
typhoonzero 已提交
210 211 212
            # HACK: let all param in pserver persistable so child
            # program in recv can get them
            persistable=True)
T
done  
typhoonzero 已提交
213

T
typhoonzero 已提交
214 215 216
    def _append_split_op(self, program, gradblocks):
        var_mapping = self._create_vars_from_blocklist(program, gradblocks)
        for varname, splited_vars in var_mapping.iteritems():
T
typhoonzero 已提交
217 218
            # variable that don't need to split have empty splited_vars
            if len(splited_vars) <= 1:
T
typhoonzero 已提交
219
                continue
T
typhoonzero 已提交
220
            orig_var = program.global_block().vars[varname]
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
            if orig_var == core.VarDesc.VarType.SELECTED_ROWS:
                height_sections = []
                for v in splited_vars:
                    height_sections.append(v.shape[0])
                program.global_block().append_op(
                    type="split_selected_rows",
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"height_sections": height_sections})
            elif orig_var == core.VarDesc.VarType.LOD_TENSOR:
                sections = []
                for v in splited_vars:
                    sections.append(v.shape[0])
                program.global_block().append_op(
                    type="split",
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"sections": sections}  # assume split evenly
                )
            else:
                AssertionError("Variable type should be in set "
                               "[LOD_TENSOR, SELECTED_ROWS]")
T
typhoonzero 已提交
243
        return var_mapping
T
done  
typhoonzero 已提交
244

T
typhoonzero 已提交
245
    def get_trainer_program(self):
T
typhoonzero 已提交
246
        # remove optimize ops and add a send op to main_program
T
typhoonzero 已提交
247 248
        self.program.global_block().delete_ops(self.optimize_ops)
        return self.program
T
typhoonzero 已提交
249

T
done  
typhoonzero 已提交
250 251 252 253 254 255 256 257 258 259 260
    def _create_var_for_trainers(self, block, var, trainers):
        var_list = []
        for i in xrange(trainers):
            var_each = block.create_var(
                name="%s.trainer_%d" % (var.name, i),
                psersistable=var.persistable,
                dtype=var.dtype,
                shape=var.shape)
            var_list.append(var_each)
        return var_list

T
typhoonzero 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
        Param and Grad is splited to multiple servers.
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

T
typhoonzero 已提交
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
    def _is_op_on_pserver(self, endpoint, all_ops, idx):
        """
        Recursively check if the op need to run on current server.
        Assume that ops are in the execution order.
        """
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
        op = all_ops[idx]
        if op.inputs.has_key("Param"):
            if op.inputs["Param"].name in param_names:
                return True
            else:
                for n in param_names:
                    if n.startswith(op.inputs["Param"].name+".block") and \
                        n != op.inputs["Param"].name:
                        return True
                return False
        else:
            j = idx - 1
            while j >= 0:
                prev_op = all_ops[j]
                prev_output_names = [o.name for o in prev_op.outputs.values()]
                prev_input_names = [o.name for o in prev_op.inputs.values()]
                found1 = False
                found2 = False
                for _, v in op.inputs.iteritems():
                    if v.name in prev_output_names:
                        found1 = self._is_op_on_pserver(endpoint, all_ops, j)
                # later ops may produce output for prev op's next batch use.
                for _, v in op.outputs.iteritems():
                    if v.name in prev_input_names:
                        found2 = self._is_op_on_pserver(endpoint, all_ops, j)
                if found1 or found2:
                    return True
                j -= 1
            return False

    def _append_pserver_ops(self, program, pserver_program, opt_op, endpoint):
T
typhoonzero 已提交
327
        new_inputs = dict()
T
typhoonzero 已提交
328 329
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
T
typhoonzero 已提交
330 331 332 333 334 335 336 337 338 339 340
        for key, var in opt_op.inputs.iteritems():
            if key == "Grad":
                grad_block = None
                for g in self.param_grad_ep_mapping[endpoint]["grads"]:
                    if g.name.startswith(var.name):
                        grad_block = g
                        break
                if not grad_block:
                    # do not append this op if current endpoint
                    # is not dealing with this grad block
                    return
T
typhoonzero 已提交
341
                merged_var = program.global_block().create_var(
T
typhoonzero 已提交
342 343 344 345 346 347
                    name=grad_block.name,
                    persistable=grad_block.persistable,
                    dtype=grad_block.dtype,
                    shape=grad_block.shape)
                # append merging ops if trainers > 1
                if self.trainers > 1:
T
done  
typhoonzero 已提交
348
                    vars2merge = self._create_var_for_trainers(
T
typhoonzero 已提交
349 350
                        program.global_block(), grad_block, self.trainers)
                    program.global_block().append_op(
T
done  
typhoonzero 已提交
351 352 353
                        type="sum",
                        inputs={"X": vars2merge},
                        outputs={"Out": merged_var})
T
typhoonzero 已提交
354
                    program.global_block().append_op(
T
done  
typhoonzero 已提交
355 356 357 358
                        type="scale",
                        inputs={"X": merged_var},
                        outputs={"Out": merged_var},
                        attrs={"scale": 1.0 / float(self.trainers)})
T
typhoonzero 已提交
359 360 361 362 363 364 365 366 367 368
                new_inputs[key] = merged_var
            elif key == "Param":
                # param is already created on global program
                param_block = None
                for p in self.param_grad_ep_mapping[endpoint]["params"]:
                    if p.name.startswith(var.name):
                        param_block = p
                        break
                if not param_block:
                    return
T
typhoonzero 已提交
369
                tmpvar = program.global_block().create_var(
T
typhoonzero 已提交
370
                    name=param_block.name,
T
typhoonzero 已提交
371
                    persistable=True,
T
typhoonzero 已提交
372 373
                    dtype=param_block.dtype,
                    shape=param_block.shape)
T
typhoonzero 已提交
374

T
typhoonzero 已提交
375
                new_inputs[key] = tmpvar
T
typhoonzero 已提交
376 377 378 379 380 381 382 383 384 385 386 387 388 389

        for key, var in opt_op.inputs.iteritems():
            if key in ["Param", "Grad"]:
                continue
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
            tmpvar = program.global_block().create_var(
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
390 391 392 393 394 395 396 397
            # create var in pserver program global block.
            # TODO(typhoonzero): put blocks in one program to avoid create two
            # variables.
            pserver_program.global_block().create_var(
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
T
typhoonzero 已提交
398

T
typhoonzero 已提交
399 400
        # change outputs ParamOut variable
        opt_op.outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
401
        program.global_block().append_op(
T
typhoonzero 已提交
402 403 404 405 406
            type=opt_op.type,
            inputs=new_inputs,
            outputs=opt_op.outputs,
            attrs=opt_op.attrs)

T
typhoonzero 已提交
407
    def _append_pserver_non_opt_ops(self, program, pserver_program, opt_op):
T
typhoonzero 已提交
408
        for _, var in opt_op.inputs.iteritems():
T
typhoonzero 已提交
409
            program.global_block().create_var(
T
typhoonzero 已提交
410 411 412 413
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=var.shape)
T
typhoonzero 已提交
414 415 416 417 418
            pserver_program.global_block().create_var(
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=var.shape)
T
typhoonzero 已提交
419
        program.global_block().append_op(
T
typhoonzero 已提交
420
            type=opt_op.type,
T
typhoonzero 已提交
421
            inputs=opt_op.inputs,
T
typhoonzero 已提交
422 423 424
            outputs=opt_op.outputs,
            attrs=opt_op.attrs)

425
    def get_pserver_program(self, endpoint):
T
typhoonzero 已提交
426 427 428 429 430 431 432 433 434 435 436
        """
        get pserver side program by endpoint

        NOTE: assume blocks of the same variable is not distributed
        on the same pserver, only change param/grad varnames for
        trainers to fetch. For each pserver endpoint, server side
        program must be a sub-set of the original optimization program.
        """
        # step5
        pserver_program = Program()
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
437
            self._clone_var(pserver_program.global_block(), v)
T
typhoonzero 已提交
438 439 440 441 442 443 444 445 446 447 448 449 450
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            pserver_program.global_block().create_var(
                name=v.name, persistable=True, dtype=v.dtype, shape=v.shape)
            for trainer_id in xrange(self.trainers):
                print("create variable for program: %s.trainer_%d" %
                      (v.name, trainer_id))
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d" % (v.name, trainer_id),
                    persistable=True,
                    dtype=v.dtype,
                    shape=v.shape)
T
typhoonzero 已提交
451 452
        # step6
        optimize_sub_program = Program()
453 454 455
        for idx, opt_op in enumerate(self.optimize_ops):
            is_op_on_pserver = self._is_op_on_pserver(endpoint,
                                                      self.optimize_ops, idx)
T
typhoonzero 已提交
456 457
            if not is_op_on_pserver:
                continue
T
typhoonzero 已提交
458
            if opt_op.inputs.has_key("Grad"):
T
typhoonzero 已提交
459 460
                self._append_pserver_ops(optimize_sub_program, pserver_program,
                                         opt_op, endpoint)
T
typhoonzero 已提交
461
            else:
T
typhoonzero 已提交
462 463
                self._append_pserver_non_opt_ops(optimize_sub_program,
                                                 pserver_program, opt_op)
T
done  
typhoonzero 已提交
464 465
        pserver_program.global_block().append_op(
            type="recv",
T
typhoonzero 已提交
466 467
            inputs={"RX": self.param_grad_ep_mapping[endpoint]["grads"]
                    },  # grads to recv
T
done  
typhoonzero 已提交
468 469
            outputs={},
            attrs={
470
                "OptimizeBlock": optimize_sub_program.global_block(),
T
done  
typhoonzero 已提交
471
                "endpoint": endpoint,
T
typhoonzero 已提交
472 473 474 475 476 477 478 479
                "ParamList": [
                    p.name
                    for p in self.param_grad_ep_mapping[endpoint]["params"]
                ],
                "GradList": [
                    p.name
                    for p in self.param_grad_ep_mapping[endpoint]["grads"]
                ],
T
typhoonzero 已提交
480
                "Fanin": self.trainers
T
done  
typhoonzero 已提交
481 482 483
            })
        pserver_program.sync_with_cpp()
        return pserver_program
T
typhoonzero 已提交
484

T
typhoonzero 已提交
485
    def get_startup_program(self, endpoint, pserver_program):
T
typhoonzero 已提交
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        was splited to several blocks.
        """
        s_prog = Program()
        orig_s_prog = framework.default_startup_program()
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if pname.startswith(varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

Y
update  
yi.wu 已提交
502 503
        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
T
typhoonzero 已提交
504
        created_var_map = dict()
Y
update  
yi.wu 已提交
505
        for _, var in pserver_vars.iteritems():
T
typhoonzero 已提交
506 507
            tmpvar = s_prog.global_block().create_var(
                name=var.name,
T
typhoonzero 已提交
508
                persistable=var.persistable,
T
typhoonzero 已提交
509 510 511 512 513 514 515
                dtype=var.dtype,
                shape=var.shape)
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
            new_outputs = dict()
Y
update  
yi.wu 已提交
516 517
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
T
typhoonzero 已提交
518 519 520
            for key, var in op.outputs.iteritems():
                newname, _ = _get_splited_name_and_shape(var.name)
                if newname:
Y
update  
yi.wu 已提交
521
                    op_on_pserver = True
T
typhoonzero 已提交
522
                    new_outputs[key] = created_var_map[newname]
Y
update  
yi.wu 已提交
523
                elif var.name in pserver_vars:
T
typhoonzero 已提交
524
                    op_on_pserver = True
Y
update  
yi.wu 已提交
525 526
                    new_outputs[key] = pserver_vars[var.name]

T
typhoonzero 已提交
527
            if op_on_pserver:
T
typhoonzero 已提交
528 529 530
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
T
typhoonzero 已提交
531
                    op.attrs["shape"] = new_outputs["Out"].shape
T
typhoonzero 已提交
532 533 534 535 536 537
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=op.inputs,
                    outputs=new_outputs,
                    attrs=op.attrs)
        return s_prog