pipeline.py 32.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
import glob
18
from collections import defaultdict
19 20 21 22 23 24

import cv2
import numpy as np
import math
import paddle
import sys
Z
zhiboniu 已提交
25
import copy
26
from collections import Sequence
Z
zhiboniu 已提交
27 28 29
from reid import ReID
from datacollector import DataCollector, Result
from mtmct import mtmct_process
30 31 32 33 34 35 36

# add deploy path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
sys.path.insert(0, parent_path)

from python.infer import Detector, DetectorPicoDet
from python.attr_infer import AttrDetector
J
JYChen 已提交
37 38
from python.keypoint_infer import KeyPointDetector
from python.keypoint_postprocess import translate_to_ori_images
Z
zhiboniu 已提交
39 40
from python.action_infer import SkeletonActionRecognizer
from python.action_utils import KeyPointBuff, SkeletonActionVisualHelper
J
JYChen 已提交
41

42
from pipe_utils import argsparser, print_arguments, merge_cfg, PipeTimer
J
JYChen 已提交
43
from pipe_utils import get_test_images, crop_image_with_det, crop_image_with_mot, parse_mot_res, parse_mot_keypoint
44
from python.preprocess import decode_image
J
JYChen 已提交
45
from python.visualize import visualize_box_mask, visualize_attr, visualize_pose, visualize_action
46 47

from pptracking.python.mot_sde_infer import SDE_Detector
48 49
from pptracking.python.mot.visualize import plot_tracking_dict
from pptracking.python.mot.utils import flow_statistic
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74


class Pipeline(object):
    """
    Pipeline

    Args:
        cfg (dict): config of models in pipeline
        image_file (string|None): the path of image file, default as None
        image_dir (string|None): the path of image directory, if not None, 
            then all the images in directory will be predicted, default as None
        video_file (string|None): the path of video file, default as None
        camera_id (int): the device id of camera to predict, default as -1
        device (string): the device to predict, options are: CPU/GPU/XPU, 
            default as CPU
        run_mode (string): the mode of prediction, options are: 
            paddle/trt_fp32/trt_fp16, default as paddle
        trt_min_shape (int): min shape for dynamic shape in trt, default as 1
        trt_max_shape (int): max shape for dynamic shape in trt, default as 1280
        trt_opt_shape (int): opt shape for dynamic shape in trt, default as 640
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True. default as False
        cpu_threads (int): cpu threads, default as 1
        enable_mkldnn (bool): whether to open MKLDNN, default as False
        output_dir (string): The path of output, default as 'output'
75 76 77 78 79
        draw_center_traj (bool): Whether drawing the trajectory of center, default as False
        secs_interval (int): The seconds interval to count after tracking, default as 10
        do_entrance_counting(bool): Whether counting the numbers of identifiers entering 
            or getting out from the entrance, default as False,only support single class
            counting in MOT.
80 81 82 83 84 85 86
    """

    def __init__(self,
                 cfg,
                 image_file=None,
                 image_dir=None,
                 video_file=None,
Z
zhiboniu 已提交
87
                 video_dir=None,
88 89 90 91 92 93 94 95 96
                 camera_id=-1,
                 device='CPU',
                 run_mode='paddle',
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False,
97 98 99 100
                 output_dir='output',
                 draw_center_traj=False,
                 secs_interval=10,
                 do_entrance_counting=False):
101
        self.multi_camera = False
Z
zhiboniu 已提交
102 103
        reid_cfg = cfg.get('REID', False)
        self.enable_mtmct = reid_cfg['enable'] if reid_cfg else False
104
        self.is_video = False
Z
zhiboniu 已提交
105 106
        self.output_dir = output_dir
        self.vis_result = cfg['visual']
107
        self.input = self._parse_input(image_file, image_dir, video_file,
Z
zhiboniu 已提交
108
                                       video_dir, camera_id)
109
        if self.multi_camera:
110 111 112
            self.predictor = []
            for name in self.input:
                predictor_item = PipePredictor(
113 114 115 116 117 118 119 120 121 122
                    cfg,
                    is_video=True,
                    multi_camera=True,
                    device=device,
                    run_mode=run_mode,
                    trt_min_shape=trt_min_shape,
                    trt_max_shape=trt_max_shape,
                    trt_opt_shape=trt_opt_shape,
                    cpu_threads=cpu_threads,
                    enable_mkldnn=enable_mkldnn,
123 124 125 126
                    output_dir=output_dir)
                predictor_item.set_file_name(name)
                self.predictor.append(predictor_item)

127 128 129 130 131 132 133 134 135 136 137 138
        else:
            self.predictor = PipePredictor(
                cfg,
                self.is_video,
                device=device,
                run_mode=run_mode,
                trt_min_shape=trt_min_shape,
                trt_max_shape=trt_max_shape,
                trt_opt_shape=trt_opt_shape,
                trt_calib_mode=trt_calib_mode,
                cpu_threads=cpu_threads,
                enable_mkldnn=enable_mkldnn,
139 140 141 142
                output_dir=output_dir,
                draw_center_traj=draw_center_traj,
                secs_interval=secs_interval,
                do_entrance_counting=do_entrance_counting)
143 144
            if self.is_video:
                self.predictor.set_file_name(video_file)
145

146 147 148 149 150
        self.output_dir = output_dir
        self.draw_center_traj = draw_center_traj
        self.secs_interval = secs_interval
        self.do_entrance_counting = do_entrance_counting

Z
zhiboniu 已提交
151 152
    def _parse_input(self, image_file, image_dir, video_file, video_dir,
                     camera_id):
153 154 155 156 157 158 159 160 161

        # parse input as is_video and multi_camera

        if image_file is not None or image_dir is not None:
            input = get_test_images(image_dir, image_file)
            self.is_video = False
            self.multi_camera = False

        elif video_file is not None:
162
            assert os.path.exists(video_file), "video_file not exists."
Z
zhiboniu 已提交
163 164 165 166 167 168 169
            self.multi_camera = False
            input = video_file
            self.is_video = True

        elif video_dir is not None:
            videof = [os.path.join(video_dir, x) for x in os.listdir(video_dir)]
            if len(videof) > 1:
170
                self.multi_camera = True
Z
zhiboniu 已提交
171 172
                videof.sort()
                input = videof
173
            else:
Z
zhiboniu 已提交
174
                input = videof[0]
175 176 177
            self.is_video = True

        elif camera_id != -1:
Z
zhiboniu 已提交
178 179
            self.multi_camera = False
            input = camera_id
180 181 182 183 184 185 186 187 188 189 190 191 192 193
            self.is_video = True

        else:
            raise ValueError(
                "Illegal Input, please set one of ['video_file','camera_id','image_file', 'image_dir']"
            )

        return input

    def run(self):
        if self.multi_camera:
            multi_res = []
            for predictor, input in zip(self.predictor, self.input):
                predictor.run(input)
Z
zhiboniu 已提交
194 195
                collector_data = predictor.get_result()
                multi_res.append(collector_data)
196 197 198 199 200 201
            if self.enable_mtmct:
                mtmct_process(
                    multi_res,
                    self.input,
                    mtmct_vis=self.vis_result,
                    output_dir=self.output_dir)
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219

        else:
            self.predictor.run(self.input)


class PipePredictor(object):
    """
    Predictor in single camera
    
    The pipeline for image input: 

        1. Detection
        2. Detection -> Attribute

    The pipeline for video input: 

        1. Tracking
        2. Tracking -> Attribute
Z
zhiboniu 已提交
220
        3. Tracking -> KeyPoint -> SkeletonAction Recognition
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

    Args:
        cfg (dict): config of models in pipeline
        is_video (bool): whether the input is video, default as False
        multi_camera (bool): whether to use multi camera in pipeline, 
            default as False
        camera_id (int): the device id of camera to predict, default as -1
        device (string): the device to predict, options are: CPU/GPU/XPU, 
            default as CPU
        run_mode (string): the mode of prediction, options are: 
            paddle/trt_fp32/trt_fp16, default as paddle
        trt_min_shape (int): min shape for dynamic shape in trt, default as 1
        trt_max_shape (int): max shape for dynamic shape in trt, default as 1280
        trt_opt_shape (int): opt shape for dynamic shape in trt, default as 640
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True. default as False
        cpu_threads (int): cpu threads, default as 1
        enable_mkldnn (bool): whether to open MKLDNN, default as False
        output_dir (string): The path of output, default as 'output'
240 241 242 243 244
        draw_center_traj (bool): Whether drawing the trajectory of center, default as False
        secs_interval (int): The seconds interval to count after tracking, default as 10
        do_entrance_counting(bool): Whether counting the numbers of identifiers entering 
            or getting out from the entrance, default as False,only support single class
            counting in MOT.
245 246 247 248 249 250 251 252 253 254 255 256 257 258
    """

    def __init__(self,
                 cfg,
                 is_video=True,
                 multi_camera=False,
                 device='CPU',
                 run_mode='paddle',
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False,
259 260 261 262
                 output_dir='output',
                 draw_center_traj=False,
                 secs_interval=10,
                 do_entrance_counting=False):
263

Z
zhiboniu 已提交
264 265 266 267 268
        self.with_attr = cfg.get('ATTR', False)['enable'] if cfg.get(
            'ATTR', False) else False
        self.with_skeleton_action = cfg.get(
            'SKELETON_ACTION', False)['enable'] if cfg.get('SKELETON_ACTION',
                                                           False) else False
Z
zhiboniu 已提交
269 270 271 272 273 274 275 276 277
        self.with_video_action = cfg.get(
            'VIDEO_ACTION', False)['enable'] if cfg.get('VIDEO_ACTION',
                                                        False) else False
        self.with_idbased_detaction = cfg.get(
            'ID_BASED_DETACTION', False)['enable'] if cfg.get(
                'ID_BASED_DETACTION', False) else False
        self.with_idbased_clsaction = cfg.get(
            'ID_BASED_CLSACTION', False)['enable'] if cfg.get(
                'ID_BASED_CLSACTION', False) else False
Z
zhiboniu 已提交
278 279
        self.with_mtmct = cfg.get('REID', False)['enable'] if cfg.get(
            'REID', False) else False
W
wangguanzhong 已提交
280 281
        if self.with_attr:
            print('Attribute Recognition enabled')
Z
zhiboniu 已提交
282 283
        if self.with_skeleton_action:
            print('SkeletonAction Recognition enabled')
Z
zhiboniu 已提交
284 285 286 287 288 289
        if self.with_video_action:
            print('VideoAction Recognition enabled')
        if self.with_idbased_detaction:
            print('IDBASED Detection Action Recognition enabled')
        if self.with_idbased_clsaction:
            print('IDBASED Classification Action Recognition enabled')
Z
zhiboniu 已提交
290 291
        if self.with_mtmct:
            print("MTMCT enabled")
W
wangguanzhong 已提交
292

293 294 295 296 297 298
        self.modebase = {
            "framebased": False,
            "videobased": False,
            "idbased": False,
            "skeletonbased": False
        }
299 300 301 302
        self.is_video = is_video
        self.multi_camera = multi_camera
        self.cfg = cfg
        self.output_dir = output_dir
303 304 305
        self.draw_center_traj = draw_center_traj
        self.secs_interval = secs_interval
        self.do_entrance_counting = do_entrance_counting
306

J
JYChen 已提交
307
        self.warmup_frame = self.cfg['warmup_frame']
308 309
        self.pipeline_res = Result()
        self.pipe_timer = PipeTimer()
310
        self.file_name = None
Z
zhiboniu 已提交
311
        self.collector = DataCollector()
312 313 314 315 316 317 318 319 320 321 322 323 324

        if not is_video:
            det_cfg = self.cfg['DET']
            model_dir = det_cfg['model_dir']
            batch_size = det_cfg['batch_size']
            self.det_predictor = Detector(
                model_dir, device, run_mode, batch_size, trt_min_shape,
                trt_max_shape, trt_opt_shape, trt_calib_mode, cpu_threads,
                enable_mkldnn)
            if self.with_attr:
                attr_cfg = self.cfg['ATTR']
                model_dir = attr_cfg['model_dir']
                batch_size = attr_cfg['batch_size']
325 326
                basemode = attr_cfg['basemode']
                self.modebase[basemode] = True
327 328 329 330 331 332 333 334 335 336
                self.attr_predictor = AttrDetector(
                    model_dir, device, run_mode, batch_size, trt_min_shape,
                    trt_max_shape, trt_opt_shape, trt_calib_mode, cpu_threads,
                    enable_mkldnn)

        else:
            mot_cfg = self.cfg['MOT']
            model_dir = mot_cfg['model_dir']
            tracker_config = mot_cfg['tracker_config']
            batch_size = mot_cfg['batch_size']
337 338
            basemode = mot_cfg['basemode']
            self.modebase[basemode] = True
339
            self.mot_predictor = SDE_Detector(
340 341 342 343 344 345 346 347 348 349 350 351 352 353
                model_dir,
                tracker_config,
                device,
                run_mode,
                batch_size,
                trt_min_shape,
                trt_max_shape,
                trt_opt_shape,
                trt_calib_mode,
                cpu_threads,
                enable_mkldnn,
                draw_center_traj=draw_center_traj,
                secs_interval=secs_interval,
                do_entrance_counting=do_entrance_counting)
354 355 356 357
            if self.with_attr:
                attr_cfg = self.cfg['ATTR']
                model_dir = attr_cfg['model_dir']
                batch_size = attr_cfg['batch_size']
358 359
                basemode = attr_cfg['basemode']
                self.modebase[basemode] = True
360 361 362 363
                self.attr_predictor = AttrDetector(
                    model_dir, device, run_mode, batch_size, trt_min_shape,
                    trt_max_shape, trt_opt_shape, trt_calib_mode, cpu_threads,
                    enable_mkldnn)
Z
zhiboniu 已提交
364 365 366 367 368 369 370 371
            if self.with_skeleton_action:
                skeleton_action_cfg = self.cfg['SKELETON_ACTION']
                skeleton_action_model_dir = skeleton_action_cfg['model_dir']
                skeleton_action_batch_size = skeleton_action_cfg['batch_size']
                skeleton_action_frames = skeleton_action_cfg['max_frames']
                display_frames = skeleton_action_cfg['display_frames']
                self.coord_size = skeleton_action_cfg['coord_size']
                basemode = skeleton_action_cfg['basemode']
372 373
                self.modebase[basemode] = True

Z
zhiboniu 已提交
374 375
                self.skeleton_action_predictor = SkeletonActionRecognizer(
                    skeleton_action_model_dir,
J
JYChen 已提交
376 377
                    device,
                    run_mode,
Z
zhiboniu 已提交
378
                    skeleton_action_batch_size,
J
JYChen 已提交
379 380 381 382 383 384
                    trt_min_shape,
                    trt_max_shape,
                    trt_opt_shape,
                    trt_calib_mode,
                    cpu_threads,
                    enable_mkldnn,
Z
zhiboniu 已提交
385 386 387
                    window_size=skeleton_action_frames)
                self.skeleton_action_visual_helper = SkeletonActionVisualHelper(
                    display_frames)
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404

                if self.modebase["skeletonbased"]:
                    kpt_cfg = self.cfg['KPT']
                    kpt_model_dir = kpt_cfg['model_dir']
                    kpt_batch_size = kpt_cfg['batch_size']
                    self.kpt_predictor = KeyPointDetector(
                        kpt_model_dir,
                        device,
                        run_mode,
                        kpt_batch_size,
                        trt_min_shape,
                        trt_max_shape,
                        trt_opt_shape,
                        trt_calib_mode,
                        cpu_threads,
                        enable_mkldnn,
                        use_dark=False)
Z
zhiboniu 已提交
405
                    self.kpt_buff = KeyPointBuff(skeleton_action_frames)
Z
zhiboniu 已提交
406 407 408 409 410 411 412 413 414

        if self.with_mtmct:
            reid_cfg = self.cfg['REID']
            model_dir = reid_cfg['model_dir']
            batch_size = reid_cfg['batch_size']
            self.reid_predictor = ReID(model_dir, device, run_mode, batch_size,
                                       trt_min_shape, trt_max_shape,
                                       trt_opt_shape, trt_calib_mode,
                                       cpu_threads, enable_mkldnn)
415

416
    def set_file_name(self, path):
W
wangguanzhong 已提交
417 418 419 420 421
        if path is not None:
            self.file_name = os.path.split(path)[-1]
        else:
            # use camera id
            self.file_name = None
422

423
    def get_result(self):
Z
zhiboniu 已提交
424
        return self.collector.get_res()
425 426 427 428 429 430

    def run(self, input):
        if self.is_video:
            self.predict_video(input)
        else:
            self.predict_image(input)
431
        self.pipe_timer.info()
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449

    def predict_image(self, input):
        # det
        # det -> attr
        batch_loop_cnt = math.ceil(
            float(len(input)) / self.det_predictor.batch_size)
        for i in range(batch_loop_cnt):
            start_index = i * self.det_predictor.batch_size
            end_index = min((i + 1) * self.det_predictor.batch_size, len(input))
            batch_file = input[start_index:end_index]
            batch_input = [decode_image(f, {})[0] for f in batch_file]

            if i > self.warmup_frame:
                self.pipe_timer.total_time.start()
                self.pipe_timer.module_time['det'].start()
            # det output format: class, score, xmin, ymin, xmax, ymax
            det_res = self.det_predictor.predict_image(
                batch_input, visual=False)
450 451
            det_res = self.det_predictor.filter_box(det_res,
                                                    self.cfg['crop_thresh'])
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
            if i > self.warmup_frame:
                self.pipe_timer.module_time['det'].end()
            self.pipeline_res.update(det_res, 'det')

            if self.with_attr:
                crop_inputs = crop_image_with_det(batch_input, det_res)
                attr_res_list = []

                if i > self.warmup_frame:
                    self.pipe_timer.module_time['attr'].start()

                for crop_input in crop_inputs:
                    attr_res = self.attr_predictor.predict_image(
                        crop_input, visual=False)
                    attr_res_list.extend(attr_res['output'])

                if i > self.warmup_frame:
                    self.pipe_timer.module_time['attr'].end()

                attr_res = {'output': attr_res_list}
                self.pipeline_res.update(attr_res, 'attr')

            self.pipe_timer.img_num += len(batch_input)
            if i > self.warmup_frame:
                self.pipe_timer.total_time.end()

            if self.cfg['visual']:
                self.visualize_image(batch_file, batch_input, self.pipeline_res)

Z
zhiboniu 已提交
481
    def predict_video(self, video_file):
482 483 484
        # mot
        # mot -> attr
        # mot -> pose -> action
Z
zhiboniu 已提交
485
        capture = cv2.VideoCapture(video_file)
486
        video_out_name = 'output.mp4' if self.file_name is None else self.file_name
487 488 489 490 491 492

        # Get Video info : resolution, fps, frame count
        width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(capture.get(cv2.CAP_PROP_FPS))
        frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
493
        print("video fps: %d, frame_count: %d" % (fps, frame_count))
494 495 496 497 498 499 500

        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)
        out_path = os.path.join(self.output_dir, video_out_name)
        fourcc = cv2.VideoWriter_fourcc(* 'mp4v')
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
        frame_id = 0
501 502 503 504 505 506 507 508 509 510 511 512 513

        entrance, records, center_traj = None, None, None
        if self.draw_center_traj:
            center_traj = [{}]
        id_set = set()
        interval_id_set = set()
        in_id_list = list()
        out_id_list = list()
        prev_center = dict()
        records = list()
        entrance = [0, height / 2., width, height / 2.]
        video_fps = fps

514 515 516 517 518 519 520
        while (1):
            if frame_id % 10 == 0:
                print('frame id: ', frame_id)
            ret, frame = capture.read()
            if not ret:
                break

521
            if self.modebase["idbased"] or self.modebase["skeletonbased"]:
522
                if frame_id > self.warmup_frame:
523 524 525 526
                    self.pipe_timer.total_time.start()
                    self.pipe_timer.module_time['mot'].start()
                res = self.mot_predictor.predict_image(
                    [copy.deepcopy(frame)], visual=False)
527

J
JYChen 已提交
528
                if frame_id > self.warmup_frame:
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
                    self.pipe_timer.module_time['mot'].end()

                # mot output format: id, class, score, xmin, ymin, xmax, ymax
                mot_res = parse_mot_res(res)

                # flow_statistic only support single class MOT
                boxes, scores, ids = res[0]  # batch size = 1 in MOT
                mot_result = (frame_id + 1, boxes[0], scores[0],
                              ids[0])  # single class
                statistic = flow_statistic(
                    mot_result, self.secs_interval, self.do_entrance_counting,
                    video_fps, entrance, id_set, interval_id_set, in_id_list,
                    out_id_list, prev_center, records)
                records = statistic['records']

                # nothing detected
                if len(mot_res['boxes']) == 0:
                    frame_id += 1
J
JYChen 已提交
547
                    if frame_id > self.warmup_frame:
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
                        self.pipe_timer.img_num += 1
                        self.pipe_timer.total_time.end()
                    if self.cfg['visual']:
                        _, _, fps = self.pipe_timer.get_total_time()
                        im = self.visualize_video(frame, mot_res, frame_id, fps,
                                                  entrance, records,
                                                  center_traj)  # visualize
                        writer.write(im)
                        if self.file_name is None:  # use camera_id
                            cv2.imshow('PPHuman', im)
                            if cv2.waitKey(1) & 0xFF == ord('q'):
                                break

                    continue

                self.pipeline_res.update(mot_res, 'mot')
Z
zhiboniu 已提交
564
                if self.with_attr or self.with_skeleton_action:
Z
zhiboniu 已提交
565
                    #todo: move this code to each class's predeal function
566 567 568 569
                    crop_input, new_bboxes, ori_bboxes = crop_image_with_mot(
                        frame, mot_res)

                if self.with_attr:
J
JYChen 已提交
570
                    if frame_id > self.warmup_frame:
571 572 573 574 575 576 577
                        self.pipe_timer.module_time['attr'].start()
                    attr_res = self.attr_predictor.predict_image(
                        crop_input, visual=False)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['attr'].end()
                    self.pipeline_res.update(attr_res, 'attr')

Z
zhiboniu 已提交
578 579 580 581 582 583 584 585 586 587 588 589
                if self.with_idbased_detaction:
                    #predeal, get what your model need
                    #predict, model preprocess\run\postprocess
                    #postdeal, interact with pipeline
                    pass

                if self.with_idbased_clsaction:
                    #predeal, get what your model need
                    #predict, model preprocess\run\postprocess
                    #postdeal, interact with pipeline
                    pass

Z
zhiboniu 已提交
590
                if self.with_skeleton_action:
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
                    if self.modebase["skeletonbased"]:
                        if frame_id > self.warmup_frame:
                            self.pipe_timer.module_time['kpt'].start()
                        kpt_pred = self.kpt_predictor.predict_image(
                            crop_input, visual=False)
                        keypoint_vector, score_vector = translate_to_ori_images(
                            kpt_pred, np.array(new_bboxes))
                        kpt_res = {}
                        kpt_res['keypoint'] = [
                            keypoint_vector.tolist(), score_vector.tolist()
                        ] if len(keypoint_vector) > 0 else [[], []]
                        kpt_res['bbox'] = ori_bboxes
                        if frame_id > self.warmup_frame:
                            self.pipe_timer.module_time['kpt'].end()

                        self.pipeline_res.update(kpt_res, 'kpt')

                        self.kpt_buff.update(kpt_res,
                                             mot_res)  # collect kpt output
                    state = self.kpt_buff.get_state(
                    )  # whether frame num is enough or lost tracker

Z
zhiboniu 已提交
613
                    skeleton_action_res = {}
614 615
                    if state:
                        if frame_id > self.warmup_frame:
Z
zhiboniu 已提交
616 617
                            self.pipe_timer.module_time[
                                'skeleton_action'].start()
618 619
                        collected_keypoint = self.kpt_buff.get_collected_keypoint(
                        )  # reoragnize kpt output with ID
Z
zhiboniu 已提交
620 621 622 623
                        skeleton_action_input = parse_mot_keypoint(
                            collected_keypoint, self.coord_size)
                        skeleton_action_res = self.skeleton_action_predictor.predict_skeleton_with_mot(
                            skeleton_action_input)
624
                        if frame_id > self.warmup_frame:
Z
zhiboniu 已提交
625 626 627
                            self.pipe_timer.module_time['skeleton_action'].end()
                        self.pipeline_res.update(skeleton_action_res,
                                                 'skeleton_action')
628 629

                    if self.cfg['visual']:
Z
zhiboniu 已提交
630 631
                        self.skeleton_action_visual_helper.update(
                            skeleton_action_res)
632 633 634 635 636 637 638 639 640 641

                if self.with_mtmct and frame_id % 10 == 0:
                    crop_input, img_qualities, rects = self.reid_predictor.crop_image_with_mot(
                        frame, mot_res)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['reid'].start()
                    reid_res = self.reid_predictor.predict_batch(crop_input)

                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['reid'].end()
J
JYChen 已提交
642

643 644 645 646 647 648 649 650
                    reid_res_dict = {
                        'features': reid_res,
                        "qualities": img_qualities,
                        "rects": rects
                    }
                    self.pipeline_res.update(reid_res_dict, 'reid')
                else:
                    self.pipeline_res.clear('reid')
Z
zhiboniu 已提交
651

Z
zhiboniu 已提交
652 653 654 655
            if self.with_video_action:
                #predeal, get what your model need
                #predict, model preprocess\run\postprocess
                #postdeal, interact with pipeline
656
                pass
Z
zhiboniu 已提交
657 658

            self.collector.append(frame_id, self.pipeline_res)
659 660 661 662 663 664 665

            if frame_id > self.warmup_frame:
                self.pipe_timer.img_num += 1
                self.pipe_timer.total_time.end()
            frame_id += 1

            if self.cfg['visual']:
666 667
                _, _, fps = self.pipe_timer.get_total_time()
                im = self.visualize_video(frame, self.pipeline_res, frame_id,
668 669
                                          fps, entrance, records,
                                          center_traj)  # visualize
670
                writer.write(im)
W
wangguanzhong 已提交
671 672 673 674
                if self.file_name is None:  # use camera_id
                    cv2.imshow('PPHuman', im)
                    if cv2.waitKey(1) & 0xFF == ord('q'):
                        break
675 676 677 678

        writer.release()
        print('save result to {}'.format(out_path))

679 680 681 682 683 684 685 686
    def visualize_video(self,
                        image,
                        result,
                        frame_id,
                        fps,
                        entrance=None,
                        records=None,
                        center_traj=None):
Z
zhiboniu 已提交
687
        mot_res = copy.deepcopy(result.get('mot'))
688 689
        if mot_res is not None:
            ids = mot_res['boxes'][:, 0]
W
wangguanzhong 已提交
690
            scores = mot_res['boxes'][:, 2]
691 692 693 694 695 696
            boxes = mot_res['boxes'][:, 3:]
            boxes[:, 2] = boxes[:, 2] - boxes[:, 0]
            boxes[:, 3] = boxes[:, 3] - boxes[:, 1]
        else:
            boxes = np.zeros([0, 4])
            ids = np.zeros([0])
W
wangguanzhong 已提交
697
            scores = np.zeros([0])
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719

        # single class, still need to be defaultdict type for ploting
        num_classes = 1
        online_tlwhs = defaultdict(list)
        online_scores = defaultdict(list)
        online_ids = defaultdict(list)
        online_tlwhs[0] = boxes
        online_scores[0] = scores
        online_ids[0] = ids

        image = plot_tracking_dict(
            image,
            num_classes,
            online_tlwhs,
            online_ids,
            online_scores,
            frame_id=frame_id,
            fps=fps,
            do_entrance_counting=self.do_entrance_counting,
            entrance=entrance,
            records=records,
            center_traj=center_traj)
720 721 722 723 724 725 726 727

        attr_res = result.get('attr')
        if attr_res is not None:
            boxes = mot_res['boxes'][:, 1:]
            attr_res = attr_res['output']
            image = visualize_attr(image, attr_res, boxes)
            image = np.array(image)

J
JYChen 已提交
728 729 730 731 732 733 734 735
        kpt_res = result.get('kpt')
        if kpt_res is not None:
            image = visualize_pose(
                image,
                kpt_res,
                visual_thresh=self.cfg['kpt_thresh'],
                returnimg=True)

Z
zhiboniu 已提交
736 737
        skeleton_action_res = result.get('skeleton_action')
        if skeleton_action_res is not None:
J
JYChen 已提交
738
            image = visualize_action(image, mot_res['boxes'],
Z
zhiboniu 已提交
739 740
                                     self.skeleton_action_visual_helper,
                                     "SkeletonAction")
J
JYChen 已提交
741

742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
        return image

    def visualize_image(self, im_files, images, result):
        start_idx, boxes_num_i = 0, 0
        det_res = result.get('det')
        attr_res = result.get('attr')
        for i, (im_file, im) in enumerate(zip(im_files, images)):
            if det_res is not None:
                det_res_i = {}
                boxes_num_i = det_res['boxes_num'][i]
                det_res_i['boxes'] = det_res['boxes'][start_idx:start_idx +
                                                      boxes_num_i, :]
                im = visualize_box_mask(
                    im,
                    det_res_i,
                    labels=['person'],
                    threshold=self.cfg['crop_thresh'])
759 760
                im = np.ascontiguousarray(np.copy(im))
                im = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
761 762 763 764 765 766 767 768
            if attr_res is not None:
                attr_res_i = attr_res['output'][start_idx:start_idx +
                                                boxes_num_i]
                im = visualize_attr(im, attr_res_i, det_res_i['boxes'])
            img_name = os.path.split(im_file)[-1]
            if not os.path.exists(self.output_dir):
                os.makedirs(self.output_dir)
            out_path = os.path.join(self.output_dir, img_name)
769
            cv2.imwrite(out_path, im)
770 771 772 773 774 775 776 777 778
            print("save result to: " + out_path)
            start_idx += boxes_num_i


def main():
    cfg = merge_cfg(FLAGS)
    print_arguments(cfg)
    pipeline = Pipeline(
        cfg, FLAGS.image_file, FLAGS.image_dir, FLAGS.video_file,
Z
zhiboniu 已提交
779
        FLAGS.video_dir, FLAGS.camera_id, FLAGS.device, FLAGS.run_mode,
780 781 782 783
        FLAGS.trt_min_shape, FLAGS.trt_max_shape, FLAGS.trt_opt_shape,
        FLAGS.trt_calib_mode, FLAGS.cpu_threads, FLAGS.enable_mkldnn,
        FLAGS.output_dir, FLAGS.draw_center_traj, FLAGS.secs_interval,
        FLAGS.do_entrance_counting)
784 785 786 787 788 789 790 791 792 793 794 795 796

    pipeline.run()


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"

    main()