distribute_transpiler.py 11.9 KB
Newer Older
T
typhoonzero 已提交
1
from __future__ import print_function
T
done  
typhoonzero 已提交
2 3 4 5
import framework
from framework import Program, default_main_program, Parameter, Variable
import optimizer
from layer_helper import LayerHelper
T
typhoonzero 已提交
6
from distributed_spliter import *
T
typhoonzero 已提交
7
import math
T
done  
typhoonzero 已提交
8 9


T
typhoonzero 已提交
10 11 12 13 14 15
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
16

T
typhoonzero 已提交
17 18
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
19 20


T
typhoonzero 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
def split_dense_variable(var_list,
                         pserver_count,
                         min_block_size=1024,
                         max_block_size=1048576):
    """
        We may need to split dense tensor to one or several blocks and put
        them equally onto parameter server. One block is a sub-tensor
        aligned by dim[0] of the tensor.
        
        We need to have a minimal block size so that the calculations in
        the parameter server side can gain better performance. By default
        mininum block size is 1024. The max block size is used to prevent
        too large block that may causing send error.
    """
    blocks = []
    for var in var_list:
        split_count = pserver_count
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
        if max_pserver_count < pserver_count:
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
        # update split_count after align
        split_count = int(math.ceil(var_numel / float(block_size)))
        for block_id in xrange(split_count):
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


T
done  
typhoonzero 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
class DistributeTranspiler:
    def transpile(self,
                  optimize_ops,
                  params_grads,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
                  split_method=round_robin):
        """
            Transpile the program to a distributed data-parallelism programs.
            The main_program will be transform to use a remote parameter server
            to do parameter optimization. And the optimization graph will be put
            in to a parameter server program.

            Use different methods to split trainable varialbles to different
            parameter servers.

            :param optimize_ops: op list of optimization, should be the
                                 return value of Optimizer.minimize
            :type optimize_ops: list
            :param program: program to optimize, default default_main_program
            :param pservers: parameter server endpoints like "m1:6174,m2:6174"
            :type pservers: string
            :return: return a list of programs
        """
T
typhoonzero 已提交
87
        assert (callable(split_method))
T
done  
typhoonzero 已提交
88 89
        if program is None:
            program = default_main_program()
T
typhoonzero 已提交
90
        self.program = program
T
done  
typhoonzero 已提交
91
        self.trainers = trainers
T
typhoonzero 已提交
92
        self.optimize_ops = optimize_ops
T
typhoonzero 已提交
93 94 95 96 97 98 99 100 101
        # steps to transpile:
        # 1. split variable to multiple blocks, align by product(dim[1:]) (width).
        # 2. modify trainer program add split_op to each Grad.
        # 3. append send_op to trainer.
        # 4. append concat_op to trainer to update local weights.
        # 5. create new program as parameter server.
        # 5. create parameter server program by split_method generated endpoint->VarBlock
        # 6. run compile time infershape for parameter server program

T
typhoonzero 已提交
102
        pserver_endpoints = pservers.split(",")
T
typhoonzero 已提交
103 104

        # step1
T
typhoonzero 已提交
105 106
        param_list = [pg[0] for pg in params_grads]
        grad_list = [pg[1] for pg in params_grads]
T
typhoonzero 已提交
107
        # TODO: add split selected rows support
T
typhoonzero 已提交
108 109
        grad_blocks = split_dense_variable(grad_list, len(pserver_endpoints))
        param_blocks = split_dense_variable(param_list, len(pserver_endpoints))
T
typhoonzero 已提交
110
        # step2
T
typhoonzero 已提交
111
        grad_var_mapping = self._append_split_op(program, grad_blocks)
T
typhoonzero 已提交
112 113 114

        # step3
        send_inputs = []
T
typhoonzero 已提交
115 116
        send_outputs = []
        for _, splited in grad_var_mapping.iteritems():
T
typhoonzero 已提交
117
            send_inputs.extend(splited)
T
typhoonzero 已提交
118 119 120 121 122 123 124
        param_var_mapping = self._create_vars_from_blocklist(program,
                                                             param_blocks)
        for _, splited in param_var_mapping.iteritems():
            send_outputs.extend(splited)
        # let send_op know which endpoint to send which var, eplist is of the same
        # order of send_inputs.
        eplist = split_method(send_inputs, pserver_endpoints)
T
typhoonzero 已提交
125 126 127 128 129 130

        send_op = program.global_block().append_op(
            type="send",
            inputs={"X": send_inputs},
            outputs={"Out": send_outputs},
            attrs={"endpoints": pserver_endpoints,
T
typhoonzero 已提交
131 132 133 134 135 136 137 138 139 140
                   "epmap": eplist})

        # step4
        for varname, splited_var in param_var_mapping.iteritems():
            orig_param = program.global_block().vars[varname]
            concat = program.global_block().append_op(
                type="concat",
                inputs={"X": send_outputs},
                outputs={"Out": orig_param},
                attrs={"axis": 0})
T
typhoonzero 已提交
141 142 143

    def _create_vars_from_blocklist(self, program, block_list):
        block_map = dict()
T
typhoonzero 已提交
144
        var_mapping = dict()
T
typhoonzero 已提交
145 146 147 148 149 150 151 152
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
            if not block_map.has_key(varname):
                block_map[varname] = []
            block_map[varname].append((long(offset), long(size)))

        for varname, splited in block_map.iteritems():
            orig_var = program.global_block().vars[varname]
T
typhoonzero 已提交
153 154 155 156 157 158
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
            var_list = []
            for i, block in enumerate(splited):
T
typhoonzero 已提交
159
                size = block[1]
T
typhoonzero 已提交
160 161 162 163 164
                rows = size / orig_dim1_flatten
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
                print("block, splited shape:", block, splited_shape)
T
typhoonzero 已提交
165 166 167 168
                var = program.global_block().create_var(
                    name="%s.block%d" % (varname, i),
                    psersistable=False,
                    dtype=orig_var.dtype,
T
typhoonzero 已提交
169 170 171 172
                    shape=splited_shape)  # flattend splited var
                var_list.append(var)
            var_mapping[varname] = var_list
        return var_mapping
T
done  
typhoonzero 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198

    def _clone_param(self, block, v):
        assert isinstance(v, Parameter)
        new_p = Parameter(
            block=block,
            shape=v.shape,
            dtype=v.dtype,
            type=v.type,
            lod_level=v.lod_level,
            stop_gradient=v.stop_gradient,
            trainable=v.trainable,
            optimize_attr=v.optimize_attr,
            regularizer=v.regularizer,
            name=v.name)
        block.vars[new_p.name] = new_p

    def _clone_var(self, block, var):
        assert isinstance(var, Variable)
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
            persistable=var.persistable)

T
typhoonzero 已提交
199 200 201 202 203
    def _append_split_op(self, program, gradblocks):
        var_mapping = self._create_vars_from_blocklist(program, gradblocks)
        for varname, splited_vars in var_mapping.iteritems():
            if len(splited_vars) == 1:
                continue
T
typhoonzero 已提交
204
            orig_var = program.global_block().vars[varname]
T
typhoonzero 已提交
205 206 207
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
T
typhoonzero 已提交
208 209 210
            program.global_block().append_op(
                type="split",
                inputs={"X": orig_var},
T
typhoonzero 已提交
211 212
                outputs={"Out": splited_vars},
                attrs={"sections": sections}  # assume split evenly
T
typhoonzero 已提交
213
            )
T
typhoonzero 已提交
214
        return var_mapping
T
done  
typhoonzero 已提交
215

T
typhoonzero 已提交
216
    def get_trainer_program(self):
T
typhoonzero 已提交
217
        # remove optimize ops and add a send op to main_program
T
typhoonzero 已提交
218 219
        self.program.global_block().delete_ops(self.optimize_ops)
        return self.program
T
typhoonzero 已提交
220

T
done  
typhoonzero 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
    def _create_var_for_trainers(self, block, var, trainers):
        var_list = []
        for i in xrange(trainers):
            var_each = block.create_var(
                name="%s.trainer_%d" % (var.name, i),
                psersistable=var.persistable,
                dtype=var.dtype,
                shape=var.shape)
            var_list.append(var_each)
        return var_list

    def get_pserver_program(self, endpoint, optimize_ops):
        pserver_program = Program()
        for v in self.param_grad_map[endpoint]["params"]:
            self._clone_param(pserver_program.global_block(), v)

        optimize_sub_program = Program()
        grad_var_names = [
            var.name for var in self.param_grad_map[endpoint]["grads"]
        ]
        for opt_op in optimize_ops:
            for _, var in opt_op.inputs.iteritems():
                # NOTE: append operators to merge gradients from multiple
                # trainers. If trainers == 1, this is not needed.
                if self.trainers > 1 and var.name in grad_var_names:
                    vars2merge = self._create_var_for_trainers(
                        optimize_sub_program.global_block(), var, self.trainers)
                    merged_var = optimize_sub_program.global_block().create_var(
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)
                    optimize_sub_program.global_block().append_op(
                        type="sum",
                        inputs={"X": vars2merge},
                        outputs={"Out": merged_var})
                    optimize_sub_program.global_block().append_op(
                        type="scale",
                        inputs={"X": merged_var},
                        outputs={"Out": merged_var},
                        attrs={"scale": 1.0 / float(self.trainers)})
                else:
                    optimize_sub_program.global_block().create_var(
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)
T
typhoonzero 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280 281

            if opt_op.inputs.has_key("Grad"):
                if opt_op.inputs["Grad"].name in grad_var_names:
                    optimize_sub_program.global_block().append_op(
                        type=opt_op.type,
                        inputs=opt_op.inputs,
                        outputs=opt_op.outputs,
                        attrs=opt_op.attrs)
            else:
                optimize_sub_program.global_block().append_op(
                    type=opt_op.type,
                    inputs=opt_op.inputs,
                    outputs=opt_op.outputs,
                    attrs=opt_op.attrs)
T
done  
typhoonzero 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
        pserver_program.global_block().append_op(
            type="recv",
            inputs={"RX":
                    self.param_grad_map[endpoint]["grads"]},  # grads to recv
            outputs={},
            attrs={
                "OptimizeProgram": optimize_sub_program.desc,
                "endpoint": endpoint,
                "ParamList":
                [p.name for p in self.param_grad_map[endpoint]["params"]],
                "GradList":
                [p.name for p in self.param_grad_map[endpoint]["grads"]],
                "Trainers": self.trainers
            })
        pserver_program.sync_with_cpp()
        return pserver_program