pipeline.py 20.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
import glob

import cv2
import numpy as np
import math
import paddle
import sys
from collections import Sequence

# add deploy path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
sys.path.insert(0, parent_path)

from python.infer import Detector, DetectorPicoDet
from python.mot_sde_infer import SDE_Detector
from python.attr_infer import AttrDetector
from pipe_utils import argsparser, print_arguments, merge_cfg, PipeTimer
from pipe_utils import get_test_images, crop_image_with_det, crop_image_with_mot, parse_mot_res
from python.preprocess import decode_image
from python.visualize import visualize_box_mask, visualize_attr
from pptracking.python.visualize import plot_tracking


class Pipeline(object):
    """
    Pipeline

    Args:
        cfg (dict): config of models in pipeline
        image_file (string|None): the path of image file, default as None
        image_dir (string|None): the path of image directory, if not None, 
            then all the images in directory will be predicted, default as None
        video_file (string|None): the path of video file, default as None
        camera_id (int): the device id of camera to predict, default as -1
W
wangguanzhong 已提交
51 52
        enable_attr (bool): whether use attribute recognition, default as false
        enable_action (bool): whether use action recognition, default as false
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
        device (string): the device to predict, options are: CPU/GPU/XPU, 
            default as CPU
        run_mode (string): the mode of prediction, options are: 
            paddle/trt_fp32/trt_fp16, default as paddle
        trt_min_shape (int): min shape for dynamic shape in trt, default as 1
        trt_max_shape (int): max shape for dynamic shape in trt, default as 1280
        trt_opt_shape (int): opt shape for dynamic shape in trt, default as 640
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True. default as False
        cpu_threads (int): cpu threads, default as 1
        enable_mkldnn (bool): whether to open MKLDNN, default as False
        output_dir (string): The path of output, default as 'output'
    """

    def __init__(self,
                 cfg,
                 image_file=None,
                 image_dir=None,
                 video_file=None,
                 camera_id=-1,
W
wangguanzhong 已提交
73 74
                 enable_attr=False,
                 enable_action=True,
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
                 device='CPU',
                 run_mode='paddle',
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False,
                 output_dir='output'):
        self.multi_camera = False
        self.is_video = False
        self.input = self._parse_input(image_file, image_dir, video_file,
                                       camera_id)
        if self.multi_camera:
            self.predictor = [
                PipePredictor(
                    cfg,
                    is_video=True,
                    multi_camera=True,
W
wangguanzhong 已提交
94 95
                    enable_attr=enable_attr,
                    enable_action=enable_action,
96 97 98 99 100 101 102 103 104 105 106 107 108
                    device=device,
                    run_mode=run_mode,
                    trt_min_shape=trt_min_shape,
                    trt_max_shape=trt_max_shape,
                    trt_opt_shape=trt_opt_shape,
                    cpu_threads=cpu_threads,
                    enable_mkldnn=enable_mkldnn,
                    output_dir=output_dir) for i in self.input
            ]
        else:
            self.predictor = PipePredictor(
                cfg,
                self.is_video,
W
wangguanzhong 已提交
109 110
                enable_attr=enable_attr,
                enable_action=enable_action,
111 112 113 114 115 116 117 118 119
                device=device,
                run_mode=run_mode,
                trt_min_shape=trt_min_shape,
                trt_max_shape=trt_max_shape,
                trt_opt_shape=trt_opt_shape,
                trt_calib_mode=trt_calib_mode,
                cpu_threads=cpu_threads,
                enable_mkldnn=enable_mkldnn,
                output_dir=output_dir)
120 121
            if self.is_video:
                self.predictor.set_file_name(video_file)
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182

    def _parse_input(self, image_file, image_dir, video_file, camera_id):

        # parse input as is_video and multi_camera

        if image_file is not None or image_dir is not None:
            input = get_test_images(image_dir, image_file)
            self.is_video = False
            self.multi_camera = False

        elif video_file is not None:
            if isinstance(video_file, list):
                self.multi_camera = True
                input = [cv2.VideoCapture(v) for v in video_file]
            else:
                input = cv2.VideoCapture(video_file)
            self.is_video = True

        elif camera_id != -1:
            if isinstance(camera_id, Sequence):
                self.multi_camera = True
                input = [cv2.VideoCapture(i) for i in camera_id]
            else:
                input = cv2.VideoCapture(camera_id)
            self.is_video = True

        else:
            raise ValueError(
                "Illegal Input, please set one of ['video_file','camera_id','image_file', 'image_dir']"
            )

        return input

    def run(self):
        if self.multi_camera:
            multi_res = []
            for predictor, input in zip(self.predictor, self.input):
                predictor.run(input)
                res = predictor.get_result()
                multi_res.append(res)

            mtmct_process(multi_res)

        else:
            self.predictor.run(self.input)


class Result(object):
    def __init__(self):
        self.res_dict = {
            'det': dict(),
            'mot': dict(),
            'attr': dict(),
            'kpt': dict(),
            'action': dict()
        }

    def update(self, res, name):
        self.res_dict[name].update(res)

    def get(self, name):
W
wangguanzhong 已提交
183
        if name in self.res_dict and len(self.res_dict[name]) > 0:
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
            return self.res_dict[name]
        return None


class PipePredictor(object):
    """
    Predictor in single camera
    
    The pipeline for image input: 

        1. Detection
        2. Detection -> Attribute

    The pipeline for video input: 

        1. Tracking
        2. Tracking -> Attribute
        3. Tracking -> KeyPoint -> Action Recognition

    Args:
        cfg (dict): config of models in pipeline
        is_video (bool): whether the input is video, default as False
        multi_camera (bool): whether to use multi camera in pipeline, 
            default as False
        camera_id (int): the device id of camera to predict, default as -1
W
wangguanzhong 已提交
209 210
        enable_attr (bool): whether use attribute recognition, default as false
        enable_action (bool): whether use action recognition, default as false
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
        device (string): the device to predict, options are: CPU/GPU/XPU, 
            default as CPU
        run_mode (string): the mode of prediction, options are: 
            paddle/trt_fp32/trt_fp16, default as paddle
        trt_min_shape (int): min shape for dynamic shape in trt, default as 1
        trt_max_shape (int): max shape for dynamic shape in trt, default as 1280
        trt_opt_shape (int): opt shape for dynamic shape in trt, default as 640
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True. default as False
        cpu_threads (int): cpu threads, default as 1
        enable_mkldnn (bool): whether to open MKLDNN, default as False
        output_dir (string): The path of output, default as 'output'
    """

    def __init__(self,
                 cfg,
                 is_video=True,
                 multi_camera=False,
W
wangguanzhong 已提交
229 230
                 enable_attr=False,
                 enable_action=False,
231 232 233 234 235 236 237 238 239 240
                 device='CPU',
                 run_mode='paddle',
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False,
                 output_dir='output'):

W
wangguanzhong 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
        if enable_attr and not cfg.get('ATTR', False):
            ValueError(
                'enable_attr is set to True, please set ATTR in config file')
        if enable_action and (not cfg.get('ACTION', False) or
                              not cfg.get('KPT', False)):
            ValueError(
                'enable_action is set to True, please set KPT and ACTION in config file'
            )

        self.with_attr = cfg.get('ATTR', False) and enable_attr
        self.with_action = cfg.get('ACTION', False) and enable_action
        if self.with_attr:
            print('Attribute Recognition enabled')
        if self.with_action:
            print('Action Recognition enabled')

257 258 259 260 261 262 263 264
        self.is_video = is_video
        self.multi_camera = multi_camera
        self.cfg = cfg
        self.output_dir = output_dir

        self.warmup_frame = 1
        self.pipeline_res = Result()
        self.pipe_timer = PipeTimer()
265
        self.file_name = None
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305

        if not is_video:
            det_cfg = self.cfg['DET']
            model_dir = det_cfg['model_dir']
            batch_size = det_cfg['batch_size']
            self.det_predictor = Detector(
                model_dir, device, run_mode, batch_size, trt_min_shape,
                trt_max_shape, trt_opt_shape, trt_calib_mode, cpu_threads,
                enable_mkldnn)
            if self.with_attr:
                attr_cfg = self.cfg['ATTR']
                model_dir = attr_cfg['model_dir']
                batch_size = attr_cfg['batch_size']
                self.attr_predictor = AttrDetector(
                    model_dir, device, run_mode, batch_size, trt_min_shape,
                    trt_max_shape, trt_opt_shape, trt_calib_mode, cpu_threads,
                    enable_mkldnn)

        else:
            mot_cfg = self.cfg['MOT']
            model_dir = mot_cfg['model_dir']
            tracker_config = mot_cfg['tracker_config']
            batch_size = mot_cfg['batch_size']
            self.mot_predictor = SDE_Detector(
                model_dir, tracker_config, device, run_mode, batch_size,
                trt_min_shape, trt_max_shape, trt_opt_shape, trt_calib_mode,
                cpu_threads, enable_mkldnn)
            if self.with_attr:
                attr_cfg = self.cfg['ATTR']
                model_dir = attr_cfg['model_dir']
                batch_size = attr_cfg['batch_size']
                self.attr_predictor = AttrDetector(
                    model_dir, device, run_mode, batch_size, trt_min_shape,
                    trt_max_shape, trt_opt_shape, trt_calib_mode, cpu_threads,
                    enable_mkldnn)
            if self.with_action:
                self.kpt_predictor = KeyPointDetector()
                self.kpt_collector = KeyPointCollector()
                self.action_predictor = ActionDetector()

306 307 308
    def set_file_name(self, path):
        self.file_name = os.path.split(path)[-1]

309 310 311 312 313 314 315 316
    def get_result(self):
        return self.pipeline_res

    def run(self, input):
        if self.is_video:
            self.predict_video(input)
        else:
            self.predict_image(input)
317
        self.pipe_timer.info()
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368

    def predict_image(self, input):
        # det
        # det -> attr
        batch_loop_cnt = math.ceil(
            float(len(input)) / self.det_predictor.batch_size)
        for i in range(batch_loop_cnt):
            start_index = i * self.det_predictor.batch_size
            end_index = min((i + 1) * self.det_predictor.batch_size, len(input))
            batch_file = input[start_index:end_index]
            batch_input = [decode_image(f, {})[0] for f in batch_file]

            if i > self.warmup_frame:
                self.pipe_timer.total_time.start()
                self.pipe_timer.module_time['det'].start()
            # det output format: class, score, xmin, ymin, xmax, ymax
            det_res = self.det_predictor.predict_image(
                batch_input, visual=False)
            if i > self.warmup_frame:
                self.pipe_timer.module_time['det'].end()
            self.pipeline_res.update(det_res, 'det')

            if self.with_attr:
                crop_inputs = crop_image_with_det(batch_input, det_res)
                attr_res_list = []

                if i > self.warmup_frame:
                    self.pipe_timer.module_time['attr'].start()

                for crop_input in crop_inputs:
                    attr_res = self.attr_predictor.predict_image(
                        crop_input, visual=False)
                    attr_res_list.extend(attr_res['output'])

                if i > self.warmup_frame:
                    self.pipe_timer.module_time['attr'].end()

                attr_res = {'output': attr_res_list}
                self.pipeline_res.update(attr_res, 'attr')

            self.pipe_timer.img_num += len(batch_input)
            if i > self.warmup_frame:
                self.pipe_timer.total_time.end()

            if self.cfg['visual']:
                self.visualize_image(batch_file, batch_input, self.pipeline_res)

    def predict_video(self, capture):
        # mot
        # mot -> attr
        # mot -> pose -> action
369
        video_out_name = 'output.mp4' if self.file_name is None else self.file_name
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400

        # Get Video info : resolution, fps, frame count
        width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(capture.get(cv2.CAP_PROP_FPS))
        frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))

        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)
        out_path = os.path.join(self.output_dir, video_out_name)
        fourcc = cv2.VideoWriter_fourcc(* 'mp4v')
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
        frame_id = 0
        while (1):
            if frame_id % 10 == 0:
                print('frame id: ', frame_id)
            ret, frame = capture.read()
            if not ret:
                break

            if frame_id > self.warmup_frame:
                self.pipe_timer.total_time.start()
                self.pipe_timer.module_time['mot'].start()
            res = self.mot_predictor.predict_image([frame], visual=False)

            if frame_id > self.warmup_frame:
                self.pipe_timer.module_time['mot'].end()

            # mot output format: id, class, score, xmin, ymin, xmax, ymax
            mot_res = parse_mot_res(res)

401 402 403 404 405 406 407 408 409 410 411 412
            # nothing detected
            if len(mot_res['boxes']) == 0:
                frame_id += 1
                self.pipe_timer.img_num += 1
                self.pipe_timer.total_time.end()
                if self.cfg['visual']:
                    _, _, fps = self.pipe_timer.get_total_time()
                    im = self.visualize_video(frame, mot_res, frame_id,
                                              fps)  # visualize
                    writer.write(im)
                continue

413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
            self.pipeline_res.update(mot_res, 'mot')
            if self.with_attr or self.with_action:
                crop_input = crop_image_with_mot(frame, mot_res)

            if self.with_attr:
                if frame_id > self.warmup_frame:
                    self.pipe_timer.module_time['attr'].start()
                attr_res = self.attr_predictor.predict_image(
                    crop_input, visual=False)
                if frame_id > self.warmup_frame:
                    self.pipe_timer.module_time['attr'].end()
                self.pipeline_res.update(attr_res, 'attr')

            if self.with_action:
                kpt_result = self.kpt_predictor.predict_image(crop_input)
                self.pipeline_res.update(kpt_result, 'kpt')

                self.kpt_collector.update(kpt_result)  # collect kpt output
                state = self.kpt_collector.state()  # whether frame num is enough

                if state:
                    action_input = self.kpt_collector.collate(
                    )  # reorgnize kpt output in ID
                    action_res = self.action_predictor.predict_kpt(action_input)
                    self.pipeline_res.update(action, 'action')

            if frame_id > self.warmup_frame:
                self.pipe_timer.img_num += 1
                self.pipe_timer.total_time.end()
            frame_id += 1

            if self.multi_camera:
                self.get_valid_instance(
                    frame,
                    self.pipeline_res)  # parse output result for multi-camera

            if self.cfg['visual']:
450 451 452
                _, _, fps = self.pipe_timer.get_total_time()
                im = self.visualize_video(frame, self.pipeline_res, frame_id,
                                          fps)  # visualize
453 454 455 456 457
                writer.write(im)

        writer.release()
        print('save result to {}'.format(out_path))

458
    def visualize_video(self, image, result, frame_id, fps):
459
        mot_res = result.get('mot')
460 461 462 463 464 465 466 467 468
        if mot_res is not None:
            ids = mot_res['boxes'][:, 0]
            boxes = mot_res['boxes'][:, 3:]
            boxes[:, 2] = boxes[:, 2] - boxes[:, 0]
            boxes[:, 3] = boxes[:, 3] - boxes[:, 1]
        else:
            boxes = np.zeros([0, 4])
            ids = np.zeros([0])
        image = plot_tracking(image, boxes, ids, frame_id=frame_id, fps=fps)
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511

        attr_res = result.get('attr')
        if attr_res is not None:
            boxes = mot_res['boxes'][:, 1:]
            attr_res = attr_res['output']
            image = visualize_attr(image, attr_res, boxes)
            image = np.array(image)

        return image

    def visualize_image(self, im_files, images, result):
        start_idx, boxes_num_i = 0, 0
        det_res = result.get('det')
        attr_res = result.get('attr')
        for i, (im_file, im) in enumerate(zip(im_files, images)):
            if det_res is not None:
                det_res_i = {}
                boxes_num_i = det_res['boxes_num'][i]
                det_res_i['boxes'] = det_res['boxes'][start_idx:start_idx +
                                                      boxes_num_i, :]
                im = visualize_box_mask(
                    im,
                    det_res_i,
                    labels=['person'],
                    threshold=self.cfg['crop_thresh'])
            if attr_res is not None:
                attr_res_i = attr_res['output'][start_idx:start_idx +
                                                boxes_num_i]
                im = visualize_attr(im, attr_res_i, det_res_i['boxes'])
            img_name = os.path.split(im_file)[-1]
            if not os.path.exists(self.output_dir):
                os.makedirs(self.output_dir)
            out_path = os.path.join(self.output_dir, img_name)
            im.save(out_path, quality=95)
            print("save result to: " + out_path)
            start_idx += boxes_num_i


def main():
    cfg = merge_cfg(FLAGS)
    print_arguments(cfg)
    pipeline = Pipeline(
        cfg, FLAGS.image_file, FLAGS.image_dir, FLAGS.video_file,
W
wangguanzhong 已提交
512 513 514 515
        FLAGS.camera_id, FLAGS.enable_attr, FLAGS.enable_action, FLAGS.device,
        FLAGS.run_mode, FLAGS.trt_min_shape, FLAGS.trt_max_shape,
        FLAGS.trt_opt_shape, FLAGS.trt_calib_mode, FLAGS.cpu_threads,
        FLAGS.enable_mkldnn, FLAGS.output_dir)
516 517 518 519 520 521 522 523 524 525 526 527 528

    pipeline.run()


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"

    main()