pipeline.py 30.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
import glob
18
from collections import defaultdict
19 20 21 22 23 24

import cv2
import numpy as np
import math
import paddle
import sys
Z
zhiboniu 已提交
25
import copy
26
from collections import Sequence
Z
zhiboniu 已提交
27 28 29
from reid import ReID
from datacollector import DataCollector, Result
from mtmct import mtmct_process
30 31 32 33 34 35 36

# add deploy path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
sys.path.insert(0, parent_path)

from python.infer import Detector, DetectorPicoDet
from python.attr_infer import AttrDetector
J
JYChen 已提交
37 38
from python.keypoint_infer import KeyPointDetector
from python.keypoint_postprocess import translate_to_ori_images
Z
zhiboniu 已提交
39 40
from python.action_infer import SkeletonActionRecognizer
from python.action_utils import KeyPointBuff, SkeletonActionVisualHelper
J
JYChen 已提交
41

42
from pipe_utils import argsparser, print_arguments, merge_cfg, PipeTimer
J
JYChen 已提交
43
from pipe_utils import get_test_images, crop_image_with_det, crop_image_with_mot, parse_mot_res, parse_mot_keypoint
44
from python.preprocess import decode_image
J
JYChen 已提交
45
from python.visualize import visualize_box_mask, visualize_attr, visualize_pose, visualize_action
46 47

from pptracking.python.mot_sde_infer import SDE_Detector
48 49
from pptracking.python.mot.visualize import plot_tracking_dict
from pptracking.python.mot.utils import flow_statistic
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74


class Pipeline(object):
    """
    Pipeline

    Args:
        cfg (dict): config of models in pipeline
        image_file (string|None): the path of image file, default as None
        image_dir (string|None): the path of image directory, if not None, 
            then all the images in directory will be predicted, default as None
        video_file (string|None): the path of video file, default as None
        camera_id (int): the device id of camera to predict, default as -1
        device (string): the device to predict, options are: CPU/GPU/XPU, 
            default as CPU
        run_mode (string): the mode of prediction, options are: 
            paddle/trt_fp32/trt_fp16, default as paddle
        trt_min_shape (int): min shape for dynamic shape in trt, default as 1
        trt_max_shape (int): max shape for dynamic shape in trt, default as 1280
        trt_opt_shape (int): opt shape for dynamic shape in trt, default as 640
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True. default as False
        cpu_threads (int): cpu threads, default as 1
        enable_mkldnn (bool): whether to open MKLDNN, default as False
        output_dir (string): The path of output, default as 'output'
75 76 77 78 79
        draw_center_traj (bool): Whether drawing the trajectory of center, default as False
        secs_interval (int): The seconds interval to count after tracking, default as 10
        do_entrance_counting(bool): Whether counting the numbers of identifiers entering 
            or getting out from the entrance, default as False,only support single class
            counting in MOT.
80 81 82 83 84 85 86
    """

    def __init__(self,
                 cfg,
                 image_file=None,
                 image_dir=None,
                 video_file=None,
Z
zhiboniu 已提交
87
                 video_dir=None,
88 89 90 91 92 93 94 95 96
                 camera_id=-1,
                 device='CPU',
                 run_mode='paddle',
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False,
97 98 99 100
                 output_dir='output',
                 draw_center_traj=False,
                 secs_interval=10,
                 do_entrance_counting=False):
101
        self.multi_camera = False
Z
zhiboniu 已提交
102 103
        reid_cfg = cfg.get('REID', False)
        self.enable_mtmct = reid_cfg['enable'] if reid_cfg else False
104
        self.is_video = False
Z
zhiboniu 已提交
105 106
        self.output_dir = output_dir
        self.vis_result = cfg['visual']
107
        self.input = self._parse_input(image_file, image_dir, video_file,
Z
zhiboniu 已提交
108
                                       video_dir, camera_id)
109
        if self.multi_camera:
110 111 112
            self.predictor = []
            for name in self.input:
                predictor_item = PipePredictor(
113 114 115 116 117 118 119 120 121 122
                    cfg,
                    is_video=True,
                    multi_camera=True,
                    device=device,
                    run_mode=run_mode,
                    trt_min_shape=trt_min_shape,
                    trt_max_shape=trt_max_shape,
                    trt_opt_shape=trt_opt_shape,
                    cpu_threads=cpu_threads,
                    enable_mkldnn=enable_mkldnn,
123 124 125 126
                    output_dir=output_dir)
                predictor_item.set_file_name(name)
                self.predictor.append(predictor_item)

127 128 129 130 131 132 133 134 135 136 137 138
        else:
            self.predictor = PipePredictor(
                cfg,
                self.is_video,
                device=device,
                run_mode=run_mode,
                trt_min_shape=trt_min_shape,
                trt_max_shape=trt_max_shape,
                trt_opt_shape=trt_opt_shape,
                trt_calib_mode=trt_calib_mode,
                cpu_threads=cpu_threads,
                enable_mkldnn=enable_mkldnn,
139 140 141 142
                output_dir=output_dir,
                draw_center_traj=draw_center_traj,
                secs_interval=secs_interval,
                do_entrance_counting=do_entrance_counting)
143 144
            if self.is_video:
                self.predictor.set_file_name(video_file)
145

146 147 148 149 150
        self.output_dir = output_dir
        self.draw_center_traj = draw_center_traj
        self.secs_interval = secs_interval
        self.do_entrance_counting = do_entrance_counting

Z
zhiboniu 已提交
151 152
    def _parse_input(self, image_file, image_dir, video_file, video_dir,
                     camera_id):
153 154 155 156 157 158 159 160 161

        # parse input as is_video and multi_camera

        if image_file is not None or image_dir is not None:
            input = get_test_images(image_dir, image_file)
            self.is_video = False
            self.multi_camera = False

        elif video_file is not None:
162
            assert os.path.exists(video_file), "video_file not exists."
Z
zhiboniu 已提交
163 164 165 166 167 168 169
            self.multi_camera = False
            input = video_file
            self.is_video = True

        elif video_dir is not None:
            videof = [os.path.join(video_dir, x) for x in os.listdir(video_dir)]
            if len(videof) > 1:
170
                self.multi_camera = True
Z
zhiboniu 已提交
171 172
                videof.sort()
                input = videof
173
            else:
Z
zhiboniu 已提交
174
                input = videof[0]
175 176 177
            self.is_video = True

        elif camera_id != -1:
Z
zhiboniu 已提交
178 179
            self.multi_camera = False
            input = camera_id
180 181 182 183 184 185 186 187 188 189 190 191 192 193
            self.is_video = True

        else:
            raise ValueError(
                "Illegal Input, please set one of ['video_file','camera_id','image_file', 'image_dir']"
            )

        return input

    def run(self):
        if self.multi_camera:
            multi_res = []
            for predictor, input in zip(self.predictor, self.input):
                predictor.run(input)
Z
zhiboniu 已提交
194 195
                collector_data = predictor.get_result()
                multi_res.append(collector_data)
196 197 198 199 200 201
            if self.enable_mtmct:
                mtmct_process(
                    multi_res,
                    self.input,
                    mtmct_vis=self.vis_result,
                    output_dir=self.output_dir)
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219

        else:
            self.predictor.run(self.input)


class PipePredictor(object):
    """
    Predictor in single camera
    
    The pipeline for image input: 

        1. Detection
        2. Detection -> Attribute

    The pipeline for video input: 

        1. Tracking
        2. Tracking -> Attribute
Z
zhiboniu 已提交
220
        3. Tracking -> KeyPoint -> SkeletonAction Recognition
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

    Args:
        cfg (dict): config of models in pipeline
        is_video (bool): whether the input is video, default as False
        multi_camera (bool): whether to use multi camera in pipeline, 
            default as False
        camera_id (int): the device id of camera to predict, default as -1
        device (string): the device to predict, options are: CPU/GPU/XPU, 
            default as CPU
        run_mode (string): the mode of prediction, options are: 
            paddle/trt_fp32/trt_fp16, default as paddle
        trt_min_shape (int): min shape for dynamic shape in trt, default as 1
        trt_max_shape (int): max shape for dynamic shape in trt, default as 1280
        trt_opt_shape (int): opt shape for dynamic shape in trt, default as 640
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True. default as False
        cpu_threads (int): cpu threads, default as 1
        enable_mkldnn (bool): whether to open MKLDNN, default as False
        output_dir (string): The path of output, default as 'output'
240 241 242 243 244
        draw_center_traj (bool): Whether drawing the trajectory of center, default as False
        secs_interval (int): The seconds interval to count after tracking, default as 10
        do_entrance_counting(bool): Whether counting the numbers of identifiers entering 
            or getting out from the entrance, default as False,only support single class
            counting in MOT.
245 246 247 248 249 250 251 252 253 254 255 256 257 258
    """

    def __init__(self,
                 cfg,
                 is_video=True,
                 multi_camera=False,
                 device='CPU',
                 run_mode='paddle',
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False,
259 260 261 262
                 output_dir='output',
                 draw_center_traj=False,
                 secs_interval=10,
                 do_entrance_counting=False):
263

Z
zhiboniu 已提交
264 265 266 267 268 269 270
        self.with_attr = cfg.get('ATTR', False)['enable'] if cfg.get(
            'ATTR', False) else False
        self.with_skeleton_action = cfg.get(
            'SKELETON_ACTION', False)['enable'] if cfg.get('SKELETON_ACTION',
                                                           False) else False
        self.with_mtmct = cfg.get('REID', False)['enable'] if cfg.get(
            'REID', False) else False
W
wangguanzhong 已提交
271 272
        if self.with_attr:
            print('Attribute Recognition enabled')
Z
zhiboniu 已提交
273 274 275 276
        if self.with_skeleton_action:
            print('SkeletonAction Recognition enabled')
        if self.with_mtmct:
            print("MTMCT enabled")
W
wangguanzhong 已提交
277

278 279 280 281 282 283
        self.modebase = {
            "framebased": False,
            "videobased": False,
            "idbased": False,
            "skeletonbased": False
        }
284 285 286 287
        self.is_video = is_video
        self.multi_camera = multi_camera
        self.cfg = cfg
        self.output_dir = output_dir
288 289 290
        self.draw_center_traj = draw_center_traj
        self.secs_interval = secs_interval
        self.do_entrance_counting = do_entrance_counting
291

J
JYChen 已提交
292
        self.warmup_frame = self.cfg['warmup_frame']
293 294
        self.pipeline_res = Result()
        self.pipe_timer = PipeTimer()
295
        self.file_name = None
Z
zhiboniu 已提交
296
        self.collector = DataCollector()
297 298 299 300 301 302 303 304 305 306 307 308 309

        if not is_video:
            det_cfg = self.cfg['DET']
            model_dir = det_cfg['model_dir']
            batch_size = det_cfg['batch_size']
            self.det_predictor = Detector(
                model_dir, device, run_mode, batch_size, trt_min_shape,
                trt_max_shape, trt_opt_shape, trt_calib_mode, cpu_threads,
                enable_mkldnn)
            if self.with_attr:
                attr_cfg = self.cfg['ATTR']
                model_dir = attr_cfg['model_dir']
                batch_size = attr_cfg['batch_size']
310 311
                basemode = attr_cfg['basemode']
                self.modebase[basemode] = True
312 313 314 315 316 317 318 319 320 321
                self.attr_predictor = AttrDetector(
                    model_dir, device, run_mode, batch_size, trt_min_shape,
                    trt_max_shape, trt_opt_shape, trt_calib_mode, cpu_threads,
                    enable_mkldnn)

        else:
            mot_cfg = self.cfg['MOT']
            model_dir = mot_cfg['model_dir']
            tracker_config = mot_cfg['tracker_config']
            batch_size = mot_cfg['batch_size']
322 323
            basemode = mot_cfg['basemode']
            self.modebase[basemode] = True
324
            self.mot_predictor = SDE_Detector(
325 326 327 328 329 330 331 332 333 334 335 336 337 338
                model_dir,
                tracker_config,
                device,
                run_mode,
                batch_size,
                trt_min_shape,
                trt_max_shape,
                trt_opt_shape,
                trt_calib_mode,
                cpu_threads,
                enable_mkldnn,
                draw_center_traj=draw_center_traj,
                secs_interval=secs_interval,
                do_entrance_counting=do_entrance_counting)
339 340 341 342
            if self.with_attr:
                attr_cfg = self.cfg['ATTR']
                model_dir = attr_cfg['model_dir']
                batch_size = attr_cfg['batch_size']
343 344
                basemode = attr_cfg['basemode']
                self.modebase[basemode] = True
345 346 347 348
                self.attr_predictor = AttrDetector(
                    model_dir, device, run_mode, batch_size, trt_min_shape,
                    trt_max_shape, trt_opt_shape, trt_calib_mode, cpu_threads,
                    enable_mkldnn)
Z
zhiboniu 已提交
349 350 351 352 353 354 355 356
            if self.with_skeleton_action:
                skeleton_action_cfg = self.cfg['SKELETON_ACTION']
                skeleton_action_model_dir = skeleton_action_cfg['model_dir']
                skeleton_action_batch_size = skeleton_action_cfg['batch_size']
                skeleton_action_frames = skeleton_action_cfg['max_frames']
                display_frames = skeleton_action_cfg['display_frames']
                self.coord_size = skeleton_action_cfg['coord_size']
                basemode = skeleton_action_cfg['basemode']
357 358
                self.modebase[basemode] = True

Z
zhiboniu 已提交
359 360
                self.skeleton_action_predictor = SkeletonActionRecognizer(
                    skeleton_action_model_dir,
J
JYChen 已提交
361 362
                    device,
                    run_mode,
Z
zhiboniu 已提交
363
                    skeleton_action_batch_size,
J
JYChen 已提交
364 365 366 367 368 369
                    trt_min_shape,
                    trt_max_shape,
                    trt_opt_shape,
                    trt_calib_mode,
                    cpu_threads,
                    enable_mkldnn,
Z
zhiboniu 已提交
370 371 372
                    window_size=skeleton_action_frames)
                self.skeleton_action_visual_helper = SkeletonActionVisualHelper(
                    display_frames)
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389

                if self.modebase["skeletonbased"]:
                    kpt_cfg = self.cfg['KPT']
                    kpt_model_dir = kpt_cfg['model_dir']
                    kpt_batch_size = kpt_cfg['batch_size']
                    self.kpt_predictor = KeyPointDetector(
                        kpt_model_dir,
                        device,
                        run_mode,
                        kpt_batch_size,
                        trt_min_shape,
                        trt_max_shape,
                        trt_opt_shape,
                        trt_calib_mode,
                        cpu_threads,
                        enable_mkldnn,
                        use_dark=False)
Z
zhiboniu 已提交
390
                    self.kpt_buff = KeyPointBuff(skeleton_action_frames)
Z
zhiboniu 已提交
391 392 393 394 395 396 397 398 399

        if self.with_mtmct:
            reid_cfg = self.cfg['REID']
            model_dir = reid_cfg['model_dir']
            batch_size = reid_cfg['batch_size']
            self.reid_predictor = ReID(model_dir, device, run_mode, batch_size,
                                       trt_min_shape, trt_max_shape,
                                       trt_opt_shape, trt_calib_mode,
                                       cpu_threads, enable_mkldnn)
400

401
    def set_file_name(self, path):
W
wangguanzhong 已提交
402 403 404 405 406
        if path is not None:
            self.file_name = os.path.split(path)[-1]
        else:
            # use camera id
            self.file_name = None
407

408
    def get_result(self):
Z
zhiboniu 已提交
409
        return self.collector.get_res()
410 411 412 413 414 415

    def run(self, input):
        if self.is_video:
            self.predict_video(input)
        else:
            self.predict_image(input)
416
        self.pipe_timer.info()
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434

    def predict_image(self, input):
        # det
        # det -> attr
        batch_loop_cnt = math.ceil(
            float(len(input)) / self.det_predictor.batch_size)
        for i in range(batch_loop_cnt):
            start_index = i * self.det_predictor.batch_size
            end_index = min((i + 1) * self.det_predictor.batch_size, len(input))
            batch_file = input[start_index:end_index]
            batch_input = [decode_image(f, {})[0] for f in batch_file]

            if i > self.warmup_frame:
                self.pipe_timer.total_time.start()
                self.pipe_timer.module_time['det'].start()
            # det output format: class, score, xmin, ymin, xmax, ymax
            det_res = self.det_predictor.predict_image(
                batch_input, visual=False)
435 436
            det_res = self.det_predictor.filter_box(det_res,
                                                    self.cfg['crop_thresh'])
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
            if i > self.warmup_frame:
                self.pipe_timer.module_time['det'].end()
            self.pipeline_res.update(det_res, 'det')

            if self.with_attr:
                crop_inputs = crop_image_with_det(batch_input, det_res)
                attr_res_list = []

                if i > self.warmup_frame:
                    self.pipe_timer.module_time['attr'].start()

                for crop_input in crop_inputs:
                    attr_res = self.attr_predictor.predict_image(
                        crop_input, visual=False)
                    attr_res_list.extend(attr_res['output'])

                if i > self.warmup_frame:
                    self.pipe_timer.module_time['attr'].end()

                attr_res = {'output': attr_res_list}
                self.pipeline_res.update(attr_res, 'attr')

            self.pipe_timer.img_num += len(batch_input)
            if i > self.warmup_frame:
                self.pipe_timer.total_time.end()

            if self.cfg['visual']:
                self.visualize_image(batch_file, batch_input, self.pipeline_res)

Z
zhiboniu 已提交
466
    def predict_video(self, video_file):
467 468 469
        # mot
        # mot -> attr
        # mot -> pose -> action
Z
zhiboniu 已提交
470
        capture = cv2.VideoCapture(video_file)
471
        video_out_name = 'output.mp4' if self.file_name is None else self.file_name
472 473 474 475 476 477

        # Get Video info : resolution, fps, frame count
        width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(capture.get(cv2.CAP_PROP_FPS))
        frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
478
        print("video fps: %d, frame_count: %d" % (fps, frame_count))
479 480 481 482 483 484 485

        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)
        out_path = os.path.join(self.output_dir, video_out_name)
        fourcc = cv2.VideoWriter_fourcc(* 'mp4v')
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
        frame_id = 0
486 487 488 489 490 491 492 493 494 495 496 497 498

        entrance, records, center_traj = None, None, None
        if self.draw_center_traj:
            center_traj = [{}]
        id_set = set()
        interval_id_set = set()
        in_id_list = list()
        out_id_list = list()
        prev_center = dict()
        records = list()
        entrance = [0, height / 2., width, height / 2.]
        video_fps = fps

499 500 501 502 503 504 505
        while (1):
            if frame_id % 10 == 0:
                print('frame id: ', frame_id)
            ret, frame = capture.read()
            if not ret:
                break

506
            if self.modebase["idbased"] or self.modebase["skeletonbased"]:
507
                if frame_id > self.warmup_frame:
508 509 510 511
                    self.pipe_timer.total_time.start()
                    self.pipe_timer.module_time['mot'].start()
                res = self.mot_predictor.predict_image(
                    [copy.deepcopy(frame)], visual=False)
512

J
JYChen 已提交
513
                if frame_id > self.warmup_frame:
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
                    self.pipe_timer.module_time['mot'].end()

                # mot output format: id, class, score, xmin, ymin, xmax, ymax
                mot_res = parse_mot_res(res)

                # flow_statistic only support single class MOT
                boxes, scores, ids = res[0]  # batch size = 1 in MOT
                mot_result = (frame_id + 1, boxes[0], scores[0],
                              ids[0])  # single class
                statistic = flow_statistic(
                    mot_result, self.secs_interval, self.do_entrance_counting,
                    video_fps, entrance, id_set, interval_id_set, in_id_list,
                    out_id_list, prev_center, records)
                records = statistic['records']

                # nothing detected
                if len(mot_res['boxes']) == 0:
                    frame_id += 1
J
JYChen 已提交
532
                    if frame_id > self.warmup_frame:
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
                        self.pipe_timer.img_num += 1
                        self.pipe_timer.total_time.end()
                    if self.cfg['visual']:
                        _, _, fps = self.pipe_timer.get_total_time()
                        im = self.visualize_video(frame, mot_res, frame_id, fps,
                                                  entrance, records,
                                                  center_traj)  # visualize
                        writer.write(im)
                        if self.file_name is None:  # use camera_id
                            cv2.imshow('PPHuman', im)
                            if cv2.waitKey(1) & 0xFF == ord('q'):
                                break

                    continue

                self.pipeline_res.update(mot_res, 'mot')
Z
zhiboniu 已提交
549
                if self.with_attr or self.with_skeleton_action:
550 551 552 553
                    crop_input, new_bboxes, ori_bboxes = crop_image_with_mot(
                        frame, mot_res)

                if self.with_attr:
J
JYChen 已提交
554
                    if frame_id > self.warmup_frame:
555 556 557 558 559 560 561
                        self.pipe_timer.module_time['attr'].start()
                    attr_res = self.attr_predictor.predict_image(
                        crop_input, visual=False)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['attr'].end()
                    self.pipeline_res.update(attr_res, 'attr')

Z
zhiboniu 已提交
562
                if self.with_skeleton_action:
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
                    if self.modebase["skeletonbased"]:
                        if frame_id > self.warmup_frame:
                            self.pipe_timer.module_time['kpt'].start()
                        kpt_pred = self.kpt_predictor.predict_image(
                            crop_input, visual=False)
                        keypoint_vector, score_vector = translate_to_ori_images(
                            kpt_pred, np.array(new_bboxes))
                        kpt_res = {}
                        kpt_res['keypoint'] = [
                            keypoint_vector.tolist(), score_vector.tolist()
                        ] if len(keypoint_vector) > 0 else [[], []]
                        kpt_res['bbox'] = ori_bboxes
                        if frame_id > self.warmup_frame:
                            self.pipe_timer.module_time['kpt'].end()

                        self.pipeline_res.update(kpt_res, 'kpt')

                        self.kpt_buff.update(kpt_res,
                                             mot_res)  # collect kpt output
                    state = self.kpt_buff.get_state(
                    )  # whether frame num is enough or lost tracker

Z
zhiboniu 已提交
585
                    skeleton_action_res = {}
586 587
                    if state:
                        if frame_id > self.warmup_frame:
Z
zhiboniu 已提交
588 589
                            self.pipe_timer.module_time[
                                'skeleton_action'].start()
590 591
                        collected_keypoint = self.kpt_buff.get_collected_keypoint(
                        )  # reoragnize kpt output with ID
Z
zhiboniu 已提交
592 593 594 595
                        skeleton_action_input = parse_mot_keypoint(
                            collected_keypoint, self.coord_size)
                        skeleton_action_res = self.skeleton_action_predictor.predict_skeleton_with_mot(
                            skeleton_action_input)
596
                        if frame_id > self.warmup_frame:
Z
zhiboniu 已提交
597 598 599
                            self.pipe_timer.module_time['skeleton_action'].end()
                        self.pipeline_res.update(skeleton_action_res,
                                                 'skeleton_action')
600 601

                    if self.cfg['visual']:
Z
zhiboniu 已提交
602 603
                        self.skeleton_action_visual_helper.update(
                            skeleton_action_res)
604 605 606 607 608 609 610 611 612 613

                if self.with_mtmct and frame_id % 10 == 0:
                    crop_input, img_qualities, rects = self.reid_predictor.crop_image_with_mot(
                        frame, mot_res)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['reid'].start()
                    reid_res = self.reid_predictor.predict_batch(crop_input)

                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['reid'].end()
J
JYChen 已提交
614

615 616 617 618 619 620 621 622
                    reid_res_dict = {
                        'features': reid_res,
                        "qualities": img_qualities,
                        "rects": rects
                    }
                    self.pipeline_res.update(reid_res_dict, 'reid')
                else:
                    self.pipeline_res.clear('reid')
Z
zhiboniu 已提交
623

624 625
            if self.modebase["videobased"]:
                pass
Z
zhiboniu 已提交
626

627 628
            if self.modebase["framebased"]:
                pass
Z
zhiboniu 已提交
629 630

            self.collector.append(frame_id, self.pipeline_res)
631 632 633 634 635 636 637

            if frame_id > self.warmup_frame:
                self.pipe_timer.img_num += 1
                self.pipe_timer.total_time.end()
            frame_id += 1

            if self.cfg['visual']:
638 639
                _, _, fps = self.pipe_timer.get_total_time()
                im = self.visualize_video(frame, self.pipeline_res, frame_id,
640 641
                                          fps, entrance, records,
                                          center_traj)  # visualize
642
                writer.write(im)
W
wangguanzhong 已提交
643 644 645 646
                if self.file_name is None:  # use camera_id
                    cv2.imshow('PPHuman', im)
                    if cv2.waitKey(1) & 0xFF == ord('q'):
                        break
647 648 649 650

        writer.release()
        print('save result to {}'.format(out_path))

651 652 653 654 655 656 657 658
    def visualize_video(self,
                        image,
                        result,
                        frame_id,
                        fps,
                        entrance=None,
                        records=None,
                        center_traj=None):
Z
zhiboniu 已提交
659
        mot_res = copy.deepcopy(result.get('mot'))
660 661
        if mot_res is not None:
            ids = mot_res['boxes'][:, 0]
W
wangguanzhong 已提交
662
            scores = mot_res['boxes'][:, 2]
663 664 665 666 667 668
            boxes = mot_res['boxes'][:, 3:]
            boxes[:, 2] = boxes[:, 2] - boxes[:, 0]
            boxes[:, 3] = boxes[:, 3] - boxes[:, 1]
        else:
            boxes = np.zeros([0, 4])
            ids = np.zeros([0])
W
wangguanzhong 已提交
669
            scores = np.zeros([0])
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691

        # single class, still need to be defaultdict type for ploting
        num_classes = 1
        online_tlwhs = defaultdict(list)
        online_scores = defaultdict(list)
        online_ids = defaultdict(list)
        online_tlwhs[0] = boxes
        online_scores[0] = scores
        online_ids[0] = ids

        image = plot_tracking_dict(
            image,
            num_classes,
            online_tlwhs,
            online_ids,
            online_scores,
            frame_id=frame_id,
            fps=fps,
            do_entrance_counting=self.do_entrance_counting,
            entrance=entrance,
            records=records,
            center_traj=center_traj)
692 693 694 695 696 697 698 699

        attr_res = result.get('attr')
        if attr_res is not None:
            boxes = mot_res['boxes'][:, 1:]
            attr_res = attr_res['output']
            image = visualize_attr(image, attr_res, boxes)
            image = np.array(image)

J
JYChen 已提交
700 701 702 703 704 705 706 707
        kpt_res = result.get('kpt')
        if kpt_res is not None:
            image = visualize_pose(
                image,
                kpt_res,
                visual_thresh=self.cfg['kpt_thresh'],
                returnimg=True)

Z
zhiboniu 已提交
708 709
        skeleton_action_res = result.get('skeleton_action')
        if skeleton_action_res is not None:
J
JYChen 已提交
710
            image = visualize_action(image, mot_res['boxes'],
Z
zhiboniu 已提交
711 712
                                     self.skeleton_action_visual_helper,
                                     "SkeletonAction")
J
JYChen 已提交
713

714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
        return image

    def visualize_image(self, im_files, images, result):
        start_idx, boxes_num_i = 0, 0
        det_res = result.get('det')
        attr_res = result.get('attr')
        for i, (im_file, im) in enumerate(zip(im_files, images)):
            if det_res is not None:
                det_res_i = {}
                boxes_num_i = det_res['boxes_num'][i]
                det_res_i['boxes'] = det_res['boxes'][start_idx:start_idx +
                                                      boxes_num_i, :]
                im = visualize_box_mask(
                    im,
                    det_res_i,
                    labels=['person'],
                    threshold=self.cfg['crop_thresh'])
731 732
                im = np.ascontiguousarray(np.copy(im))
                im = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
733 734 735 736 737 738 739 740
            if attr_res is not None:
                attr_res_i = attr_res['output'][start_idx:start_idx +
                                                boxes_num_i]
                im = visualize_attr(im, attr_res_i, det_res_i['boxes'])
            img_name = os.path.split(im_file)[-1]
            if not os.path.exists(self.output_dir):
                os.makedirs(self.output_dir)
            out_path = os.path.join(self.output_dir, img_name)
741
            cv2.imwrite(out_path, im)
742 743 744 745 746 747 748 749 750
            print("save result to: " + out_path)
            start_idx += boxes_num_i


def main():
    cfg = merge_cfg(FLAGS)
    print_arguments(cfg)
    pipeline = Pipeline(
        cfg, FLAGS.image_file, FLAGS.image_dir, FLAGS.video_file,
Z
zhiboniu 已提交
751
        FLAGS.video_dir, FLAGS.camera_id, FLAGS.device, FLAGS.run_mode,
752 753 754 755
        FLAGS.trt_min_shape, FLAGS.trt_max_shape, FLAGS.trt_opt_shape,
        FLAGS.trt_calib_mode, FLAGS.cpu_threads, FLAGS.enable_mkldnn,
        FLAGS.output_dir, FLAGS.draw_center_traj, FLAGS.secs_interval,
        FLAGS.do_entrance_counting)
756 757 758 759 760 761 762 763 764 765 766 767 768

    pipeline.run()


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"

    main()