distribute_transpiler.py 21.4 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
T
typhoonzero 已提交
14
from __future__ import print_function
T
done  
typhoonzero 已提交
15 16 17 18
import framework
from framework import Program, default_main_program, Parameter, Variable
import optimizer
from layer_helper import LayerHelper
T
typhoonzero 已提交
19
from distributed_spliter import *
T
typhoonzero 已提交
20
import math
T
done  
typhoonzero 已提交
21 22


T
typhoonzero 已提交
23 24 25 26 27 28
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
29

T
typhoonzero 已提交
30 31
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
32 33


T
typhoonzero 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
def split_dense_variable(var_list,
                         pserver_count,
                         min_block_size=1024,
                         max_block_size=1048576):
    """
        We may need to split dense tensor to one or several blocks and put
        them equally onto parameter server. One block is a sub-tensor
        aligned by dim[0] of the tensor.
        
        We need to have a minimal block size so that the calculations in
        the parameter server side can gain better performance. By default
        mininum block size is 1024. The max block size is used to prevent
        too large block that may causing send error.
    """
    blocks = []
    for var in var_list:
        split_count = pserver_count
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
        if max_pserver_count < pserver_count:
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
        # update split_count after align
        split_count = int(math.ceil(var_numel / float(block_size)))
        for block_id in xrange(split_count):
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


T
done  
typhoonzero 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
class DistributeTranspiler:
    def transpile(self,
                  optimize_ops,
                  params_grads,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
                  split_method=round_robin):
        """
            Transpile the program to a distributed data-parallelism programs.
            The main_program will be transform to use a remote parameter server
            to do parameter optimization. And the optimization graph will be put
            in to a parameter server program.

            Use different methods to split trainable varialbles to different
            parameter servers.

            :param optimize_ops: op list of optimization, should be the
                                 return value of Optimizer.minimize
            :type optimize_ops: list
            :param program: program to optimize, default default_main_program
            :param pservers: parameter server endpoints like "m1:6174,m2:6174"
            :type pservers: string
            :return: return a list of programs
        """
T
typhoonzero 已提交
100
        assert (callable(split_method))
T
done  
typhoonzero 已提交
101 102
        if program is None:
            program = default_main_program()
T
typhoonzero 已提交
103
        self.program = program
T
done  
typhoonzero 已提交
104
        self.trainers = trainers
T
typhoonzero 已提交
105
        self.optimize_ops = optimize_ops
T
typhoonzero 已提交
106 107 108 109 110 111
        # steps to transpile:
        # 1. split variable to multiple blocks, align by product(dim[1:]) (width).
        # 2. modify trainer program add split_op to each Grad.
        # 3. append send_op to trainer.
        # 4. append concat_op to trainer to update local weights.
        # 5. create new program as parameter server.
T
typhoonzero 已提交
112
        # 6. create parameter server program by split_method generated endpoint->VarBlock
T
typhoonzero 已提交
113

T
typhoonzero 已提交
114
        pserver_endpoints = pservers.split(",")
T
typhoonzero 已提交
115 116

        # step1
T
typhoonzero 已提交
117 118
        param_list = [pg[0] for pg in params_grads]
        grad_list = [pg[1] for pg in params_grads]
T
typhoonzero 已提交
119
        # TODO: add split selected rows support
T
typhoonzero 已提交
120 121
        grad_blocks = split_dense_variable(grad_list, len(pserver_endpoints))
        param_blocks = split_dense_variable(param_list, len(pserver_endpoints))
T
typhoonzero 已提交
122
        # step2
T
typhoonzero 已提交
123
        grad_var_mapping = self._append_split_op(program, grad_blocks)
T
typhoonzero 已提交
124 125 126

        # step3
        send_inputs = []
T
typhoonzero 已提交
127
        send_outputs = []
T
typhoonzero 已提交
128 129 130 131
        for b in grad_blocks:  # append by order
            varname, block_id, _ = b.split(":")
            send_inputs.append(grad_var_mapping[varname][int(block_id)])

T
typhoonzero 已提交
132 133
        param_var_mapping = self._create_vars_from_blocklist(program,
                                                             param_blocks)
T
typhoonzero 已提交
134 135 136
        for b in param_blocks:
            varname, block_id, _ = b.split(":")
            send_outputs.append(param_var_mapping[varname][int(block_id)])
T
typhoonzero 已提交
137 138 139
        # let send_op know which endpoint to send which var, eplist is of the same
        # order of send_inputs.
        eplist = split_method(send_inputs, pserver_endpoints)
T
typhoonzero 已提交
140
        # create mapping of endpoint -> splited var to create pserver side program
T
typhoonzero 已提交
141 142 143 144 145 146 147 148
        self.param_grad_ep_mapping = dict()
        for i, ep in enumerate(eplist):
            param = send_outputs[i]
            grad = send_inputs[i]
            if not self.param_grad_ep_mapping.has_key(ep):
                self.param_grad_ep_mapping[ep] = {"params": [], "grads": []}
            self.param_grad_ep_mapping[ep]["params"].append(param)
            self.param_grad_ep_mapping[ep]["grads"].append(grad)
T
typhoonzero 已提交
149 150 151 152 153 154

        send_op = program.global_block().append_op(
            type="send",
            inputs={"X": send_inputs},
            outputs={"Out": send_outputs},
            attrs={"endpoints": pserver_endpoints,
T
typhoonzero 已提交
155 156 157
                   "epmap": eplist})
        # step4
        for varname, splited_var in param_var_mapping.iteritems():
T
typhoonzero 已提交
158 159
            if len(splited_var) <= 1:
                continue
T
typhoonzero 已提交
160 161 162
            orig_param = program.global_block().vars[varname]
            concat = program.global_block().append_op(
                type="concat",
T
typhoonzero 已提交
163
                inputs={"X": splited_var},
T
typhoonzero 已提交
164
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
165
                attrs={"axis": 0})
T
typhoonzero 已提交
166 167 168

    def _create_vars_from_blocklist(self, program, block_list):
        block_map = dict()
T
typhoonzero 已提交
169
        var_mapping = dict()
T
typhoonzero 已提交
170 171 172 173 174 175 176
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
            if not block_map.has_key(varname):
                block_map[varname] = []
            block_map[varname].append((long(offset), long(size)))
        for varname, splited in block_map.iteritems():
            orig_var = program.global_block().vars[varname]
T
typhoonzero 已提交
177 178 179 180
            var_mapping[varname] = []
            if len(splited) == 1:
                var_mapping[varname] = [orig_var]
                continue
T
typhoonzero 已提交
181 182 183 184
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
185

T
typhoonzero 已提交
186
            for i, block in enumerate(splited):
T
typhoonzero 已提交
187
                size = block[1]
T
typhoonzero 已提交
188 189 190 191
                rows = size / orig_dim1_flatten
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
192 193 194 195
                var = program.global_block().create_var(
                    name="%s.block%d" % (varname, i),
                    psersistable=False,
                    dtype=orig_var.dtype,
T
typhoonzero 已提交
196
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
197
                var_mapping[varname].append(var)
T
typhoonzero 已提交
198
        return var_mapping
T
done  
typhoonzero 已提交
199 200 201 202 203 204 205 206 207

    def _clone_var(self, block, var):
        assert isinstance(var, Variable)
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
T
typhoonzero 已提交
208 209 210
            # HACK: let all param in pserver persistable so child
            # program in recv can get them
            persistable=True)
T
done  
typhoonzero 已提交
211

T
typhoonzero 已提交
212 213 214
    def _append_split_op(self, program, gradblocks):
        var_mapping = self._create_vars_from_blocklist(program, gradblocks)
        for varname, splited_vars in var_mapping.iteritems():
T
typhoonzero 已提交
215 216
            # variable that don't need to split have empty splited_vars
            if len(splited_vars) <= 1:
T
typhoonzero 已提交
217
                continue
T
typhoonzero 已提交
218
            orig_var = program.global_block().vars[varname]
T
typhoonzero 已提交
219 220 221
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
T
typhoonzero 已提交
222 223 224
            program.global_block().append_op(
                type="split",
                inputs={"X": orig_var},
T
typhoonzero 已提交
225 226
                outputs={"Out": splited_vars},
                attrs={"sections": sections}  # assume split evenly
T
typhoonzero 已提交
227
            )
T
typhoonzero 已提交
228
        return var_mapping
T
done  
typhoonzero 已提交
229

T
typhoonzero 已提交
230
    def get_trainer_program(self):
T
typhoonzero 已提交
231
        # remove optimize ops and add a send op to main_program
T
typhoonzero 已提交
232 233
        self.program.global_block().delete_ops(self.optimize_ops)
        return self.program
T
typhoonzero 已提交
234

T
done  
typhoonzero 已提交
235 236 237 238 239 240 241 242 243 244 245
    def _create_var_for_trainers(self, block, var, trainers):
        var_list = []
        for i in xrange(trainers):
            var_each = block.create_var(
                name="%s.trainer_%d" % (var.name, i),
                psersistable=var.persistable,
                dtype=var.dtype,
                shape=var.shape)
            var_list.append(var_each)
        return var_list

T
typhoonzero 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
        Param and Grad is splited to multiple servers.
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

T
typhoonzero 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
    def _is_op_on_pserver(self, endpoint, all_ops, idx):
        """
        Recursively check if the op need to run on current server.
        Assume that ops are in the execution order.
        """
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
        op = all_ops[idx]
        if op.inputs.has_key("Param"):
            if op.inputs["Param"].name in param_names:
                return True
            else:
                for n in param_names:
                    if n.startswith(op.inputs["Param"].name+".block") and \
                        n != op.inputs["Param"].name:
                        return True
                return False
        else:
            j = idx - 1
            while j >= 0:
                prev_op = all_ops[j]
                prev_output_names = [o.name for o in prev_op.outputs.values()]
                prev_input_names = [o.name for o in prev_op.inputs.values()]
                found1 = False
                found2 = False
                for _, v in op.inputs.iteritems():
                    if v.name in prev_output_names:
                        found1 = self._is_op_on_pserver(endpoint, all_ops, j)
                # later ops may produce output for prev op's next batch use.
                for _, v in op.outputs.iteritems():
                    if v.name in prev_input_names:
                        found2 = self._is_op_on_pserver(endpoint, all_ops, j)
                if found1 or found2:
                    return True
                j -= 1
            return False

    def _append_pserver_ops(self, program, pserver_program, opt_op, endpoint):
T
typhoonzero 已提交
312
        new_inputs = dict()
T
typhoonzero 已提交
313 314
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
T
typhoonzero 已提交
315 316 317 318 319 320 321 322 323 324 325
        for key, var in opt_op.inputs.iteritems():
            if key == "Grad":
                grad_block = None
                for g in self.param_grad_ep_mapping[endpoint]["grads"]:
                    if g.name.startswith(var.name):
                        grad_block = g
                        break
                if not grad_block:
                    # do not append this op if current endpoint
                    # is not dealing with this grad block
                    return
T
typhoonzero 已提交
326
                merged_var = program.global_block().create_var(
T
typhoonzero 已提交
327 328 329 330 331 332
                    name=grad_block.name,
                    persistable=grad_block.persistable,
                    dtype=grad_block.dtype,
                    shape=grad_block.shape)
                # append merging ops if trainers > 1
                if self.trainers > 1:
T
done  
typhoonzero 已提交
333
                    vars2merge = self._create_var_for_trainers(
T
typhoonzero 已提交
334 335
                        program.global_block(), grad_block, self.trainers)
                    program.global_block().append_op(
T
done  
typhoonzero 已提交
336 337 338
                        type="sum",
                        inputs={"X": vars2merge},
                        outputs={"Out": merged_var})
T
typhoonzero 已提交
339
                    program.global_block().append_op(
T
done  
typhoonzero 已提交
340 341 342 343
                        type="scale",
                        inputs={"X": merged_var},
                        outputs={"Out": merged_var},
                        attrs={"scale": 1.0 / float(self.trainers)})
T
typhoonzero 已提交
344 345 346 347 348 349 350 351 352 353
                new_inputs[key] = merged_var
            elif key == "Param":
                # param is already created on global program
                param_block = None
                for p in self.param_grad_ep_mapping[endpoint]["params"]:
                    if p.name.startswith(var.name):
                        param_block = p
                        break
                if not param_block:
                    return
T
typhoonzero 已提交
354
                tmpvar = program.global_block().create_var(
T
typhoonzero 已提交
355
                    name=param_block.name,
T
typhoonzero 已提交
356
                    persistable=True,
T
typhoonzero 已提交
357 358
                    dtype=param_block.dtype,
                    shape=param_block.shape)
T
typhoonzero 已提交
359

T
typhoonzero 已提交
360
                new_inputs[key] = tmpvar
T
typhoonzero 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373 374

        for key, var in opt_op.inputs.iteritems():
            if key in ["Param", "Grad"]:
                continue
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
            tmpvar = program.global_block().create_var(
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
375 376 377 378 379 380 381 382
            # create var in pserver program global block.
            # TODO(typhoonzero): put blocks in one program to avoid create two
            # variables.
            pserver_program.global_block().create_var(
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
T
typhoonzero 已提交
383

T
typhoonzero 已提交
384 385
        # change outputs ParamOut variable
        opt_op.outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
386
        program.global_block().append_op(
T
typhoonzero 已提交
387 388 389 390 391
            type=opt_op.type,
            inputs=new_inputs,
            outputs=opt_op.outputs,
            attrs=opt_op.attrs)

T
typhoonzero 已提交
392
    def _append_pserver_non_opt_ops(self, program, pserver_program, opt_op):
T
typhoonzero 已提交
393
        for _, var in opt_op.inputs.iteritems():
T
typhoonzero 已提交
394
            program.global_block().create_var(
T
typhoonzero 已提交
395 396 397 398
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=var.shape)
T
typhoonzero 已提交
399 400 401 402 403
            pserver_program.global_block().create_var(
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=var.shape)
T
typhoonzero 已提交
404
        program.global_block().append_op(
T
typhoonzero 已提交
405
            type=opt_op.type,
T
typhoonzero 已提交
406
            inputs=opt_op.inputs,
T
typhoonzero 已提交
407 408 409
            outputs=opt_op.outputs,
            attrs=opt_op.attrs)

410
    def get_pserver_program(self, endpoint):
T
typhoonzero 已提交
411 412 413 414 415 416 417 418 419 420 421
        """
        get pserver side program by endpoint

        NOTE: assume blocks of the same variable is not distributed
        on the same pserver, only change param/grad varnames for
        trainers to fetch. For each pserver endpoint, server side
        program must be a sub-set of the original optimization program.
        """
        # step5
        pserver_program = Program()
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
422
            self._clone_var(pserver_program.global_block(), v)
T
typhoonzero 已提交
423 424 425 426 427 428 429 430 431 432 433 434 435
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            pserver_program.global_block().create_var(
                name=v.name, persistable=True, dtype=v.dtype, shape=v.shape)
            for trainer_id in xrange(self.trainers):
                print("create variable for program: %s.trainer_%d" %
                      (v.name, trainer_id))
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d" % (v.name, trainer_id),
                    persistable=True,
                    dtype=v.dtype,
                    shape=v.shape)
T
typhoonzero 已提交
436 437
        # step6
        optimize_sub_program = Program()
438 439 440
        for idx, opt_op in enumerate(self.optimize_ops):
            is_op_on_pserver = self._is_op_on_pserver(endpoint,
                                                      self.optimize_ops, idx)
T
typhoonzero 已提交
441 442
            if not is_op_on_pserver:
                continue
T
typhoonzero 已提交
443
            if opt_op.inputs.has_key("Grad"):
T
typhoonzero 已提交
444 445
                self._append_pserver_ops(optimize_sub_program, pserver_program,
                                         opt_op, endpoint)
T
typhoonzero 已提交
446
            else:
T
typhoonzero 已提交
447 448
                self._append_pserver_non_opt_ops(optimize_sub_program,
                                                 pserver_program, opt_op)
T
done  
typhoonzero 已提交
449 450
        pserver_program.global_block().append_op(
            type="recv",
T
typhoonzero 已提交
451 452
            inputs={"RX": self.param_grad_ep_mapping[endpoint]["grads"]
                    },  # grads to recv
T
done  
typhoonzero 已提交
453 454
            outputs={},
            attrs={
455
                "OptimizeBlock": optimize_sub_program.global_block(),
T
done  
typhoonzero 已提交
456
                "endpoint": endpoint,
T
typhoonzero 已提交
457 458 459 460 461 462 463 464
                "ParamList": [
                    p.name
                    for p in self.param_grad_ep_mapping[endpoint]["params"]
                ],
                "GradList": [
                    p.name
                    for p in self.param_grad_ep_mapping[endpoint]["grads"]
                ],
T
typhoonzero 已提交
465
                "Fanin": self.trainers
T
done  
typhoonzero 已提交
466 467 468
            })
        pserver_program.sync_with_cpp()
        return pserver_program
T
typhoonzero 已提交
469

T
typhoonzero 已提交
470
    def get_startup_program(self, endpoint, pserver_program):
T
typhoonzero 已提交
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        was splited to several blocks.
        """
        s_prog = Program()
        orig_s_prog = framework.default_startup_program()
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if pname.startswith(varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

Y
update  
yi.wu 已提交
487 488
        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
T
typhoonzero 已提交
489
        created_var_map = dict()
Y
update  
yi.wu 已提交
490
        for _, var in pserver_vars.iteritems():
T
typhoonzero 已提交
491 492
            tmpvar = s_prog.global_block().create_var(
                name=var.name,
T
typhoonzero 已提交
493
                persistable=var.persistable,
T
typhoonzero 已提交
494 495 496 497 498 499 500
                dtype=var.dtype,
                shape=var.shape)
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
            new_outputs = dict()
Y
update  
yi.wu 已提交
501 502
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
T
typhoonzero 已提交
503 504 505
            for key, var in op.outputs.iteritems():
                newname, _ = _get_splited_name_and_shape(var.name)
                if newname:
Y
update  
yi.wu 已提交
506
                    op_on_pserver = True
T
typhoonzero 已提交
507
                    new_outputs[key] = created_var_map[newname]
Y
update  
yi.wu 已提交
508
                elif var.name in pserver_vars:
T
typhoonzero 已提交
509
                    op_on_pserver = True
Y
update  
yi.wu 已提交
510 511
                    new_outputs[key] = pserver_vars[var.name]

T
typhoonzero 已提交
512
            if op_on_pserver:
T
typhoonzero 已提交
513 514 515
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
T
typhoonzero 已提交
516
                    op.attrs["shape"] = new_outputs["Out"].shape
T
typhoonzero 已提交
517 518 519 520 521 522
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=op.inputs,
                    outputs=new_outputs,
                    attrs=op.attrs)
        return s_prog