pipeline.py 35.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
import glob
18
from collections import defaultdict
19 20 21 22 23 24

import cv2
import numpy as np
import math
import paddle
import sys
Z
zhiboniu 已提交
25
import copy
26
from collections import Sequence
Z
zhiboniu 已提交
27 28 29
from reid import ReID
from datacollector import DataCollector, Result
from mtmct import mtmct_process
30 31 32 33 34 35 36

# add deploy path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
sys.path.insert(0, parent_path)

from python.infer import Detector, DetectorPicoDet
from python.attr_infer import AttrDetector
J
JYChen 已提交
37 38
from python.keypoint_infer import KeyPointDetector
from python.keypoint_postprocess import translate_to_ori_images
39
from python.video_action_infer import VideoActionRecognizer
Z
zhiboniu 已提交
40 41
from python.action_infer import SkeletonActionRecognizer
from python.action_utils import KeyPointBuff, SkeletonActionVisualHelper
J
JYChen 已提交
42

43
from pipe_utils import argsparser, print_arguments, merge_cfg, PipeTimer
J
JYChen 已提交
44
from pipe_utils import get_test_images, crop_image_with_det, crop_image_with_mot, parse_mot_res, parse_mot_keypoint
45
from python.preprocess import decode_image, ShortSizeScale
J
JYChen 已提交
46
from python.visualize import visualize_box_mask, visualize_attr, visualize_pose, visualize_action
47 48

from pptracking.python.mot_sde_infer import SDE_Detector
49 50
from pptracking.python.mot.visualize import plot_tracking_dict
from pptracking.python.mot.utils import flow_statistic
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75


class Pipeline(object):
    """
    Pipeline

    Args:
        cfg (dict): config of models in pipeline
        image_file (string|None): the path of image file, default as None
        image_dir (string|None): the path of image directory, if not None, 
            then all the images in directory will be predicted, default as None
        video_file (string|None): the path of video file, default as None
        camera_id (int): the device id of camera to predict, default as -1
        device (string): the device to predict, options are: CPU/GPU/XPU, 
            default as CPU
        run_mode (string): the mode of prediction, options are: 
            paddle/trt_fp32/trt_fp16, default as paddle
        trt_min_shape (int): min shape for dynamic shape in trt, default as 1
        trt_max_shape (int): max shape for dynamic shape in trt, default as 1280
        trt_opt_shape (int): opt shape for dynamic shape in trt, default as 640
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True. default as False
        cpu_threads (int): cpu threads, default as 1
        enable_mkldnn (bool): whether to open MKLDNN, default as False
        output_dir (string): The path of output, default as 'output'
76 77 78
        draw_center_traj (bool): Whether drawing the trajectory of center, default as False
        secs_interval (int): The seconds interval to count after tracking, default as 10
        do_entrance_counting(bool): Whether counting the numbers of identifiers entering 
79
            or getting out from the entrance, default as False, only support single class
80
            counting in MOT.
81 82 83 84 85 86 87
    """

    def __init__(self,
                 cfg,
                 image_file=None,
                 image_dir=None,
                 video_file=None,
Z
zhiboniu 已提交
88
                 video_dir=None,
89 90 91 92 93 94 95 96 97
                 camera_id=-1,
                 device='CPU',
                 run_mode='paddle',
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False,
98 99 100 101
                 output_dir='output',
                 draw_center_traj=False,
                 secs_interval=10,
                 do_entrance_counting=False):
102
        self.multi_camera = False
Z
zhiboniu 已提交
103 104
        reid_cfg = cfg.get('REID', False)
        self.enable_mtmct = reid_cfg['enable'] if reid_cfg else False
105
        self.is_video = False
Z
zhiboniu 已提交
106 107
        self.output_dir = output_dir
        self.vis_result = cfg['visual']
108
        self.input = self._parse_input(image_file, image_dir, video_file,
Z
zhiboniu 已提交
109
                                       video_dir, camera_id)
110
        if self.multi_camera:
111 112 113
            self.predictor = []
            for name in self.input:
                predictor_item = PipePredictor(
114 115 116 117 118 119 120 121 122 123
                    cfg,
                    is_video=True,
                    multi_camera=True,
                    device=device,
                    run_mode=run_mode,
                    trt_min_shape=trt_min_shape,
                    trt_max_shape=trt_max_shape,
                    trt_opt_shape=trt_opt_shape,
                    cpu_threads=cpu_threads,
                    enable_mkldnn=enable_mkldnn,
124 125 126 127
                    output_dir=output_dir)
                predictor_item.set_file_name(name)
                self.predictor.append(predictor_item)

128 129 130 131 132 133 134 135 136 137 138 139
        else:
            self.predictor = PipePredictor(
                cfg,
                self.is_video,
                device=device,
                run_mode=run_mode,
                trt_min_shape=trt_min_shape,
                trt_max_shape=trt_max_shape,
                trt_opt_shape=trt_opt_shape,
                trt_calib_mode=trt_calib_mode,
                cpu_threads=cpu_threads,
                enable_mkldnn=enable_mkldnn,
140 141 142 143
                output_dir=output_dir,
                draw_center_traj=draw_center_traj,
                secs_interval=secs_interval,
                do_entrance_counting=do_entrance_counting)
144 145
            if self.is_video:
                self.predictor.set_file_name(video_file)
146

147 148 149 150 151
        self.output_dir = output_dir
        self.draw_center_traj = draw_center_traj
        self.secs_interval = secs_interval
        self.do_entrance_counting = do_entrance_counting

Z
zhiboniu 已提交
152 153
    def _parse_input(self, image_file, image_dir, video_file, video_dir,
                     camera_id):
154 155 156 157 158 159 160 161 162

        # parse input as is_video and multi_camera

        if image_file is not None or image_dir is not None:
            input = get_test_images(image_dir, image_file)
            self.is_video = False
            self.multi_camera = False

        elif video_file is not None:
163
            assert os.path.exists(video_file), "video_file not exists."
Z
zhiboniu 已提交
164 165 166 167 168 169 170
            self.multi_camera = False
            input = video_file
            self.is_video = True

        elif video_dir is not None:
            videof = [os.path.join(video_dir, x) for x in os.listdir(video_dir)]
            if len(videof) > 1:
171
                self.multi_camera = True
Z
zhiboniu 已提交
172 173
                videof.sort()
                input = videof
174
            else:
Z
zhiboniu 已提交
175
                input = videof[0]
176 177 178
            self.is_video = True

        elif camera_id != -1:
Z
zhiboniu 已提交
179 180
            self.multi_camera = False
            input = camera_id
181 182 183 184
            self.is_video = True

        else:
            raise ValueError(
185
                "Illegal Input, please set one of ['video_file', 'camera_id', 'image_file', 'image_dir']"
186 187 188 189 190 191 192 193 194
            )

        return input

    def run(self):
        if self.multi_camera:
            multi_res = []
            for predictor, input in zip(self.predictor, self.input):
                predictor.run(input)
Z
zhiboniu 已提交
195 196
                collector_data = predictor.get_result()
                multi_res.append(collector_data)
197 198 199 200 201 202
            if self.enable_mtmct:
                mtmct_process(
                    multi_res,
                    self.input,
                    mtmct_vis=self.vis_result,
                    output_dir=self.output_dir)
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220

        else:
            self.predictor.run(self.input)


class PipePredictor(object):
    """
    Predictor in single camera
    
    The pipeline for image input: 

        1. Detection
        2. Detection -> Attribute

    The pipeline for video input: 

        1. Tracking
        2. Tracking -> Attribute
Z
zhiboniu 已提交
221
        3. Tracking -> KeyPoint -> SkeletonAction Recognition
222
        4. VideoAction Recognition
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241

    Args:
        cfg (dict): config of models in pipeline
        is_video (bool): whether the input is video, default as False
        multi_camera (bool): whether to use multi camera in pipeline, 
            default as False
        camera_id (int): the device id of camera to predict, default as -1
        device (string): the device to predict, options are: CPU/GPU/XPU, 
            default as CPU
        run_mode (string): the mode of prediction, options are: 
            paddle/trt_fp32/trt_fp16, default as paddle
        trt_min_shape (int): min shape for dynamic shape in trt, default as 1
        trt_max_shape (int): max shape for dynamic shape in trt, default as 1280
        trt_opt_shape (int): opt shape for dynamic shape in trt, default as 640
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True. default as False
        cpu_threads (int): cpu threads, default as 1
        enable_mkldnn (bool): whether to open MKLDNN, default as False
        output_dir (string): The path of output, default as 'output'
242 243 244
        draw_center_traj (bool): Whether drawing the trajectory of center, default as False
        secs_interval (int): The seconds interval to count after tracking, default as 10
        do_entrance_counting(bool): Whether counting the numbers of identifiers entering 
245
            or getting out from the entrance, default as False, only support single class
246
            counting in MOT.
247 248 249 250 251 252 253 254 255 256 257 258 259 260
    """

    def __init__(self,
                 cfg,
                 is_video=True,
                 multi_camera=False,
                 device='CPU',
                 run_mode='paddle',
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False,
261 262 263 264
                 output_dir='output',
                 draw_center_traj=False,
                 secs_interval=10,
                 do_entrance_counting=False):
265

Z
zhiboniu 已提交
266 267 268 269 270
        self.with_attr = cfg.get('ATTR', False)['enable'] if cfg.get(
            'ATTR', False) else False
        self.with_skeleton_action = cfg.get(
            'SKELETON_ACTION', False)['enable'] if cfg.get('SKELETON_ACTION',
                                                           False) else False
Z
zhiboniu 已提交
271 272 273 274 275 276 277 278 279
        self.with_video_action = cfg.get(
            'VIDEO_ACTION', False)['enable'] if cfg.get('VIDEO_ACTION',
                                                        False) else False
        self.with_idbased_detaction = cfg.get(
            'ID_BASED_DETACTION', False)['enable'] if cfg.get(
                'ID_BASED_DETACTION', False) else False
        self.with_idbased_clsaction = cfg.get(
            'ID_BASED_CLSACTION', False)['enable'] if cfg.get(
                'ID_BASED_CLSACTION', False) else False
Z
zhiboniu 已提交
280 281
        self.with_mtmct = cfg.get('REID', False)['enable'] if cfg.get(
            'REID', False) else False
282

W
wangguanzhong 已提交
283 284
        if self.with_attr:
            print('Attribute Recognition enabled')
Z
zhiboniu 已提交
285 286
        if self.with_skeleton_action:
            print('SkeletonAction Recognition enabled')
Z
zhiboniu 已提交
287 288 289 290 291 292
        if self.with_video_action:
            print('VideoAction Recognition enabled')
        if self.with_idbased_detaction:
            print('IDBASED Detection Action Recognition enabled')
        if self.with_idbased_clsaction:
            print('IDBASED Classification Action Recognition enabled')
Z
zhiboniu 已提交
293 294
        if self.with_mtmct:
            print("MTMCT enabled")
W
wangguanzhong 已提交
295

296 297 298 299 300 301
        self.modebase = {
            "framebased": False,
            "videobased": False,
            "idbased": False,
            "skeletonbased": False
        }
302

303 304 305 306
        self.is_video = is_video
        self.multi_camera = multi_camera
        self.cfg = cfg
        self.output_dir = output_dir
307 308 309
        self.draw_center_traj = draw_center_traj
        self.secs_interval = secs_interval
        self.do_entrance_counting = do_entrance_counting
310

J
JYChen 已提交
311
        self.warmup_frame = self.cfg['warmup_frame']
312 313
        self.pipeline_res = Result()
        self.pipe_timer = PipeTimer()
314
        self.file_name = None
Z
zhiboniu 已提交
315
        self.collector = DataCollector()
316 317 318 319 320 321 322 323 324 325 326 327 328

        if not is_video:
            det_cfg = self.cfg['DET']
            model_dir = det_cfg['model_dir']
            batch_size = det_cfg['batch_size']
            self.det_predictor = Detector(
                model_dir, device, run_mode, batch_size, trt_min_shape,
                trt_max_shape, trt_opt_shape, trt_calib_mode, cpu_threads,
                enable_mkldnn)
            if self.with_attr:
                attr_cfg = self.cfg['ATTR']
                model_dir = attr_cfg['model_dir']
                batch_size = attr_cfg['batch_size']
329 330
                basemode = attr_cfg['basemode']
                self.modebase[basemode] = True
331 332 333 334 335 336 337 338 339 340
                self.attr_predictor = AttrDetector(
                    model_dir, device, run_mode, batch_size, trt_min_shape,
                    trt_max_shape, trt_opt_shape, trt_calib_mode, cpu_threads,
                    enable_mkldnn)

        else:
            mot_cfg = self.cfg['MOT']
            model_dir = mot_cfg['model_dir']
            tracker_config = mot_cfg['tracker_config']
            batch_size = mot_cfg['batch_size']
341 342
            basemode = mot_cfg['basemode']
            self.modebase[basemode] = True
343
            self.mot_predictor = SDE_Detector(
344 345 346 347 348 349 350 351 352 353 354 355 356 357
                model_dir,
                tracker_config,
                device,
                run_mode,
                batch_size,
                trt_min_shape,
                trt_max_shape,
                trt_opt_shape,
                trt_calib_mode,
                cpu_threads,
                enable_mkldnn,
                draw_center_traj=draw_center_traj,
                secs_interval=secs_interval,
                do_entrance_counting=do_entrance_counting)
358 359 360 361
            if self.with_attr:
                attr_cfg = self.cfg['ATTR']
                model_dir = attr_cfg['model_dir']
                batch_size = attr_cfg['batch_size']
362 363
                basemode = attr_cfg['basemode']
                self.modebase[basemode] = True
364 365 366 367
                self.attr_predictor = AttrDetector(
                    model_dir, device, run_mode, batch_size, trt_min_shape,
                    trt_max_shape, trt_opt_shape, trt_calib_mode, cpu_threads,
                    enable_mkldnn)
Z
zhiboniu 已提交
368 369 370 371 372 373 374 375 376 377 378 379
            if self.with_idbased_detaction:
                idbased_detaction_cfg = self.cfg['SKELETON_ACTION']
                idbased_detaction_model_dir = idbased_detaction_cfg['model_dir']
                idbased_detaction_batch_size = idbased_detaction_cfg[
                    'batch_size']
                # IDBasedDetActionRecognizer = IDBasedDetActionRecognizer()
            if self.with_idbased_clsaction:
                idbased_clsaction_cfg = self.cfg['SKELETON_ACTION']
                idbased_clsaction_model_dir = idbased_clsaction_cfg['model_dir']
                idbased_clsaction_batch_size = idbased_clsaction_cfg[
                    'batch_size']
                # IDBasedDetActionRecognizer = IDBasedClsActionRecognizer()
Z
zhiboniu 已提交
380 381 382 383 384 385 386 387
            if self.with_skeleton_action:
                skeleton_action_cfg = self.cfg['SKELETON_ACTION']
                skeleton_action_model_dir = skeleton_action_cfg['model_dir']
                skeleton_action_batch_size = skeleton_action_cfg['batch_size']
                skeleton_action_frames = skeleton_action_cfg['max_frames']
                display_frames = skeleton_action_cfg['display_frames']
                self.coord_size = skeleton_action_cfg['coord_size']
                basemode = skeleton_action_cfg['basemode']
388 389
                self.modebase[basemode] = True

Z
zhiboniu 已提交
390 391
                self.skeleton_action_predictor = SkeletonActionRecognizer(
                    skeleton_action_model_dir,
J
JYChen 已提交
392 393
                    device,
                    run_mode,
Z
zhiboniu 已提交
394
                    skeleton_action_batch_size,
J
JYChen 已提交
395 396 397 398 399 400
                    trt_min_shape,
                    trt_max_shape,
                    trt_opt_shape,
                    trt_calib_mode,
                    cpu_threads,
                    enable_mkldnn,
Z
zhiboniu 已提交
401 402 403
                    window_size=skeleton_action_frames)
                self.skeleton_action_visual_helper = SkeletonActionVisualHelper(
                    display_frames)
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420

                if self.modebase["skeletonbased"]:
                    kpt_cfg = self.cfg['KPT']
                    kpt_model_dir = kpt_cfg['model_dir']
                    kpt_batch_size = kpt_cfg['batch_size']
                    self.kpt_predictor = KeyPointDetector(
                        kpt_model_dir,
                        device,
                        run_mode,
                        kpt_batch_size,
                        trt_min_shape,
                        trt_max_shape,
                        trt_opt_shape,
                        trt_calib_mode,
                        cpu_threads,
                        enable_mkldnn,
                        use_dark=False)
Z
zhiboniu 已提交
421
                    self.kpt_buff = KeyPointBuff(skeleton_action_frames)
Z
zhiboniu 已提交
422

423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
            if self.with_video_action:
                video_action_cfg = self.cfg['VIDEO_ACTION']

                basemode = video_action_cfg['basemode']
                self.modebase[basemode] = True

                video_action_model_dir = video_action_cfg['model_dir']
                video_action_batch_size = video_action_cfg['batch_size']
                short_size = video_action_cfg["short_size"]
                target_size = video_action_cfg["target_size"]

                self.video_action_predictor = VideoActionRecognizer(
                    model_dir=video_action_model_dir,
                    short_size=short_size,
                    target_size=target_size,
                    device=device,
                    run_mode=run_mode,
                    batch_size=video_action_batch_size,
                    trt_min_shape=trt_min_shape,
                    trt_max_shape=trt_max_shape,
                    trt_opt_shape=trt_opt_shape,
                    trt_calib_mode=trt_calib_mode,
                    cpu_threads=cpu_threads,
                    enable_mkldnn=enable_mkldnn)

Z
zhiboniu 已提交
448 449 450 451 452 453 454 455
        if self.with_mtmct:
            reid_cfg = self.cfg['REID']
            model_dir = reid_cfg['model_dir']
            batch_size = reid_cfg['batch_size']
            self.reid_predictor = ReID(model_dir, device, run_mode, batch_size,
                                       trt_min_shape, trt_max_shape,
                                       trt_opt_shape, trt_calib_mode,
                                       cpu_threads, enable_mkldnn)
456

457
    def set_file_name(self, path):
W
wangguanzhong 已提交
458 459 460 461 462
        if path is not None:
            self.file_name = os.path.split(path)[-1]
        else:
            # use camera id
            self.file_name = None
463

464
    def get_result(self):
Z
zhiboniu 已提交
465
        return self.collector.get_res()
466 467 468 469 470 471

    def run(self, input):
        if self.is_video:
            self.predict_video(input)
        else:
            self.predict_image(input)
472
        self.pipe_timer.info()
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490

    def predict_image(self, input):
        # det
        # det -> attr
        batch_loop_cnt = math.ceil(
            float(len(input)) / self.det_predictor.batch_size)
        for i in range(batch_loop_cnt):
            start_index = i * self.det_predictor.batch_size
            end_index = min((i + 1) * self.det_predictor.batch_size, len(input))
            batch_file = input[start_index:end_index]
            batch_input = [decode_image(f, {})[0] for f in batch_file]

            if i > self.warmup_frame:
                self.pipe_timer.total_time.start()
                self.pipe_timer.module_time['det'].start()
            # det output format: class, score, xmin, ymin, xmax, ymax
            det_res = self.det_predictor.predict_image(
                batch_input, visual=False)
491 492
            det_res = self.det_predictor.filter_box(det_res,
                                                    self.cfg['crop_thresh'])
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
            if i > self.warmup_frame:
                self.pipe_timer.module_time['det'].end()
            self.pipeline_res.update(det_res, 'det')

            if self.with_attr:
                crop_inputs = crop_image_with_det(batch_input, det_res)
                attr_res_list = []

                if i > self.warmup_frame:
                    self.pipe_timer.module_time['attr'].start()

                for crop_input in crop_inputs:
                    attr_res = self.attr_predictor.predict_image(
                        crop_input, visual=False)
                    attr_res_list.extend(attr_res['output'])

                if i > self.warmup_frame:
                    self.pipe_timer.module_time['attr'].end()

                attr_res = {'output': attr_res_list}
                self.pipeline_res.update(attr_res, 'attr')

            self.pipe_timer.img_num += len(batch_input)
            if i > self.warmup_frame:
                self.pipe_timer.total_time.end()

            if self.cfg['visual']:
                self.visualize_image(batch_file, batch_input, self.pipeline_res)

Z
zhiboniu 已提交
522
    def predict_video(self, video_file):
523 524 525
        # mot
        # mot -> attr
        # mot -> pose -> action
Z
zhiboniu 已提交
526
        capture = cv2.VideoCapture(video_file)
527
        video_out_name = 'output.mp4' if self.file_name is None else self.file_name
528 529 530 531 532 533

        # Get Video info : resolution, fps, frame count
        width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(capture.get(cv2.CAP_PROP_FPS))
        frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
534
        print("video fps: %d, frame_count: %d" % (fps, frame_count))
535 536 537 538 539 540 541

        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)
        out_path = os.path.join(self.output_dir, video_out_name)
        fourcc = cv2.VideoWriter_fourcc(* 'mp4v')
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
        frame_id = 0
542 543 544 545 546 547 548 549 550 551 552 553 554

        entrance, records, center_traj = None, None, None
        if self.draw_center_traj:
            center_traj = [{}]
        id_set = set()
        interval_id_set = set()
        in_id_list = list()
        out_id_list = list()
        prev_center = dict()
        records = list()
        entrance = [0, height / 2., width, height / 2.]
        video_fps = fps

555 556
        video_action_imgs = []

557 558 559 560
        if self.with_video_action:
            short_size = self.cfg["VIDEO_ACTION"]["short_size"]
            scale = ShortSizeScale(short_size)

561 562 563
        while (1):
            if frame_id % 10 == 0:
                print('frame id: ', frame_id)
564

565 566 567 568
            ret, frame = capture.read()
            if not ret:
                break

569
            if self.modebase["idbased"] or self.modebase["skeletonbased"]:
570
                if frame_id > self.warmup_frame:
571 572 573 574
                    self.pipe_timer.total_time.start()
                    self.pipe_timer.module_time['mot'].start()
                res = self.mot_predictor.predict_image(
                    [copy.deepcopy(frame)], visual=False)
575

J
JYChen 已提交
576
                if frame_id > self.warmup_frame:
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
                    self.pipe_timer.module_time['mot'].end()

                # mot output format: id, class, score, xmin, ymin, xmax, ymax
                mot_res = parse_mot_res(res)

                # flow_statistic only support single class MOT
                boxes, scores, ids = res[0]  # batch size = 1 in MOT
                mot_result = (frame_id + 1, boxes[0], scores[0],
                              ids[0])  # single class
                statistic = flow_statistic(
                    mot_result, self.secs_interval, self.do_entrance_counting,
                    video_fps, entrance, id_set, interval_id_set, in_id_list,
                    out_id_list, prev_center, records)
                records = statistic['records']

                # nothing detected
                if len(mot_res['boxes']) == 0:
                    frame_id += 1
J
JYChen 已提交
595
                    if frame_id > self.warmup_frame:
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
                        self.pipe_timer.img_num += 1
                        self.pipe_timer.total_time.end()
                    if self.cfg['visual']:
                        _, _, fps = self.pipe_timer.get_total_time()
                        im = self.visualize_video(frame, mot_res, frame_id, fps,
                                                  entrance, records,
                                                  center_traj)  # visualize
                        writer.write(im)
                        if self.file_name is None:  # use camera_id
                            cv2.imshow('PPHuman', im)
                            if cv2.waitKey(1) & 0xFF == ord('q'):
                                break

                    continue

                self.pipeline_res.update(mot_res, 'mot')
Z
zhiboniu 已提交
612
                if self.with_attr or self.with_skeleton_action:
Z
zhiboniu 已提交
613
                    #todo: move this code to each class's predeal function
614 615 616 617
                    crop_input, new_bboxes, ori_bboxes = crop_image_with_mot(
                        frame, mot_res)

                if self.with_attr:
J
JYChen 已提交
618
                    if frame_id > self.warmup_frame:
619 620 621 622 623 624 625
                        self.pipe_timer.module_time['attr'].start()
                    attr_res = self.attr_predictor.predict_image(
                        crop_input, visual=False)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['attr'].end()
                    self.pipeline_res.update(attr_res, 'attr')

Z
zhiboniu 已提交
626 627 628 629 630 631 632 633 634 635 636 637
                if self.with_idbased_detaction:
                    #predeal, get what your model need
                    #predict, model preprocess\run\postprocess
                    #postdeal, interact with pipeline
                    pass

                if self.with_idbased_clsaction:
                    #predeal, get what your model need
                    #predict, model preprocess\run\postprocess
                    #postdeal, interact with pipeline
                    pass

Z
zhiboniu 已提交
638
                if self.with_skeleton_action:
Z
zhiboniu 已提交
639 640 641 642 643 644 645 646 647 648 649 650 651
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['kpt'].start()
                    kpt_pred = self.kpt_predictor.predict_image(
                        crop_input, visual=False)
                    keypoint_vector, score_vector = translate_to_ori_images(
                        kpt_pred, np.array(new_bboxes))
                    kpt_res = {}
                    kpt_res['keypoint'] = [
                        keypoint_vector.tolist(), score_vector.tolist()
                    ] if len(keypoint_vector) > 0 else [[], []]
                    kpt_res['bbox'] = ori_bboxes
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['kpt'].end()
652

Z
zhiboniu 已提交
653
                    self.pipeline_res.update(kpt_res, 'kpt')
654

Z
zhiboniu 已提交
655
                    self.kpt_buff.update(kpt_res, mot_res)  # collect kpt output
656 657 658
                    state = self.kpt_buff.get_state(
                    )  # whether frame num is enough or lost tracker

Z
zhiboniu 已提交
659
                    skeleton_action_res = {}
660 661
                    if state:
                        if frame_id > self.warmup_frame:
Z
zhiboniu 已提交
662 663
                            self.pipe_timer.module_time[
                                'skeleton_action'].start()
664 665
                        collected_keypoint = self.kpt_buff.get_collected_keypoint(
                        )  # reoragnize kpt output with ID
Z
zhiboniu 已提交
666 667 668 669
                        skeleton_action_input = parse_mot_keypoint(
                            collected_keypoint, self.coord_size)
                        skeleton_action_res = self.skeleton_action_predictor.predict_skeleton_with_mot(
                            skeleton_action_input)
670
                        if frame_id > self.warmup_frame:
Z
zhiboniu 已提交
671 672 673
                            self.pipe_timer.module_time['skeleton_action'].end()
                        self.pipeline_res.update(skeleton_action_res,
                                                 'skeleton_action')
674 675

                    if self.cfg['visual']:
Z
zhiboniu 已提交
676 677
                        self.skeleton_action_visual_helper.update(
                            skeleton_action_res)
678 679 680 681 682 683 684 685 686 687

                if self.with_mtmct and frame_id % 10 == 0:
                    crop_input, img_qualities, rects = self.reid_predictor.crop_image_with_mot(
                        frame, mot_res)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['reid'].start()
                    reid_res = self.reid_predictor.predict_batch(crop_input)

                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['reid'].end()
J
JYChen 已提交
688

689 690 691 692 693 694 695 696
                    reid_res_dict = {
                        'features': reid_res,
                        "qualities": img_qualities,
                        "rects": rects
                    }
                    self.pipeline_res.update(reid_res_dict, 'reid')
                else:
                    self.pipeline_res.clear('reid')
Z
zhiboniu 已提交
697

Z
zhiboniu 已提交
698
            if self.with_video_action:
699 700 701 702 703 704 705 706 707 708 709 710 711
                # get the params
                frame_len = self.cfg["VIDEO_ACTION"]["frame_len"]
                sample_freq = self.cfg["VIDEO_ACTION"]["sample_freq"]

                if sample_freq * frame_len > frame_count:  # video is too short
                    sample_freq = int(frame_count / frame_len)

                # filter the warmup frames
                if frame_id > self.warmup_frame:
                    self.pipe_timer.module_time['video_action'].start()

                # collect frames
                if frame_id % sample_freq == 0:
712 713 714
                    # Scale image
                    scaled_img = scale(frame)
                    video_action_imgs.append(scaled_img)
715 716 717 718 719 720 721 722 723 724 725 726 727 728

                # the number of collected frames is enough to predict video action
                if len(video_action_imgs) == frame_len:
                    classes, scores = self.video_action_predictor.predict(
                        video_action_imgs)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['video_action'].end()

                    video_action_res = {"class": classes[0], "score": scores[0]}
                    self.pipeline_res.update(video_action_res, 'video_action')

                    print("video_action_res:", video_action_res)

                    video_action_imgs.clear()  # next clip
Z
zhiboniu 已提交
729 730

            self.collector.append(frame_id, self.pipeline_res)
731 732 733 734 735 736 737

            if frame_id > self.warmup_frame:
                self.pipe_timer.img_num += 1
                self.pipe_timer.total_time.end()
            frame_id += 1

            if self.cfg['visual']:
738 739
                _, _, fps = self.pipe_timer.get_total_time()
                im = self.visualize_video(frame, self.pipeline_res, frame_id,
740 741
                                          fps, entrance, records,
                                          center_traj)  # visualize
742
                writer.write(im)
W
wangguanzhong 已提交
743 744 745 746
                if self.file_name is None:  # use camera_id
                    cv2.imshow('PPHuman', im)
                    if cv2.waitKey(1) & 0xFF == ord('q'):
                        break
747 748 749 750

        writer.release()
        print('save result to {}'.format(out_path))

751 752 753 754 755 756 757 758
    def visualize_video(self,
                        image,
                        result,
                        frame_id,
                        fps,
                        entrance=None,
                        records=None,
                        center_traj=None):
Z
zhiboniu 已提交
759
        mot_res = copy.deepcopy(result.get('mot'))
760 761
        if mot_res is not None:
            ids = mot_res['boxes'][:, 0]
W
wangguanzhong 已提交
762
            scores = mot_res['boxes'][:, 2]
763 764 765 766 767 768
            boxes = mot_res['boxes'][:, 3:]
            boxes[:, 2] = boxes[:, 2] - boxes[:, 0]
            boxes[:, 3] = boxes[:, 3] - boxes[:, 1]
        else:
            boxes = np.zeros([0, 4])
            ids = np.zeros([0])
W
wangguanzhong 已提交
769
            scores = np.zeros([0])
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791

        # single class, still need to be defaultdict type for ploting
        num_classes = 1
        online_tlwhs = defaultdict(list)
        online_scores = defaultdict(list)
        online_ids = defaultdict(list)
        online_tlwhs[0] = boxes
        online_scores[0] = scores
        online_ids[0] = ids

        image = plot_tracking_dict(
            image,
            num_classes,
            online_tlwhs,
            online_ids,
            online_scores,
            frame_id=frame_id,
            fps=fps,
            do_entrance_counting=self.do_entrance_counting,
            entrance=entrance,
            records=records,
            center_traj=center_traj)
792 793 794 795 796 797 798 799

        attr_res = result.get('attr')
        if attr_res is not None:
            boxes = mot_res['boxes'][:, 1:]
            attr_res = attr_res['output']
            image = visualize_attr(image, attr_res, boxes)
            image = np.array(image)

J
JYChen 已提交
800 801 802 803 804 805 806 807
        kpt_res = result.get('kpt')
        if kpt_res is not None:
            image = visualize_pose(
                image,
                kpt_res,
                visual_thresh=self.cfg['kpt_thresh'],
                returnimg=True)

Z
zhiboniu 已提交
808
        skeleton_action_res = result.get('skeleton_action')
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
        video_action_res = result.get('video_action')
        if skeleton_action_res is not None or video_action_res is not None:
            video_action_score = None
            action_visual_helper = None
            if video_action_res and video_action_res["class"] == 1:
                video_action_score = video_action_res["score"]
            if skeleton_action_res:
                action_visual_helper = self.skeleton_action_visual_helper
            image = visualize_action(
                image,
                mot_res['boxes'],
                action_visual_collector=action_visual_helper,
                action_text="SkeletonAction",
                video_action_score=video_action_score,
                video_action_text="Fight")
J
JYChen 已提交
824

825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
        return image

    def visualize_image(self, im_files, images, result):
        start_idx, boxes_num_i = 0, 0
        det_res = result.get('det')
        attr_res = result.get('attr')
        for i, (im_file, im) in enumerate(zip(im_files, images)):
            if det_res is not None:
                det_res_i = {}
                boxes_num_i = det_res['boxes_num'][i]
                det_res_i['boxes'] = det_res['boxes'][start_idx:start_idx +
                                                      boxes_num_i, :]
                im = visualize_box_mask(
                    im,
                    det_res_i,
                    labels=['person'],
                    threshold=self.cfg['crop_thresh'])
842 843
                im = np.ascontiguousarray(np.copy(im))
                im = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
844 845 846 847 848 849 850 851
            if attr_res is not None:
                attr_res_i = attr_res['output'][start_idx:start_idx +
                                                boxes_num_i]
                im = visualize_attr(im, attr_res_i, det_res_i['boxes'])
            img_name = os.path.split(im_file)[-1]
            if not os.path.exists(self.output_dir):
                os.makedirs(self.output_dir)
            out_path = os.path.join(self.output_dir, img_name)
852
            cv2.imwrite(out_path, im)
853 854 855 856 857 858 859
            print("save result to: " + out_path)
            start_idx += boxes_num_i


def main():
    cfg = merge_cfg(FLAGS)
    print_arguments(cfg)
860

861 862
    pipeline = Pipeline(
        cfg, FLAGS.image_file, FLAGS.image_dir, FLAGS.video_file,
Z
zhiboniu 已提交
863
        FLAGS.video_dir, FLAGS.camera_id, FLAGS.device, FLAGS.run_mode,
864 865 866 867
        FLAGS.trt_min_shape, FLAGS.trt_max_shape, FLAGS.trt_opt_shape,
        FLAGS.trt_calib_mode, FLAGS.cpu_threads, FLAGS.enable_mkldnn,
        FLAGS.output_dir, FLAGS.draw_center_traj, FLAGS.secs_interval,
        FLAGS.do_entrance_counting)
868 869 870 871 872 873 874 875 876 877 878 879 880

    pipeline.run()


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"

    main()