pybind.cc 54.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
27
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
28 29 30
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
35
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
37
#include "paddle/fluid/framework/version.h"
38
#include "paddle/fluid/imperative/layer.h"
M
minqiyang 已提交
39
#include "paddle/fluid/imperative/profiler.h"
Y
Refine  
Yu Yang 已提交
40
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
41
#include "paddle/fluid/memory/allocation/legacy_allocator.h"
D
dzhwinter 已提交
42
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
43
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
44
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
45
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
46
#include "paddle/fluid/platform/enforce.h"
47
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
48 49
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
50
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
51 52
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
53
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
54
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
55
#include "paddle/fluid/pybind/ir.h"
56 57
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
58
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
59
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
60

61
#include "paddle/fluid/string/to_string.h"
62

D
Dong Zhihong 已提交
63
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
64
#ifndef _WIN32
Y
Yi Wang 已提交
65
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
66
#endif
Y
Yi Wang 已提交
67 68
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
69 70
#endif

M
minqiyang 已提交
71 72
#include "pybind11/stl.h"

73 74 75 76
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
77 78 79
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

80
namespace paddle {
81
namespace pybind {
82
bool IsCompiledWithCUDA() {
83
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
84 85 86 87 88 89
  return false;
#else
  return true;
#endif
}

90 91 92 93 94 95 96 97
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

98 99 100 101 102 103 104 105
bool IsCompiledWithNGRAPH() {
#ifndef PADDLE_WITH_NGRAPH
  return false;
#else
  return true;
#endif
}

106
bool IsCompiledWithBrpc() {
107
#ifndef PADDLE_WITH_DISTRIBUTE
108 109
  return false;
#endif
110 111 112 113 114 115

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
116 117
}

Y
update  
Yancey1989 已提交
118
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
119
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
120 121 122 123 124 125
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
126 127 128 129 130
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

131
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
132 133 134
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
135
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
136
  m.doc() = "C++ core of PaddlePaddle";
137

138 139 140 141
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

142
  BindException(&m);
Y
Yu Yang 已提交
143

S
sneaxiy 已提交
144
  m.def(
S
sneaxiy 已提交
145
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
146 147 148 149
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
150 151 152
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

153 154 155 156 157 158 159
  m.def("get_mem_usage", [](int device) {
    return memory::allocation::GPUMemMonitor.GetMemUsage(device);
  });

  m.def("print_mem_usage",
        []() { return memory::allocation::GPUMemMonitor.PrintMemUsage(); });

M
minqiyang 已提交
160
  m.def("start_imperative_gperf_profiler",
M
minqiyang 已提交
161 162
        []() { imperative::StartProfile(); });

M
minqiyang 已提交
163
  m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); });
M
minqiyang 已提交
164

M
minqiyang 已提交
165
  py::class_<imperative::VarBase>(m, "VarBase", R"DOC()DOC")
166 167 168 169 170 171 172 173
      .def(
          py::init<const std::string &, paddle::framework::proto::VarType::Type,
                   const std::vector<int64_t>, const paddle::platform::CPUPlace,
                   bool, bool>())
      .def(
          py::init<const std::string &, paddle::framework::proto::VarType::Type,
                   const std::vector<int64_t>,
                   const paddle::platform::CUDAPlace, bool, bool>())
174
      .def("_run_backward",
X
Xin Pan 已提交
175
           [](imperative::VarBase &self) { self.RunBackward(); })
M
minqiyang 已提交
176
      .def("_grad_name", &imperative::VarBase::GradName)
M
minqiyang 已提交
177
      .def("_grad_value", &imperative::VarBase::GradValue)
X
Xin Pan 已提交
178
      .def("_clear_gradient", &imperative::VarBase::ClearGradient)
M
minqiyang 已提交
179
      .def("_grad_ivar",
M
minqiyang 已提交
180
           [](const imperative::VarBase &self) { return self.grads_; },
M
minqiyang 已提交
181
           py::return_value_policy::reference)
M
minqiyang 已提交
182
      .def("_copy_to",
P
Paddle CI 已提交
183
           [](const imperative::VarBase &self, const platform::CPUPlace &place,
M
minqiyang 已提交
184 185 186 187 188
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
P
Paddle CI 已提交
189
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
190
      .def("_copy_to",
P
Paddle CI 已提交
191
           [](const imperative::VarBase &self, const platform::CUDAPlace &place,
M
minqiyang 已提交
192 193 194 195 196
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
M
minqiyang 已提交
197
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
198
      .def("value", [](const imperative::VarBase &self) { return self.var_; },
M
minqiyang 已提交
199
           py::return_value_policy::reference)
200 201 202
      .def_property("name", &imperative::VarBase::Name,
                    &imperative::VarBase::SetName)
      .def_property_readonly("shape", &imperative::VarBase::Shape)
M
minqiyang 已提交
203
      .def_property_readonly("dtype", &imperative::VarBase::DataType)
204 205 206 207
      .def_property("persistable", &imperative::VarBase::IsPersistable,
                    &imperative::VarBase::SetPersistable)
      .def_property("stop_gradient", &imperative::VarBase::IsStopGradient,
                    &imperative::VarBase::SetStopGradient);
208

209
  py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
210
      .def(py::init<const std::string &>())
211 212 213 214
      .def("register_backward_hooks",
           [](imperative::OpBase &self, const py::object &callable) {
             self.RegisterBackwardHooks(callable);
           })
M
minqiyang 已提交
215 216 217 218 219 220 221 222 223 224
      .def_property("_trace_id",
                    [](const imperative::OpBase &self) {
                      pybind11::gil_scoped_release release;
                      return self.trace_id_;
                    },
                    [](imperative::OpBase &self, int trace_id) {
                      pybind11::gil_scoped_release release;
                      self.trace_id_ = trace_id;
                    },
                    py::return_value_policy::reference)
X
Xin Pan 已提交
225 226 227 228 229 230
      .def_property(
          "forward_id",
          [](const imperative::OpBase &self) { return self.forward_id_; },
          [](imperative::OpBase &self, int forward_id) {
            self.forward_id_ = forward_id;
          },
X
Xin Pan 已提交
231 232 233 234 235 236 237
          py::return_value_policy::reference)
      .def_property(
          "backward_id",
          [](const imperative::OpBase &self) { return self.backward_id_; },
          [](imperative::OpBase &self, int backward_id) {
            self.backward_id_ = backward_id;
          },
238 239
          py::return_value_policy::reference);

X
Xin Pan 已提交
240
  py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
241
  layer.def(py::init<>())
X
Xin Pan 已提交
242 243 244
      .def("forward", [](imperative::Layer &self,
                         const std::vector<imperative::VarBase> &inputs) {
        return self.Forward(inputs);
X
Xin Pan 已提交
245
      });
X
Xin Pan 已提交
246

X
polish  
Xin Pan 已提交
247
  py::class_<imperative::PyLayer>(m, "PyLayer")
X
Xin Pan 已提交
248
      .def(py::init<>())
X
Xin Pan 已提交
249 250
      .def_static(
          "apply",
X
Xin Pan 已提交
251
          [](int func_id, const std::vector<imperative::VarBase *> &inputs)
X
Xin Pan 已提交
252
              -> std::vector<imperative::VarBase *> {
253 254 255 256 257 258 259 260 261 262 263
                auto ret_vars = imperative::PyLayer::Apply(func_id, inputs);
                std::vector<imperative::VarBase *> outputs;
                outputs.reserve(ret_vars.size());
                for (size_t i = 0U; i != ret_vars.size(); ++i) {
                  framework::Variable *v = ret_vars[i];
                  // TODO(minqiyang): use unique_name generator to set a name
                  outputs.emplace_back(
                      new imperative::VarBase("", v, nullptr, true));
                }

                return outputs;
X
Xin Pan 已提交
264 265
              },
          py::return_value_policy::take_ownership)
X
polish  
Xin Pan 已提交
266 267 268 269 270
      .def_static("register_func",
                  [](int func_id, const py::object &callable) {
                    imperative::PyLayer::RegisterFunc(func_id, callable);
                  })
      .def_static("num_funcs", &imperative::PyLayer::NumFuncs);
X
Xin Pan 已提交
271

272 273
  BindTracer(&m);

274 275 276
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
277
      .def("_get_dims",
278
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
279
      .def("_set_dims",
Q
qijun 已提交
280
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
281
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
282
           })
Y
yuyang18 已提交
283
      .def("_set_layout",
D
dzhwinter 已提交
284 285 286
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
287
      .def("_alloc_float",
D
dzhwinter 已提交
288
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
289
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
290
           })
Y
yuyang18 已提交
291
      .def("_alloc_float",
Y
Yu Yang 已提交
292
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
293
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
294
           })
Y
yuyang18 已提交
295
      .def("_alloc_int",
Y
Yu Yang 已提交
296
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
297
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
298
           })
Y
yuyang18 已提交
299
      .def("_alloc_int",
D
dzhwinter 已提交
300
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
301
             self.mutable_data<int>(place);
Q
qijun 已提交
302
           })
Y
yuyang18 已提交
303
      .def("_alloc_int",
C
chengduoZH 已提交
304 305 306
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
307
      .def("_alloc_float",
C
chengduoZH 已提交
308 309 310
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
311 312
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
313
      .def("set", PyCPUTensorSetFromArray<double>)
314
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
315
      .def("set", PyCPUTensorSetFromArray<bool>)
316
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
317
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
318
      .def("set", PyCPUTensorSetFromArray<int8_t>)
319
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
320 321
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
322
      .def("set", PyCUDATensorSetFromArray<double>)
323
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
324
      .def("set", PyCUDATensorSetFromArray<bool>)
325
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
326
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
327
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
328 329 330 331 332 333
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
334
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
335
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
336
#endif
337
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
338 339 340 341
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
342
      .def("_place", [](Tensor &self) { return self.place(); })
Y
Yu Yang 已提交
343
      .def("_dtype", [](Tensor &self) { return self.type(); });
Y
Yu Yang 已提交
344

X
Xin Pan 已提交
345 346 347 348 349 350 351 352 353 354 355 356 357
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
358
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
359
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
360
     columns, hence [5, 2].
X
Xin Pan 已提交
361 362 363

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
364 365
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
389 390
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
391 392 393 394 395 396 397 398 399 400 401 402 403 404
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
405
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
406 407 408 409 410
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
411
      .def("set_lod",
412
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
413
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
414
             LoD new_lod;
415 416
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
417 418
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
419
             self.set_lod(new_lod);
S
sneaxiy 已提交
420 421 422 423 424 425 426
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
               lod (List[List[int]]): the lod to be set.
           )DOC")
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
442 443 444 445
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
           Set LoD of the LoDTensor according to recursive sequence length.

S
sneaxiy 已提交
446
           For example, if recursive_sequence_lengths=[[2, 3]], meaning that
447 448
           there are two sequences with length 2 and 3 respectively, the
           corresponding lod would be [[0, 2, 2+3]], i.e, [[0, 2, 5]].
S
sneaxiy 已提交
449 450

           Args:
451
                recursive_sequence_lengths (List[List[int]]): sequence lengths.
S
sneaxiy 已提交
452
           )DOC")
453 454 455 456 457 458 459 460
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
461 462 463 464 465 466 467
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
               out (List[List[int]]): the lod of the LoDTensor.
           )DOC")
G
gongweibao 已提交
468
      // Set above comments of set_lod.
469 470 471 472 473 474 475 476
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
477 478 479 480 481
           },
           R"DOC(
           Return the sequence length of the LoDTensor corresponding to LoD.

           Returns:
482
               out (List[List[int]): the sequence lengths.
S
sneaxiy 已提交
483 484 485 486 487 488 489 490 491 492 493 494 495
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
           Check whether the lod of the LoDTensor is valid.

           Returns:
               out (bool): whether the lod is valid.
           )DOC");
D
dangqingqing 已提交
496

Q
qijun 已提交
497 498 499 500 501 502 503 504 505 506 507
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
508 509
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
510 511
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
512 513 514 515 516 517 518 519 520
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
521
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
522
      .def("rows", [](SelectedRows &self) {
523 524 525 526 527
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
528
      });
Q
qijun 已提交
529

530
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
531 532 533

All parameter, weight, gradient are variables in Paddle.
)DOC")
534
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
535
      .def("set_int",
536 537
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
538 539 540 541 542 543 544
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
545
      .def("get_tensor",
546 547
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
548 549
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
550 551 552
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
553 554 555 556 557
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
558 559 560
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
561
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
562 563 564 565 566
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
567
#endif
Y
Refine  
Yu Yang 已提交
568 569 570 571 572
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
573
           py::return_value_policy::reference);
574

Y
Refine  
Yu Yang 已提交
575
  py::class_<framework::ReaderHolder>(m, "Reader", "")
Q
Qiao Longfei 已提交
576
      .def("start", &framework::ReaderHolder::Start)
577
      .def("reset", &framework::ReaderHolder::ResetAll);
Y
Refine  
Yu Yang 已提交
578

S
sneaxiy 已提交
579 580 581 582
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
583 584
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
585
      .def("push",
S
sneaxiy 已提交
586
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
587
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
588
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
589
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
590
           })
S
sneaxiy 已提交
591 592 593 594
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
595

S
sneaxiy 已提交
596
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
597 598 599 600 601 602
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
603
        py::return_value_policy::copy);
S
sneaxiy 已提交
604

S
sneaxiy 已提交
605
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
625 626
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
627
      .def("var",
628
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
629
             return self.Var(name);
Y
Yu Yang 已提交
630
           },
S
sneaxiy 已提交
631 632
           py::arg("name"),
           R"DOC(
633
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
634

635
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
636
           current scope, the variable would be created. Otherwise,
637
           return the existing variable.
S
sneaxiy 已提交
638 639

           Args:
640 641
               name (str): the variable name.

S
sneaxiy 已提交
642
           Returns:
643
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
644 645 646 647
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
648
           Find variable named :code:`name` in the current scope or
S
sneaxiy 已提交
649
           its parent scope. Return None if not found.
650

S
sneaxiy 已提交
651 652
           Args:
               name (str): the variable name.
653

S
sneaxiy 已提交
654
           Returns:
655
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
656
           )DOC",
657
           py::return_value_policy::reference)
658
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
659 660 661 662 663 664
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
665
           py::return_value_policy::reference)
S
sneaxiy 已提交
666 667 668 669
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
           )DOC");
670

S
sneaxiy 已提交
671 672 673 674 675 676
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
677 678
        R"DOC(
        Create a new scope.
679

S
sneaxiy 已提交
680 681 682
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
683 684
        py::return_value_policy::reference);

Y
Yu Yang 已提交
685 686
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
687 688
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
689 690 691 692 693 694 695 696 697 698
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
699 700
    return ret_values;
  });
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
717
  m.def("prune", [](const ProgramDesc &origin,
718
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
719
    ProgramDesc prog_with_targets(origin);
720
    for (const auto &t : targets) {
721
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
722
    }
723
    proto::ProgramDesc pruned_desc;
724
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
725
    return new ProgramDesc(pruned_desc);
726
  });
727 728 729 730
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
731 732 733
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
734 735
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
736
  // clang-format off
Y
Yu Yang 已提交
737
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
738 739
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
740
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
741 742 743
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
744
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
745
                      -> paddle::platform::DeviceContext* {
746
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
747
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
748
#else
Q
qijun 已提交
749
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
750
#endif
C
chengduoZH 已提交
751 752 753 754 755 756 757 758 759 760 761
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
762
// clang-format on
P
peizhilin 已提交
763
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
764 765
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
766
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
S
sneaxiy 已提交
767 768 769 770 771 772 773 774 775 776 777 778
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
             PADDLE_ENFORCE(
                 dev_id >= 0 && dev_id < platform::GetCUDADeviceCount(),
                 "Invalid CUDAPlace(%d), must inside [0, %d)", dev_id,
                 platform::GetCUDADeviceCount());
             new (&self) platform::CUDAPlace(dev_id);
#else
             PADDLE_THROW("Cannot use CUDAPlace in CPU only version");
#endif
           })
S
sneaxiy 已提交
779 780 781 782 783
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
D
dzhwinter 已提交
784
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
785

786 787
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
S
sneaxiy 已提交
788 789 790 791 792
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
793
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
794

C
chengduoZH 已提交
795
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
S
sneaxiy 已提交
796
      .def("__init__",
S
sneaxiy 已提交
797
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
798 799 800
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
S
sneaxiy 已提交
801
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
802
           })
S
sneaxiy 已提交
803 804 805 806 807 808 809
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
810 811
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
812 813
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
814 815 816 817
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
818 819 820 821 822 823
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
      .def("gpu_device_id",
           [](platform::Place &self) {
             return boost::get<platform::CUDAPlace>(self).device;
           })
Y
Yu Yang 已提交
824 825 826 827 828
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
829
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
830
             self = gpu_place;
C
chengduoZH 已提交
831 832
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
833 834
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
835
      });
Y
Yu Yang 已提交
836

Y
Yu Yang 已提交
837 838 839
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
840
                    proto::OpDesc desc;
Y
Yu Yang 已提交
841 842 843 844 845
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
846
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
847
                  })
848
      .def("run",
849
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
850 851 852
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
853
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
854 855 856 857 858
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
859 860 861 862 863 864 865
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
866 867
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
868
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
869
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
870 871 872 873
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
874

F
fengjiayi 已提交
875
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
876
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
877
      .def("close", &Executor::Close)
S
sneaxiy 已提交
878
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
879 880
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
881
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
882 883
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
884
      });
S
sneaxiy 已提交
885

D
dzhwinter 已提交
886
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
887
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
888 889
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
890

891
  m.def("is_compiled_with_ngraph", IsCompiledWithNGRAPH);
892
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
893
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
894
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
895
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
896 897 898 899 900 901
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
902

903
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
904
  m.def("get_fetch_variable", framework::GetFetchVariable);
905
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
906

X
Xin Pan 已提交
907 908
  m.def("_is_program_version_supported", IsProgramVersionSupported);

909 910 911 912 913
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
914

Y
Yu Yang 已提交
915 916 917 918 919 920 921 922 923
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
924
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
925 926
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
927 928 929 930 931 932 933 934 935 936
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
937 938 939 940 941 942 943
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
           py::arg("tensor"), "Append a LoDensor to LoDTensorArray.");
Y
Yu Yang 已提交
944

D
dzhwinter 已提交
945 946 947
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
948
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
949
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
950
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
951

P
peizhilin 已提交
952
#ifndef _WIN32
D
dangqingqing 已提交
953 954 955
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
956
#endif
P
peizhilin 已提交
957
#endif
Y
Yu Yang 已提交
958

959 960 961 962
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
963
      .value("kAll", platform::ProfilerState::kAll)
964 965 966 967 968 969 970 971 972 973 974 975 976
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
977
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
978
  m.def("reset_profiler", platform::ResetProfiler);
979
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
980 981 982
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
983

984 985
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
986
      .def("has", &ir::Pass::Has)
987 988 989
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
990
           })
991
      .def(
992
          "set",
993 994 995
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
996 997
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
F
flame 已提交
998 999 1000 1001
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
        std::unique_ptr<ir::Graph> origin_graph(graph.get());
        auto optim_graph = self.Apply(std::move(origin_graph));
W
WangZhen 已提交
1002
        optim_graph.release();
F
flame 已提交
1003
      });
1004

X
fix  
Xin Pan 已提交
1005 1006
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1021
  // -- python binds for parallel executor.
X
Xin Pan 已提交
1022

Y
yuyang18 已提交
1023
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1024 1025 1026 1027
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1039 1040 1041

        )DOC");

Y
yuyang18 已提交
1042
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1043 1044 1045 1046 1047
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1058
      .def_property(
1059 1060 1061 1062
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1063 1064 1065 1066
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1067 1068 1069 1070 1071
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1072 1073 1074 1075
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
1076 1077 1078 1079 1080 1081 1082
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1094 1095 1096 1097 1098 1099
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1100

Y
yuyang18 已提交
1101
  exec_strategy.def_property(
Y
yuyang18 已提交
1102 1103 1104 1105 1106 1107 1108
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1109 1110
      });

C
chengduo 已提交
1111 1112 1113 1114
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1126
)DOC");
Y
yuyang18 已提交
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
1143
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1144
            self.reduce_ = strategy;
C
chengduo 已提交
1145 1146 1147 1148 1149 1150 1151
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
1152 1153 1154 1155 1156
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
1157
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1158
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1159 1160 1161 1162 1163 1164
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
1165 1166 1167 1168
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
1169
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1170
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1171 1172 1173 1174
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
S
sneaxiy 已提交
1175 1176 1177 1178 1179 1180
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1181
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1182 1183 1184 1185 1186 1187 1188 1189 1190
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1191
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1192 1193
            self.remove_unnecessary_lock_ = b;
          },
S
sneaxiy 已提交
1194
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default True.)DOC")
1195 1196 1197 1198 1199 1200
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
C
chengduo 已提交
1213 1214 1215 1216 1217 1218
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1219
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
1220 1221 1222 1223 1224
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_relu_depthwise_conv_ = b;
          },
          R"DOC(The type is BOOL, fuse_relu_depthwise_conv indicate whether
                      to fuse relu and depthwise_conv2d,
                      it will save GPU memory and may make the execution faster.
                      This options is only available in GPU devices.
                      Default False)DOC")
Q
qingqing01 已提交
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.sync_batch_norm_ = b;
          },
          R"DOC(The type is BOOL, sync_batch_norm indicates whether to use
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.

                Current implementation doesn't support FP16 training and CPU.
                And only synchronous on one machine, not all machines.

                Default False)DOC")
D
dzhwinter 已提交
1254 1255 1256 1257
      .def_property(
          "memory_optimize",
          [](const BuildStrategy &self) { return self.memory_optimize_; },
          [](BuildStrategy &self, bool b) { self.memory_optimize_ = b; })
1258 1259 1260 1261
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
          [](BuildStrategy &self, bool b) { self.is_distribution_ = b; })
D
dzhwinter 已提交
1262
      .def_property(
D
dzhwinter 已提交
1263 1264 1265
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
C
chengduo 已提交
1266 1267 1268 1269
      .def_property(
          "fuse_all_reduce_ops",
          [](const BuildStrategy &self) { return self.fuse_all_reduce_ops_; },
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
1270
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1271
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1272 1273 1274 1275 1276
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1277 1278

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
1279
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
1280
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
1281
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
1282 1283 1284 1285
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1286 1287 1288 1289 1290
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1291 1292 1293 1294
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1295 1296 1297 1298 1299 1300
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
1301

1302
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
1303
  BindAsyncExecutor(&m);
F
flame 已提交
1304 1305
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
1306
  BindInferenceApi(&m);
L
Luo Tao 已提交
1307
}
1308
}  // namespace pybind
1309
}  // namespace paddle