intel_ringbuffer.c 89.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright © 2008-2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Zou Nan hai <nanhai.zou@intel.com>
 *    Xiang Hai hao<haihao.xiang@intel.com>
 *
 */

30
#include <linux/log2.h>
31
#include <drm/drmP.h>
32
#include "i915_drv.h"
33
#include <drm/i915_drm.h>
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36

37
int __intel_ring_space(int head, int tail, int size)
38
{
39 40
	int space = head - tail;
	if (space <= 0)
41
		space += size;
42
	return space - I915_RING_FREE_SPACE;
43 44
}

45 46 47 48 49 50 51 52 53 54 55
void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
{
	if (ringbuf->last_retired_head != -1) {
		ringbuf->head = ringbuf->last_retired_head;
		ringbuf->last_retired_head = -1;
	}

	ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
					    ringbuf->tail, ringbuf->size);
}

56
int intel_ring_space(struct intel_ringbuffer *ringbuf)
57
{
58 59
	intel_ring_update_space(ringbuf);
	return ringbuf->space;
60 61
}

62
bool intel_engine_stopped(struct intel_engine_cs *engine)
63
{
64
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
65
	return dev_priv->gpu_error.stop_rings & intel_engine_flag(engine);
66
}
67

68
static void __intel_ring_advance(struct intel_engine_cs *engine)
69
{
70
	struct intel_ringbuffer *ringbuf = engine->buffer;
71
	ringbuf->tail &= ringbuf->size - 1;
72
	if (intel_engine_stopped(engine))
73
		return;
74
	engine->write_tail(engine, ringbuf->tail);
75 76
}

77
static int
78
gen2_render_ring_flush(struct drm_i915_gem_request *req,
79 80 81
		       u32	invalidate_domains,
		       u32	flush_domains)
{
82
	struct intel_engine_cs *engine = req->engine;
83 84 85 86
	u32 cmd;
	int ret;

	cmd = MI_FLUSH;
87
	if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
88 89 90 91 92
		cmd |= MI_NO_WRITE_FLUSH;

	if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
		cmd |= MI_READ_FLUSH;

93
	ret = intel_ring_begin(req, 2);
94 95 96
	if (ret)
		return ret;

97 98 99
	intel_ring_emit(engine, cmd);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
100 101 102 103 104

	return 0;
}

static int
105
gen4_render_ring_flush(struct drm_i915_gem_request *req,
106 107
		       u32	invalidate_domains,
		       u32	flush_domains)
108
{
109
	struct intel_engine_cs *engine = req->engine;
110
	struct drm_device *dev = engine->dev;
111
	u32 cmd;
112
	int ret;
113

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
	/*
	 * read/write caches:
	 *
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
	 * also flushed at 2d versus 3d pipeline switches.
	 *
	 * read-only caches:
	 *
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
	 * MI_READ_FLUSH is set, and is always flushed on 965.
	 *
	 * I915_GEM_DOMAIN_COMMAND may not exist?
	 *
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
	 * invalidated when MI_EXE_FLUSH is set.
	 *
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
	 * invalidated with every MI_FLUSH.
	 *
	 * TLBs:
	 *
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
	 * are flushed at any MI_FLUSH.
	 */

	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
143
	if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
144 145 146
		cmd &= ~MI_NO_WRITE_FLUSH;
	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
		cmd |= MI_EXE_FLUSH;
147

148 149 150
	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
	    (IS_G4X(dev) || IS_GEN5(dev)))
		cmd |= MI_INVALIDATE_ISP;
151

152
	ret = intel_ring_begin(req, 2);
153 154
	if (ret)
		return ret;
155

156 157 158
	intel_ring_emit(engine, cmd);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
159 160

	return 0;
161 162
}

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
/**
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 * implementing two workarounds on gen6.  From section 1.4.7.1
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 *
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 * produced by non-pipelined state commands), software needs to first
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 * 0.
 *
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 *
 * And the workaround for these two requires this workaround first:
 *
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 * BEFORE the pipe-control with a post-sync op and no write-cache
 * flushes.
 *
 * And this last workaround is tricky because of the requirements on
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 * volume 2 part 1:
 *
 *     "1 of the following must also be set:
 *      - Render Target Cache Flush Enable ([12] of DW1)
 *      - Depth Cache Flush Enable ([0] of DW1)
 *      - Stall at Pixel Scoreboard ([1] of DW1)
 *      - Depth Stall ([13] of DW1)
 *      - Post-Sync Operation ([13] of DW1)
 *      - Notify Enable ([8] of DW1)"
 *
 * The cache flushes require the workaround flush that triggered this
 * one, so we can't use it.  Depth stall would trigger the same.
 * Post-sync nonzero is what triggered this second workaround, so we
 * can't use that one either.  Notify enable is IRQs, which aren't
 * really our business.  That leaves only stall at scoreboard.
 */
static int
201
intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
202
{
203
	struct intel_engine_cs *engine = req->engine;
204
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
205 206
	int ret;

207
	ret = intel_ring_begin(req, 6);
208 209 210
	if (ret)
		return ret;

211 212
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
213
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
214 215 216 217 218
	intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
	intel_ring_emit(engine, 0); /* low dword */
	intel_ring_emit(engine, 0); /* high dword */
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
219

220
	ret = intel_ring_begin(req, 6);
221 222 223
	if (ret)
		return ret;

224 225 226 227 228 229 230
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(engine, PIPE_CONTROL_QW_WRITE);
	intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
231 232 233 234 235

	return 0;
}

static int
236 237
gen6_render_ring_flush(struct drm_i915_gem_request *req,
		       u32 invalidate_domains, u32 flush_domains)
238
{
239
	struct intel_engine_cs *engine = req->engine;
240
	u32 flags = 0;
241
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
242 243
	int ret;

244
	/* Force SNB workarounds for PIPE_CONTROL flushes */
245
	ret = intel_emit_post_sync_nonzero_flush(req);
246 247 248
	if (ret)
		return ret;

249 250 251 252
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
253 254 255 256 257 258 259
	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
		/*
		 * Ensure that any following seqno writes only happen
		 * when the render cache is indeed flushed.
		 */
260
		flags |= PIPE_CONTROL_CS_STALL;
261 262 263 264 265 266 267 268 269 270 271
	}
	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		/*
		 * TLB invalidate requires a post-sync write.
		 */
272
		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
273
	}
274

275
	ret = intel_ring_begin(req, 4);
276 277 278
	if (ret)
		return ret;

279 280 281 282 283
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(engine, flags);
	intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(engine, 0);
	intel_ring_advance(engine);
284 285 286 287

	return 0;
}

288
static int
289
gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
290
{
291
	struct intel_engine_cs *engine = req->engine;
292 293
	int ret;

294
	ret = intel_ring_begin(req, 4);
295 296 297
	if (ret)
		return ret;

298 299
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
300
			      PIPE_CONTROL_STALL_AT_SCOREBOARD);
301 302 303
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, 0);
	intel_ring_advance(engine);
304 305 306 307

	return 0;
}

308
static int
309
gen7_render_ring_flush(struct drm_i915_gem_request *req,
310 311
		       u32 invalidate_domains, u32 flush_domains)
{
312
	struct intel_engine_cs *engine = req->engine;
313
	u32 flags = 0;
314
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
315 316
	int ret;

317 318 319 320 321 322 323 324 325 326
	/*
	 * Ensure that any following seqno writes only happen when the render
	 * cache is indeed flushed.
	 *
	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
	 * don't try to be clever and just set it unconditionally.
	 */
	flags |= PIPE_CONTROL_CS_STALL;

327 328 329 330 331 332 333
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
334
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
335
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
336 337 338 339 340 341 342 343
	}
	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
344
		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
345 346 347 348
		/*
		 * TLB invalidate requires a post-sync write.
		 */
		flags |= PIPE_CONTROL_QW_WRITE;
349
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
350

351 352
		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;

353 354 355
		/* Workaround: we must issue a pipe_control with CS-stall bit
		 * set before a pipe_control command that has the state cache
		 * invalidate bit set. */
356
		gen7_render_ring_cs_stall_wa(req);
357 358
	}

359
	ret = intel_ring_begin(req, 4);
360 361 362
	if (ret)
		return ret;

363 364 365 366 367
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(engine, flags);
	intel_ring_emit(engine, scratch_addr);
	intel_ring_emit(engine, 0);
	intel_ring_advance(engine);
368 369 370 371

	return 0;
}

372
static int
373
gen8_emit_pipe_control(struct drm_i915_gem_request *req,
374 375
		       u32 flags, u32 scratch_addr)
{
376
	struct intel_engine_cs *engine = req->engine;
377 378
	int ret;

379
	ret = intel_ring_begin(req, 6);
380 381 382
	if (ret)
		return ret;

383 384 385 386 387 388 389
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(engine, flags);
	intel_ring_emit(engine, scratch_addr);
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, 0);
	intel_ring_advance(engine);
390 391 392 393

	return 0;
}

B
Ben Widawsky 已提交
394
static int
395
gen8_render_ring_flush(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
396 397 398
		       u32 invalidate_domains, u32 flush_domains)
{
	u32 flags = 0;
399
	u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
400
	int ret;
B
Ben Widawsky 已提交
401 402 403 404 405 406

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
407
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
408
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
B
Ben Widawsky 已提交
409 410 411 412 413 414 415 416 417 418
	}
	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
419 420

		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
421
		ret = gen8_emit_pipe_control(req,
422 423 424 425 426
					     PIPE_CONTROL_CS_STALL |
					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
					     0);
		if (ret)
			return ret;
B
Ben Widawsky 已提交
427 428
	}

429
	return gen8_emit_pipe_control(req, flags, scratch_addr);
B
Ben Widawsky 已提交
430 431
}

432
static void ring_write_tail(struct intel_engine_cs *engine,
433
			    u32 value)
434
{
435 436
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
	I915_WRITE_TAIL(engine, value);
437 438
}

439
u64 intel_ring_get_active_head(struct intel_engine_cs *engine)
440
{
441
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
442
	u64 acthd;
443

444 445 446 447 448
	if (INTEL_INFO(engine->dev)->gen >= 8)
		acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
					 RING_ACTHD_UDW(engine->mmio_base));
	else if (INTEL_INFO(engine->dev)->gen >= 4)
		acthd = I915_READ(RING_ACTHD(engine->mmio_base));
449 450 451 452
	else
		acthd = I915_READ(ACTHD);

	return acthd;
453 454
}

455
static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
456
{
457
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
458 459 460
	u32 addr;

	addr = dev_priv->status_page_dmah->busaddr;
461
	if (INTEL_INFO(engine->dev)->gen >= 4)
462 463 464 465
		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
	I915_WRITE(HWS_PGA, addr);
}

466
static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
467
{
468 469
	struct drm_device *dev = engine->dev;
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
470
	i915_reg_t mmio;
471 472 473 474 475

	/* The ring status page addresses are no longer next to the rest of
	 * the ring registers as of gen7.
	 */
	if (IS_GEN7(dev)) {
476
		switch (engine->id) {
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
		case RCS:
			mmio = RENDER_HWS_PGA_GEN7;
			break;
		case BCS:
			mmio = BLT_HWS_PGA_GEN7;
			break;
		/*
		 * VCS2 actually doesn't exist on Gen7. Only shut up
		 * gcc switch check warning
		 */
		case VCS2:
		case VCS:
			mmio = BSD_HWS_PGA_GEN7;
			break;
		case VECS:
			mmio = VEBOX_HWS_PGA_GEN7;
			break;
		}
495 496
	} else if (IS_GEN6(engine->dev)) {
		mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
497 498
	} else {
		/* XXX: gen8 returns to sanity */
499
		mmio = RING_HWS_PGA(engine->mmio_base);
500 501
	}

502
	I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
503 504 505 506 507 508 509 510 511 512
	POSTING_READ(mmio);

	/*
	 * Flush the TLB for this page
	 *
	 * FIXME: These two bits have disappeared on gen8, so a question
	 * arises: do we still need this and if so how should we go about
	 * invalidating the TLB?
	 */
	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
513
		i915_reg_t reg = RING_INSTPM(engine->mmio_base);
514 515

		/* ring should be idle before issuing a sync flush*/
516
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
517 518 519 520 521 522 523

		I915_WRITE(reg,
			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
					      INSTPM_SYNC_FLUSH));
		if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
			     1000))
			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
524
				  engine->name);
525 526 527
	}
}

528
static bool stop_ring(struct intel_engine_cs *engine)
529
{
530
	struct drm_i915_private *dev_priv = to_i915(engine->dev);
531

532 533 534 535 536
	if (!IS_GEN2(engine->dev)) {
		I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
		if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
			DRM_ERROR("%s : timed out trying to stop ring\n",
				  engine->name);
537 538 539 540
			/* Sometimes we observe that the idle flag is not
			 * set even though the ring is empty. So double
			 * check before giving up.
			 */
541
			if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
542
				return false;
543 544
		}
	}
545

546 547 548
	I915_WRITE_CTL(engine, 0);
	I915_WRITE_HEAD(engine, 0);
	engine->write_tail(engine, 0);
549

550 551 552
	if (!IS_GEN2(engine->dev)) {
		(void)I915_READ_CTL(engine);
		I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
553
	}
554

555
	return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
556
}
557

558 559 560 561 562
void intel_engine_init_hangcheck(struct intel_engine_cs *engine)
{
	memset(&engine->hangcheck, 0, sizeof(engine->hangcheck));
}

563
static int init_ring_common(struct intel_engine_cs *engine)
564
{
565
	struct drm_device *dev = engine->dev;
566
	struct drm_i915_private *dev_priv = dev->dev_private;
567
	struct intel_ringbuffer *ringbuf = engine->buffer;
568
	struct drm_i915_gem_object *obj = ringbuf->obj;
569 570
	int ret = 0;

571
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
572

573
	if (!stop_ring(engine)) {
574
		/* G45 ring initialization often fails to reset head to zero */
575 576
		DRM_DEBUG_KMS("%s head not reset to zero "
			      "ctl %08x head %08x tail %08x start %08x\n",
577 578 579 580 581
			      engine->name,
			      I915_READ_CTL(engine),
			      I915_READ_HEAD(engine),
			      I915_READ_TAIL(engine),
			      I915_READ_START(engine));
582

583
		if (!stop_ring(engine)) {
584 585
			DRM_ERROR("failed to set %s head to zero "
				  "ctl %08x head %08x tail %08x start %08x\n",
586 587 588 589 590
				  engine->name,
				  I915_READ_CTL(engine),
				  I915_READ_HEAD(engine),
				  I915_READ_TAIL(engine),
				  I915_READ_START(engine));
591 592
			ret = -EIO;
			goto out;
593
		}
594 595
	}

596
	if (I915_NEED_GFX_HWS(dev))
597
		intel_ring_setup_status_page(engine);
598
	else
599
		ring_setup_phys_status_page(engine);
600

601
	/* Enforce ordering by reading HEAD register back */
602
	I915_READ_HEAD(engine);
603

604 605 606 607
	/* Initialize the ring. This must happen _after_ we've cleared the ring
	 * registers with the above sequence (the readback of the HEAD registers
	 * also enforces ordering), otherwise the hw might lose the new ring
	 * register values. */
608
	I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
609 610

	/* WaClearRingBufHeadRegAtInit:ctg,elk */
611
	if (I915_READ_HEAD(engine))
612
		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
613 614 615
			  engine->name, I915_READ_HEAD(engine));
	I915_WRITE_HEAD(engine, 0);
	(void)I915_READ_HEAD(engine);
616

617
	I915_WRITE_CTL(engine,
618
			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
619
			| RING_VALID);
620 621

	/* If the head is still not zero, the ring is dead */
622 623 624
	if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
		     I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
		     (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
625
		DRM_ERROR("%s initialization failed "
626
			  "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
627 628 629 630 631 632
			  engine->name,
			  I915_READ_CTL(engine),
			  I915_READ_CTL(engine) & RING_VALID,
			  I915_READ_HEAD(engine), I915_READ_TAIL(engine),
			  I915_READ_START(engine),
			  (unsigned long)i915_gem_obj_ggtt_offset(obj));
633 634
		ret = -EIO;
		goto out;
635 636
	}

637
	ringbuf->last_retired_head = -1;
638 639
	ringbuf->head = I915_READ_HEAD(engine);
	ringbuf->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
640
	intel_ring_update_space(ringbuf);
641

642
	intel_engine_init_hangcheck(engine);
643

644
out:
645
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
646 647

	return ret;
648 649
}

650
void
651
intel_fini_pipe_control(struct intel_engine_cs *engine)
652
{
653
	struct drm_device *dev = engine->dev;
654

655
	if (engine->scratch.obj == NULL)
656 657 658
		return;

	if (INTEL_INFO(dev)->gen >= 5) {
659 660
		kunmap(sg_page(engine->scratch.obj->pages->sgl));
		i915_gem_object_ggtt_unpin(engine->scratch.obj);
661 662
	}

663 664
	drm_gem_object_unreference(&engine->scratch.obj->base);
	engine->scratch.obj = NULL;
665 666 667
}

int
668
intel_init_pipe_control(struct intel_engine_cs *engine)
669 670 671
{
	int ret;

672
	WARN_ON(engine->scratch.obj);
673

674 675
	engine->scratch.obj = i915_gem_alloc_object(engine->dev, 4096);
	if (engine->scratch.obj == NULL) {
676 677 678 679
		DRM_ERROR("Failed to allocate seqno page\n");
		ret = -ENOMEM;
		goto err;
	}
680

681 682
	ret = i915_gem_object_set_cache_level(engine->scratch.obj,
					      I915_CACHE_LLC);
683 684
	if (ret)
		goto err_unref;
685

686
	ret = i915_gem_obj_ggtt_pin(engine->scratch.obj, 4096, 0);
687 688 689
	if (ret)
		goto err_unref;

690 691 692
	engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(engine->scratch.obj);
	engine->scratch.cpu_page = kmap(sg_page(engine->scratch.obj->pages->sgl));
	if (engine->scratch.cpu_page == NULL) {
693
		ret = -ENOMEM;
694
		goto err_unpin;
695
	}
696

697
	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
698
			 engine->name, engine->scratch.gtt_offset);
699 700 701
	return 0;

err_unpin:
702
	i915_gem_object_ggtt_unpin(engine->scratch.obj);
703
err_unref:
704
	drm_gem_object_unreference(&engine->scratch.obj->base);
705 706 707 708
err:
	return ret;
}

709
static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
710
{
711
	int ret, i;
712
	struct intel_engine_cs *engine = req->engine;
713
	struct drm_device *dev = engine->dev;
714
	struct drm_i915_private *dev_priv = dev->dev_private;
715
	struct i915_workarounds *w = &dev_priv->workarounds;
716

717
	if (w->count == 0)
718
		return 0;
719

720
	engine->gpu_caches_dirty = true;
721
	ret = intel_ring_flush_all_caches(req);
722 723
	if (ret)
		return ret;
724

725
	ret = intel_ring_begin(req, (w->count * 2 + 2));
726 727 728
	if (ret)
		return ret;

729
	intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(w->count));
730
	for (i = 0; i < w->count; i++) {
731 732
		intel_ring_emit_reg(engine, w->reg[i].addr);
		intel_ring_emit(engine, w->reg[i].value);
733
	}
734
	intel_ring_emit(engine, MI_NOOP);
735

736
	intel_ring_advance(engine);
737

738
	engine->gpu_caches_dirty = true;
739
	ret = intel_ring_flush_all_caches(req);
740 741
	if (ret)
		return ret;
742

743
	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
744

745
	return 0;
746 747
}

748
static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
749 750 751
{
	int ret;

752
	ret = intel_ring_workarounds_emit(req);
753 754 755
	if (ret != 0)
		return ret;

756
	ret = i915_gem_render_state_init(req);
757
	if (ret)
758
		return ret;
759

760
	return 0;
761 762
}

763
static int wa_add(struct drm_i915_private *dev_priv,
764 765
		  i915_reg_t addr,
		  const u32 mask, const u32 val)
766 767 768 769 770 771 772 773 774 775 776 777 778
{
	const u32 idx = dev_priv->workarounds.count;

	if (WARN_ON(idx >= I915_MAX_WA_REGS))
		return -ENOSPC;

	dev_priv->workarounds.reg[idx].addr = addr;
	dev_priv->workarounds.reg[idx].value = val;
	dev_priv->workarounds.reg[idx].mask = mask;

	dev_priv->workarounds.count++;

	return 0;
779 780
}

781
#define WA_REG(addr, mask, val) do { \
782
		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
783 784
		if (r) \
			return r; \
785
	} while (0)
786 787

#define WA_SET_BIT_MASKED(addr, mask) \
788
	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
789 790

#define WA_CLR_BIT_MASKED(addr, mask) \
791
	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
792

793
#define WA_SET_FIELD_MASKED(addr, mask, value) \
794
	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
795

796 797
#define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
#define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
798

799
#define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
800

801 802
static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
				 i915_reg_t reg)
803
{
804
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
805
	struct i915_workarounds *wa = &dev_priv->workarounds;
806
	const uint32_t index = wa->hw_whitelist_count[engine->id];
807 808 809 810

	if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
		return -EINVAL;

811
	WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
812
		 i915_mmio_reg_offset(reg));
813
	wa->hw_whitelist_count[engine->id]++;
814 815 816 817

	return 0;
}

818
static int gen8_init_workarounds(struct intel_engine_cs *engine)
819
{
820
	struct drm_device *dev = engine->dev;
821 822 823
	struct drm_i915_private *dev_priv = dev->dev_private;

	WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
824

825 826 827
	/* WaDisableAsyncFlipPerfMode:bdw,chv */
	WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);

828 829 830 831
	/* WaDisablePartialInstShootdown:bdw,chv */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

832 833 834 835 836
	/* Use Force Non-Coherent whenever executing a 3D context. This is a
	 * workaround for for a possible hang in the unlikely event a TLB
	 * invalidation occurs during a PSD flush.
	 */
	/* WaForceEnableNonCoherent:bdw,chv */
837
	/* WaHdcDisableFetchWhenMasked:bdw,chv */
838
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
839
			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
840 841
			  HDC_FORCE_NON_COHERENT);

842 843 844 845 846 847 848 849 850 851
	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
	 *  polygons in the same 8x4 pixel/sample area to be processed without
	 *  stalling waiting for the earlier ones to write to Hierarchical Z
	 *  buffer."
	 *
	 * This optimization is off by default for BDW and CHV; turn it on.
	 */
	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);

852 853 854
	/* Wa4x4STCOptimizationDisable:bdw,chv */
	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);

855 856 857 858 859 860 861 862 863 864 865 866
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN6_WIZ_HASHING_MASK,
			    GEN6_WIZ_HASHING_16x4);

867 868 869
	return 0;
}

870
static int bdw_init_workarounds(struct intel_engine_cs *engine)
871
{
872
	int ret;
873
	struct drm_device *dev = engine->dev;
874
	struct drm_i915_private *dev_priv = dev->dev_private;
875

876
	ret = gen8_init_workarounds(engine);
877 878 879
	if (ret)
		return ret;

880
	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
881
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
882

883
	/* WaDisableDopClockGating:bdw */
884 885
	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
			  DOP_CLOCK_GATING_DISABLE);
886

887 888
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN8_SAMPLER_POWER_BYPASS_DIS);
889

890
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
891 892 893
			  /* WaForceContextSaveRestoreNonCoherent:bdw */
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
894
			  (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
895 896 897 898

	return 0;
}

899
static int chv_init_workarounds(struct intel_engine_cs *engine)
900
{
901
	int ret;
902
	struct drm_device *dev = engine->dev;
903 904
	struct drm_i915_private *dev_priv = dev->dev_private;

905
	ret = gen8_init_workarounds(engine);
906 907 908
	if (ret)
		return ret;

909
	/* WaDisableThreadStallDopClockGating:chv */
910
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
911

912 913 914
	/* Improve HiZ throughput on CHV. */
	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);

915 916 917
	return 0;
}

918
static int gen9_init_workarounds(struct intel_engine_cs *engine)
919
{
920
	struct drm_device *dev = engine->dev;
921
	struct drm_i915_private *dev_priv = dev->dev_private;
922
	uint32_t tmp;
923
	int ret;
924

925 926 927 928 929 930 931 932
	/* WaEnableLbsSlaRetryTimerDecrement:skl */
	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);

	/* WaDisableKillLogic:bxt,skl */
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   ECOCHK_DIS_TLB);

933
	/* WaClearFlowControlGpgpuContextSave:skl,bxt */
934
	/* WaDisablePartialInstShootdown:skl,bxt */
935
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
936
			  FLOW_CONTROL_ENABLE |
937 938
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

939
	/* Syncing dependencies between camera and graphics:skl,bxt */
940 941 942
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);

943 944 945
	/* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
	if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
946 947
		WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
				  GEN9_DG_MIRROR_FIX_ENABLE);
948

949 950 951
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
	if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
952 953
		WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
				  GEN9_RHWO_OPTIMIZATION_DISABLE);
954 955 956 957 958
		/*
		 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
		 * but we do that in per ctx batchbuffer as there is an issue
		 * with this register not getting restored on ctx restore
		 */
959 960
	}

961 962
	/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
	if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER) || IS_BROXTON(dev))
963 964 965
		WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
				  GEN9_ENABLE_YV12_BUGFIX);

966
	/* Wa4x4STCOptimizationDisable:skl,bxt */
967
	/* WaDisablePartialResolveInVc:skl,bxt */
968 969
	WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
					 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
970

971
	/* WaCcsTlbPrefetchDisable:skl,bxt */
972 973 974
	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
			  GEN9_CCS_TLB_PREFETCH_ENABLE);

975
	/* WaDisableMaskBasedCammingInRCC:skl,bxt */
976 977
	if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_C0) ||
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
978 979 980
		WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
				  PIXEL_MASK_CAMMING_DISABLE);

981 982
	/* WaForceContextSaveRestoreNonCoherent:skl,bxt */
	tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
983 984
	if (IS_SKL_REVID(dev, SKL_REVID_F0, SKL_REVID_F0) ||
	    IS_BXT_REVID(dev, BXT_REVID_B0, REVID_FOREVER))
985 986 987
		tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
	WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);

988
	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
989
	if (IS_SKYLAKE(dev) || IS_BXT_REVID(dev, 0, BXT_REVID_B0))
990 991 992
		WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
				  GEN8_SAMPLER_POWER_BYPASS_DIS);

993 994 995
	/* WaDisableSTUnitPowerOptimization:skl,bxt */
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);

996 997 998 999
	/* WaOCLCoherentLineFlush:skl,bxt */
	I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
				    GEN8_LQSC_FLUSH_COHERENT_LINES));

1000
	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt */
1001
	ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
1002 1003 1004
	if (ret)
		return ret;

1005
	/* WaAllowUMDToModifyHDCChicken1:skl,bxt */
1006
	ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
1007 1008 1009
	if (ret)
		return ret;

1010 1011 1012
	return 0;
}

1013
static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
1014
{
1015
	struct drm_device *dev = engine->dev;
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
	struct drm_i915_private *dev_priv = dev->dev_private;
	u8 vals[3] = { 0, 0, 0 };
	unsigned int i;

	for (i = 0; i < 3; i++) {
		u8 ss;

		/*
		 * Only consider slices where one, and only one, subslice has 7
		 * EUs
		 */
1027
		if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
			continue;

		/*
		 * subslice_7eu[i] != 0 (because of the check above) and
		 * ss_max == 4 (maximum number of subslices possible per slice)
		 *
		 * ->    0 <= ss <= 3;
		 */
		ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
		vals[i] = 3 - ss;
	}

	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
		return 0;

	/* Tune IZ hashing. See intel_device_info_runtime_init() */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN9_IZ_HASHING_MASK(2) |
			    GEN9_IZ_HASHING_MASK(1) |
			    GEN9_IZ_HASHING_MASK(0),
			    GEN9_IZ_HASHING(2, vals[2]) |
			    GEN9_IZ_HASHING(1, vals[1]) |
			    GEN9_IZ_HASHING(0, vals[0]));

	return 0;
}

1055
static int skl_init_workarounds(struct intel_engine_cs *engine)
1056
{
1057
	int ret;
1058
	struct drm_device *dev = engine->dev;
1059 1060
	struct drm_i915_private *dev_priv = dev->dev_private;

1061
	ret = gen9_init_workarounds(engine);
1062 1063
	if (ret)
		return ret;
1064

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
	/*
	 * Actual WA is to disable percontext preemption granularity control
	 * until D0 which is the default case so this is equivalent to
	 * !WaDisablePerCtxtPreemptionGranularityControl:skl
	 */
	if (IS_SKL_REVID(dev, SKL_REVID_E0, REVID_FOREVER)) {
		I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
	}

1075
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0)) {
1076 1077 1078 1079 1080 1081 1082 1083
		/* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
		I915_WRITE(FF_SLICE_CS_CHICKEN2,
			   _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
	}

	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
	 * involving this register should also be added to WA batch as required.
	 */
1084
	if (IS_SKL_REVID(dev, 0, SKL_REVID_E0))
1085 1086 1087 1088 1089
		/* WaDisableLSQCROPERFforOCL:skl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);

	/* WaEnableGapsTsvCreditFix:skl */
1090
	if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER)) {
1091 1092 1093 1094
		I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
					   GEN9_GAPS_TSV_CREDIT_DISABLE));
	}

1095
	/* WaDisablePowerCompilerClockGating:skl */
1096
	if (IS_SKL_REVID(dev, SKL_REVID_B0, SKL_REVID_B0))
1097 1098 1099
		WA_SET_BIT_MASKED(HIZ_CHICKEN,
				  BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);

1100
	if (IS_SKL_REVID(dev, 0, SKL_REVID_F0)) {
1101 1102 1103 1104 1105 1106 1107 1108
		/*
		 *Use Force Non-Coherent whenever executing a 3D context. This
		 * is a workaround for a possible hang in the unlikely event
		 * a TLB invalidation occurs during a PSD flush.
		 */
		/* WaForceEnableNonCoherent:skl */
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
				  HDC_FORCE_NON_COHERENT);
1109 1110 1111 1112

		/* WaDisableHDCInvalidation:skl */
		I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
			   BDW_DISABLE_HDC_INVALIDATION);
1113 1114
	}

1115 1116
	/* WaBarrierPerformanceFixDisable:skl */
	if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_D0))
1117 1118 1119 1120
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
				  HDC_FENCE_DEST_SLM_DISABLE |
				  HDC_BARRIER_PERFORMANCE_DISABLE);

1121
	/* WaDisableSbeCacheDispatchPortSharing:skl */
1122
	if (IS_SKL_REVID(dev, 0, SKL_REVID_F0))
1123 1124 1125 1126
		WA_SET_BIT_MASKED(
			GEN7_HALF_SLICE_CHICKEN1,
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);

1127
	/* WaDisableLSQCROPERFforOCL:skl */
1128
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1129 1130 1131
	if (ret)
		return ret;

1132
	return skl_tune_iz_hashing(engine);
1133 1134
}

1135
static int bxt_init_workarounds(struct intel_engine_cs *engine)
1136
{
1137
	int ret;
1138
	struct drm_device *dev = engine->dev;
1139 1140
	struct drm_i915_private *dev_priv = dev->dev_private;

1141
	ret = gen9_init_workarounds(engine);
1142 1143
	if (ret)
		return ret;
1144

1145 1146
	/* WaStoreMultiplePTEenable:bxt */
	/* This is a requirement according to Hardware specification */
T
Tim Gore 已提交
1147
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1148 1149 1150
		I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);

	/* WaSetClckGatingDisableMedia:bxt */
T
Tim Gore 已提交
1151
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1152 1153 1154 1155
		I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
					    ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
	}

1156 1157 1158 1159
	/* WaDisableThreadStallDopClockGating:bxt */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  STALL_DOP_GATING_DISABLE);

1160
	/* WaDisableSbeCacheDispatchPortSharing:bxt */
1161
	if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1162 1163 1164 1165 1166
		WA_SET_BIT_MASKED(
			GEN7_HALF_SLICE_CHICKEN1,
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
	}

1167 1168 1169
	/* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
	/* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
	/* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1170
	/* WaDisableLSQCROPERFforOCL:bxt */
1171
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1172
		ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1173 1174
		if (ret)
			return ret;
1175

1176
		ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1177 1178
		if (ret)
			return ret;
1179 1180
	}

1181 1182 1183
	return 0;
}

1184
int init_workarounds_ring(struct intel_engine_cs *engine)
1185
{
1186
	struct drm_device *dev = engine->dev;
1187 1188
	struct drm_i915_private *dev_priv = dev->dev_private;

1189
	WARN_ON(engine->id != RCS);
1190 1191

	dev_priv->workarounds.count = 0;
1192
	dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1193 1194

	if (IS_BROADWELL(dev))
1195
		return bdw_init_workarounds(engine);
1196 1197

	if (IS_CHERRYVIEW(dev))
1198
		return chv_init_workarounds(engine);
1199

1200
	if (IS_SKYLAKE(dev))
1201
		return skl_init_workarounds(engine);
1202 1203

	if (IS_BROXTON(dev))
1204
		return bxt_init_workarounds(engine);
1205

1206 1207 1208
	return 0;
}

1209
static int init_render_ring(struct intel_engine_cs *engine)
1210
{
1211
	struct drm_device *dev = engine->dev;
1212
	struct drm_i915_private *dev_priv = dev->dev_private;
1213
	int ret = init_ring_common(engine);
1214 1215
	if (ret)
		return ret;
1216

1217 1218
	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
	if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1219
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1220 1221 1222 1223

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
1224
	 *
1225
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1226
	 */
1227
	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1228 1229
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

1230
	/* Required for the hardware to program scanline values for waiting */
1231
	/* WaEnableFlushTlbInvalidationMode:snb */
1232 1233
	if (INTEL_INFO(dev)->gen == 6)
		I915_WRITE(GFX_MODE,
1234
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1235

1236
	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1237 1238
	if (IS_GEN7(dev))
		I915_WRITE(GFX_MODE_GEN7,
1239
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1240
			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1241

1242
	if (IS_GEN6(dev)) {
1243 1244 1245 1246 1247 1248
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
		 * "If this bit is set, STCunit will have LRA as replacement
		 *  policy. [...] This bit must be reset.  LRA replacement
		 *  policy is not supported."
		 */
		I915_WRITE(CACHE_MODE_0,
1249
			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1250 1251
	}

1252
	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1253
		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1254

1255
	if (HAS_L3_DPF(dev))
1256
		I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev));
1257

1258
	return init_workarounds_ring(engine);
1259 1260
}

1261
static void render_ring_cleanup(struct intel_engine_cs *engine)
1262
{
1263
	struct drm_device *dev = engine->dev;
1264 1265 1266 1267 1268 1269 1270
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (dev_priv->semaphore_obj) {
		i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
		drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
		dev_priv->semaphore_obj = NULL;
	}
1271

1272
	intel_fini_pipe_control(engine);
1273 1274
}

1275
static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1276 1277 1278
			   unsigned int num_dwords)
{
#define MBOX_UPDATE_DWORDS 8
1279
	struct intel_engine_cs *signaller = signaller_req->engine;
1280 1281 1282
	struct drm_device *dev = signaller->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *waiter;
1283 1284
	enum intel_engine_id id;
	int ret, num_rings;
1285 1286 1287 1288 1289

	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
#undef MBOX_UPDATE_DWORDS

1290
	ret = intel_ring_begin(signaller_req, num_dwords);
1291 1292 1293
	if (ret)
		return ret;

1294
	for_each_engine_id(waiter, dev_priv, id) {
1295
		u32 seqno;
1296
		u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1297 1298 1299
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

1300
		seqno = i915_gem_request_get_seqno(signaller_req);
1301 1302 1303 1304 1305 1306
		intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
					   PIPE_CONTROL_QW_WRITE |
					   PIPE_CONTROL_FLUSH_ENABLE);
		intel_ring_emit(signaller, lower_32_bits(gtt_offset));
		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1307
		intel_ring_emit(signaller, seqno);
1308 1309 1310 1311 1312 1313 1314 1315 1316
		intel_ring_emit(signaller, 0);
		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
					   MI_SEMAPHORE_TARGET(waiter->id));
		intel_ring_emit(signaller, 0);
	}

	return 0;
}

1317
static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1318 1319 1320
			   unsigned int num_dwords)
{
#define MBOX_UPDATE_DWORDS 6
1321
	struct intel_engine_cs *signaller = signaller_req->engine;
1322 1323 1324
	struct drm_device *dev = signaller->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *waiter;
1325 1326
	enum intel_engine_id id;
	int ret, num_rings;
1327 1328 1329 1330 1331

	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
#undef MBOX_UPDATE_DWORDS

1332
	ret = intel_ring_begin(signaller_req, num_dwords);
1333 1334 1335
	if (ret)
		return ret;

1336
	for_each_engine_id(waiter, dev_priv, id) {
1337
		u32 seqno;
1338
		u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1339 1340 1341
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

1342
		seqno = i915_gem_request_get_seqno(signaller_req);
1343 1344 1345 1346 1347
		intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
					   MI_FLUSH_DW_OP_STOREDW);
		intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
					   MI_FLUSH_DW_USE_GTT);
		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1348
		intel_ring_emit(signaller, seqno);
1349 1350 1351 1352 1353 1354 1355 1356
		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
					   MI_SEMAPHORE_TARGET(waiter->id));
		intel_ring_emit(signaller, 0);
	}

	return 0;
}

1357
static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1358
		       unsigned int num_dwords)
1359
{
1360
	struct intel_engine_cs *signaller = signaller_req->engine;
1361 1362
	struct drm_device *dev = signaller->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1363
	struct intel_engine_cs *useless;
1364 1365
	enum intel_engine_id id;
	int ret, num_rings;
1366

1367 1368 1369 1370
#define MBOX_UPDATE_DWORDS 3
	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
	num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
#undef MBOX_UPDATE_DWORDS
1371

1372
	ret = intel_ring_begin(signaller_req, num_dwords);
1373 1374 1375
	if (ret)
		return ret;

1376 1377
	for_each_engine_id(useless, dev_priv, id) {
		i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[id];
1378 1379

		if (i915_mmio_reg_valid(mbox_reg)) {
1380
			u32 seqno = i915_gem_request_get_seqno(signaller_req);
1381

1382
			intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1383
			intel_ring_emit_reg(signaller, mbox_reg);
1384
			intel_ring_emit(signaller, seqno);
1385 1386
		}
	}
1387

1388 1389 1390 1391
	/* If num_dwords was rounded, make sure the tail pointer is correct */
	if (num_rings % 2 == 0)
		intel_ring_emit(signaller, MI_NOOP);

1392
	return 0;
1393 1394
}

1395 1396
/**
 * gen6_add_request - Update the semaphore mailbox registers
1397 1398
 *
 * @request - request to write to the ring
1399 1400 1401 1402
 *
 * Update the mailbox registers in the *other* rings with the current seqno.
 * This acts like a signal in the canonical semaphore.
 */
1403
static int
1404
gen6_add_request(struct drm_i915_gem_request *req)
1405
{
1406
	struct intel_engine_cs *engine = req->engine;
1407
	int ret;
1408

1409 1410
	if (engine->semaphore.signal)
		ret = engine->semaphore.signal(req, 4);
B
Ben Widawsky 已提交
1411
	else
1412
		ret = intel_ring_begin(req, 4);
B
Ben Widawsky 已提交
1413

1414 1415 1416
	if (ret)
		return ret;

1417 1418 1419 1420 1421 1422
	intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
	intel_ring_emit(engine,
			I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
	intel_ring_emit(engine, i915_gem_request_get_seqno(req));
	intel_ring_emit(engine, MI_USER_INTERRUPT);
	__intel_ring_advance(engine);
1423 1424 1425 1426

	return 0;
}

1427 1428 1429 1430 1431 1432 1433
static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
					      u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	return dev_priv->last_seqno < seqno;
}

1434 1435 1436 1437 1438 1439 1440
/**
 * intel_ring_sync - sync the waiter to the signaller on seqno
 *
 * @waiter - ring that is waiting
 * @signaller - ring which has, or will signal
 * @seqno - seqno which the waiter will block on
 */
1441 1442

static int
1443
gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1444 1445 1446
	       struct intel_engine_cs *signaller,
	       u32 seqno)
{
1447
	struct intel_engine_cs *waiter = waiter_req->engine;
1448 1449 1450
	struct drm_i915_private *dev_priv = waiter->dev->dev_private;
	int ret;

1451
	ret = intel_ring_begin(waiter_req, 4);
1452 1453 1454 1455 1456
	if (ret)
		return ret;

	intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
				MI_SEMAPHORE_GLOBAL_GTT |
B
Ben Widawsky 已提交
1457
				MI_SEMAPHORE_POLL |
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
				MI_SEMAPHORE_SAD_GTE_SDD);
	intel_ring_emit(waiter, seqno);
	intel_ring_emit(waiter,
			lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
	intel_ring_emit(waiter,
			upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
	intel_ring_advance(waiter);
	return 0;
}

1468
static int
1469
gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1470
	       struct intel_engine_cs *signaller,
1471
	       u32 seqno)
1472
{
1473
	struct intel_engine_cs *waiter = waiter_req->engine;
1474 1475 1476
	u32 dw1 = MI_SEMAPHORE_MBOX |
		  MI_SEMAPHORE_COMPARE |
		  MI_SEMAPHORE_REGISTER;
1477 1478
	u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
	int ret;
1479

1480 1481 1482 1483 1484 1485
	/* Throughout all of the GEM code, seqno passed implies our current
	 * seqno is >= the last seqno executed. However for hardware the
	 * comparison is strictly greater than.
	 */
	seqno -= 1;

1486
	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1487

1488
	ret = intel_ring_begin(waiter_req, 4);
1489 1490 1491
	if (ret)
		return ret;

1492 1493
	/* If seqno wrap happened, omit the wait with no-ops */
	if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1494
		intel_ring_emit(waiter, dw1 | wait_mbox);
1495 1496 1497 1498 1499 1500 1501 1502 1503
		intel_ring_emit(waiter, seqno);
		intel_ring_emit(waiter, 0);
		intel_ring_emit(waiter, MI_NOOP);
	} else {
		intel_ring_emit(waiter, MI_NOOP);
		intel_ring_emit(waiter, MI_NOOP);
		intel_ring_emit(waiter, MI_NOOP);
		intel_ring_emit(waiter, MI_NOOP);
	}
1504
	intel_ring_advance(waiter);
1505 1506 1507 1508

	return 0;
}

1509 1510
#define PIPE_CONTROL_FLUSH(ring__, addr__)					\
do {									\
1511 1512
	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
		 PIPE_CONTROL_DEPTH_STALL);				\
1513 1514 1515 1516 1517 1518
	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
	intel_ring_emit(ring__, 0);							\
	intel_ring_emit(ring__, 0);							\
} while (0)

static int
1519
pc_render_add_request(struct drm_i915_gem_request *req)
1520
{
1521
	struct intel_engine_cs *engine = req->engine;
1522
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
	int ret;

	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
	 * incoherent with writes to memory, i.e. completely fubar,
	 * so we need to use PIPE_NOTIFY instead.
	 *
	 * However, we also need to workaround the qword write
	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
	 * memory before requesting an interrupt.
	 */
1533
	ret = intel_ring_begin(req, 32);
1534 1535 1536
	if (ret)
		return ret;

1537 1538
	intel_ring_emit(engine,
			GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1539 1540
			PIPE_CONTROL_WRITE_FLUSH |
			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1541 1542 1543 1544 1545
	intel_ring_emit(engine,
			engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(engine, i915_gem_request_get_seqno(req));
	intel_ring_emit(engine, 0);
	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1546
	scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1547
	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1548
	scratch_addr += 2 * CACHELINE_BYTES;
1549
	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1550
	scratch_addr += 2 * CACHELINE_BYTES;
1551
	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1552
	scratch_addr += 2 * CACHELINE_BYTES;
1553
	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1554
	scratch_addr += 2 * CACHELINE_BYTES;
1555
	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1556

1557 1558
	intel_ring_emit(engine,
			GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1559 1560
			PIPE_CONTROL_WRITE_FLUSH |
			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1561
			PIPE_CONTROL_NOTIFY);
1562 1563 1564 1565 1566
	intel_ring_emit(engine,
			engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(engine, i915_gem_request_get_seqno(req));
	intel_ring_emit(engine, 0);
	__intel_ring_advance(engine);
1567 1568 1569 1570

	return 0;
}

1571 1572
static void
gen6_seqno_barrier(struct intel_engine_cs *engine)
1573 1574 1575
{
	/* Workaround to force correct ordering between irq and seqno writes on
	 * ivb (and maybe also on snb) by reading from a CS register (like
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
	 * ACTHD) before reading the status page.
	 *
	 * Note that this effectively stalls the read by the time it takes to
	 * do a memory transaction, which more or less ensures that the write
	 * from the GPU has sufficient time to invalidate the CPU cacheline.
	 * Alternatively we could delay the interrupt from the CS ring to give
	 * the write time to land, but that would incur a delay after every
	 * batch i.e. much more frequent than a delay when waiting for the
	 * interrupt (with the same net latency).
	 */
1586 1587
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
	POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1588 1589
}

1590
static u32
1591
ring_get_seqno(struct intel_engine_cs *engine)
1592
{
1593
	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1594 1595
}

M
Mika Kuoppala 已提交
1596
static void
1597
ring_set_seqno(struct intel_engine_cs *engine, u32 seqno)
M
Mika Kuoppala 已提交
1598
{
1599
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
M
Mika Kuoppala 已提交
1600 1601
}

1602
static u32
1603
pc_render_get_seqno(struct intel_engine_cs *engine)
1604
{
1605
	return engine->scratch.cpu_page[0];
1606 1607
}

M
Mika Kuoppala 已提交
1608
static void
1609
pc_render_set_seqno(struct intel_engine_cs *engine, u32 seqno)
M
Mika Kuoppala 已提交
1610
{
1611
	engine->scratch.cpu_page[0] = seqno;
M
Mika Kuoppala 已提交
1612 1613
}

1614
static bool
1615
gen5_ring_get_irq(struct intel_engine_cs *engine)
1616
{
1617
	struct drm_device *dev = engine->dev;
1618
	struct drm_i915_private *dev_priv = dev->dev_private;
1619
	unsigned long flags;
1620

1621
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1622 1623
		return false;

1624
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1625 1626
	if (engine->irq_refcount++ == 0)
		gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1627
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1628 1629 1630 1631 1632

	return true;
}

static void
1633
gen5_ring_put_irq(struct intel_engine_cs *engine)
1634
{
1635
	struct drm_device *dev = engine->dev;
1636
	struct drm_i915_private *dev_priv = dev->dev_private;
1637
	unsigned long flags;
1638

1639
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1640 1641
	if (--engine->irq_refcount == 0)
		gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1642
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1643 1644
}

1645
static bool
1646
i9xx_ring_get_irq(struct intel_engine_cs *engine)
1647
{
1648
	struct drm_device *dev = engine->dev;
1649
	struct drm_i915_private *dev_priv = dev->dev_private;
1650
	unsigned long flags;
1651

1652
	if (!intel_irqs_enabled(dev_priv))
1653 1654
		return false;

1655
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1656 1657
	if (engine->irq_refcount++ == 0) {
		dev_priv->irq_mask &= ~engine->irq_enable_mask;
1658 1659 1660
		I915_WRITE(IMR, dev_priv->irq_mask);
		POSTING_READ(IMR);
	}
1661
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1662 1663

	return true;
1664 1665
}

1666
static void
1667
i9xx_ring_put_irq(struct intel_engine_cs *engine)
1668
{
1669
	struct drm_device *dev = engine->dev;
1670
	struct drm_i915_private *dev_priv = dev->dev_private;
1671
	unsigned long flags;
1672

1673
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1674 1675
	if (--engine->irq_refcount == 0) {
		dev_priv->irq_mask |= engine->irq_enable_mask;
1676 1677 1678
		I915_WRITE(IMR, dev_priv->irq_mask);
		POSTING_READ(IMR);
	}
1679
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1680 1681
}

C
Chris Wilson 已提交
1682
static bool
1683
i8xx_ring_get_irq(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1684
{
1685
	struct drm_device *dev = engine->dev;
1686
	struct drm_i915_private *dev_priv = dev->dev_private;
1687
	unsigned long flags;
C
Chris Wilson 已提交
1688

1689
	if (!intel_irqs_enabled(dev_priv))
C
Chris Wilson 已提交
1690 1691
		return false;

1692
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1693 1694
	if (engine->irq_refcount++ == 0) {
		dev_priv->irq_mask &= ~engine->irq_enable_mask;
C
Chris Wilson 已提交
1695 1696 1697
		I915_WRITE16(IMR, dev_priv->irq_mask);
		POSTING_READ16(IMR);
	}
1698
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
C
Chris Wilson 已提交
1699 1700 1701 1702 1703

	return true;
}

static void
1704
i8xx_ring_put_irq(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1705
{
1706
	struct drm_device *dev = engine->dev;
1707
	struct drm_i915_private *dev_priv = dev->dev_private;
1708
	unsigned long flags;
C
Chris Wilson 已提交
1709

1710
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1711 1712
	if (--engine->irq_refcount == 0) {
		dev_priv->irq_mask |= engine->irq_enable_mask;
C
Chris Wilson 已提交
1713 1714 1715
		I915_WRITE16(IMR, dev_priv->irq_mask);
		POSTING_READ16(IMR);
	}
1716
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
C
Chris Wilson 已提交
1717 1718
}

1719
static int
1720
bsd_ring_flush(struct drm_i915_gem_request *req,
1721 1722
	       u32     invalidate_domains,
	       u32     flush_domains)
1723
{
1724
	struct intel_engine_cs *engine = req->engine;
1725 1726
	int ret;

1727
	ret = intel_ring_begin(req, 2);
1728 1729 1730
	if (ret)
		return ret;

1731 1732 1733
	intel_ring_emit(engine, MI_FLUSH);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
1734
	return 0;
1735 1736
}

1737
static int
1738
i9xx_add_request(struct drm_i915_gem_request *req)
1739
{
1740
	struct intel_engine_cs *engine = req->engine;
1741 1742
	int ret;

1743
	ret = intel_ring_begin(req, 4);
1744 1745
	if (ret)
		return ret;
1746

1747 1748 1749 1750 1751 1752
	intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
	intel_ring_emit(engine,
			I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
	intel_ring_emit(engine, i915_gem_request_get_seqno(req));
	intel_ring_emit(engine, MI_USER_INTERRUPT);
	__intel_ring_advance(engine);
1753

1754
	return 0;
1755 1756
}

1757
static bool
1758
gen6_ring_get_irq(struct intel_engine_cs *engine)
1759
{
1760
	struct drm_device *dev = engine->dev;
1761
	struct drm_i915_private *dev_priv = dev->dev_private;
1762
	unsigned long flags;
1763

1764 1765
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
		return false;
1766

1767
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1768 1769 1770 1771
	if (engine->irq_refcount++ == 0) {
		if (HAS_L3_DPF(dev) && engine->id == RCS)
			I915_WRITE_IMR(engine,
				       ~(engine->irq_enable_mask |
1772
					 GT_PARITY_ERROR(dev)));
1773
		else
1774 1775
			I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
		gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1776
	}
1777
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1778 1779 1780 1781 1782

	return true;
}

static void
1783
gen6_ring_put_irq(struct intel_engine_cs *engine)
1784
{
1785
	struct drm_device *dev = engine->dev;
1786
	struct drm_i915_private *dev_priv = dev->dev_private;
1787
	unsigned long flags;
1788

1789
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1790 1791 1792
	if (--engine->irq_refcount == 0) {
		if (HAS_L3_DPF(dev) && engine->id == RCS)
			I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev));
1793
		else
1794 1795
			I915_WRITE_IMR(engine, ~0);
		gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1796
	}
1797
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1798 1799
}

B
Ben Widawsky 已提交
1800
static bool
1801
hsw_vebox_get_irq(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1802
{
1803
	struct drm_device *dev = engine->dev;
B
Ben Widawsky 已提交
1804 1805 1806
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

1807
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
B
Ben Widawsky 已提交
1808 1809
		return false;

1810
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1811 1812 1813
	if (engine->irq_refcount++ == 0) {
		I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
		gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1814
	}
1815
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
B
Ben Widawsky 已提交
1816 1817 1818 1819 1820

	return true;
}

static void
1821
hsw_vebox_put_irq(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1822
{
1823
	struct drm_device *dev = engine->dev;
B
Ben Widawsky 已提交
1824 1825 1826
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

1827
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1828 1829 1830
	if (--engine->irq_refcount == 0) {
		I915_WRITE_IMR(engine, ~0);
		gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1831
	}
1832
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
B
Ben Widawsky 已提交
1833 1834
}

1835
static bool
1836
gen8_ring_get_irq(struct intel_engine_cs *engine)
1837
{
1838
	struct drm_device *dev = engine->dev;
1839 1840 1841
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

1842
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1843 1844 1845
		return false;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1846 1847 1848 1849
	if (engine->irq_refcount++ == 0) {
		if (HAS_L3_DPF(dev) && engine->id == RCS) {
			I915_WRITE_IMR(engine,
				       ~(engine->irq_enable_mask |
1850 1851
					 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
		} else {
1852
			I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1853
		}
1854
		POSTING_READ(RING_IMR(engine->mmio_base));
1855 1856 1857 1858 1859 1860 1861
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);

	return true;
}

static void
1862
gen8_ring_put_irq(struct intel_engine_cs *engine)
1863
{
1864
	struct drm_device *dev = engine->dev;
1865 1866 1867 1868
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1869 1870 1871
	if (--engine->irq_refcount == 0) {
		if (HAS_L3_DPF(dev) && engine->id == RCS) {
			I915_WRITE_IMR(engine,
1872 1873
				       ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
		} else {
1874
			I915_WRITE_IMR(engine, ~0);
1875
		}
1876
		POSTING_READ(RING_IMR(engine->mmio_base));
1877 1878 1879 1880
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}

1881
static int
1882
i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
1883
			 u64 offset, u32 length,
1884
			 unsigned dispatch_flags)
1885
{
1886
	struct intel_engine_cs *engine = req->engine;
1887
	int ret;
1888

1889
	ret = intel_ring_begin(req, 2);
1890 1891 1892
	if (ret)
		return ret;

1893
	intel_ring_emit(engine,
1894 1895
			MI_BATCH_BUFFER_START |
			MI_BATCH_GTT |
1896 1897
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
1898 1899
	intel_ring_emit(engine, offset);
	intel_ring_advance(engine);
1900

1901 1902 1903
	return 0;
}

1904 1905
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
#define I830_BATCH_LIMIT (256*1024)
1906 1907
#define I830_TLB_ENTRIES (2)
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1908
static int
1909
i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1910 1911
			 u64 offset, u32 len,
			 unsigned dispatch_flags)
1912
{
1913
	struct intel_engine_cs *engine = req->engine;
1914
	u32 cs_offset = engine->scratch.gtt_offset;
1915
	int ret;
1916

1917
	ret = intel_ring_begin(req, 6);
1918 1919
	if (ret)
		return ret;
1920

1921
	/* Evict the invalid PTE TLBs */
1922 1923 1924 1925 1926 1927 1928
	intel_ring_emit(engine, COLOR_BLT_CMD | BLT_WRITE_RGBA);
	intel_ring_emit(engine, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
	intel_ring_emit(engine, I830_TLB_ENTRIES << 16 | 4); /* load each page */
	intel_ring_emit(engine, cs_offset);
	intel_ring_emit(engine, 0xdeadbeef);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
1929

1930
	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1931 1932 1933
		if (len > I830_BATCH_LIMIT)
			return -ENOSPC;

1934
		ret = intel_ring_begin(req, 6 + 2);
1935 1936
		if (ret)
			return ret;
1937 1938 1939 1940 1941

		/* Blit the batch (which has now all relocs applied) to the
		 * stable batch scratch bo area (so that the CS never
		 * stumbles over its tlb invalidation bug) ...
		 */
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
		intel_ring_emit(engine, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
		intel_ring_emit(engine,
				BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
		intel_ring_emit(engine, DIV_ROUND_UP(len, 4096) << 16 | 4096);
		intel_ring_emit(engine, cs_offset);
		intel_ring_emit(engine, 4096);
		intel_ring_emit(engine, offset);

		intel_ring_emit(engine, MI_FLUSH);
		intel_ring_emit(engine, MI_NOOP);
		intel_ring_advance(engine);
1953 1954

		/* ... and execute it. */
1955
		offset = cs_offset;
1956
	}
1957

1958
	ret = intel_ring_begin(req, 2);
1959 1960 1961
	if (ret)
		return ret;

1962 1963 1964 1965
	intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					  0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(engine);
1966

1967 1968 1969 1970
	return 0;
}

static int
1971
i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
1972
			 u64 offset, u32 len,
1973
			 unsigned dispatch_flags)
1974
{
1975
	struct intel_engine_cs *engine = req->engine;
1976 1977
	int ret;

1978
	ret = intel_ring_begin(req, 2);
1979 1980 1981
	if (ret)
		return ret;

1982 1983 1984 1985
	intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					  0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(engine);
1986 1987 1988 1989

	return 0;
}

1990
static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1991
{
1992
	struct drm_i915_private *dev_priv = to_i915(engine->dev);
1993 1994 1995 1996

	if (!dev_priv->status_page_dmah)
		return;

1997 1998
	drm_pci_free(engine->dev, dev_priv->status_page_dmah);
	engine->status_page.page_addr = NULL;
1999 2000
}

2001
static void cleanup_status_page(struct intel_engine_cs *engine)
2002
{
2003
	struct drm_i915_gem_object *obj;
2004

2005
	obj = engine->status_page.obj;
2006
	if (obj == NULL)
2007 2008
		return;

2009
	kunmap(sg_page(obj->pages->sgl));
B
Ben Widawsky 已提交
2010
	i915_gem_object_ggtt_unpin(obj);
2011
	drm_gem_object_unreference(&obj->base);
2012
	engine->status_page.obj = NULL;
2013 2014
}

2015
static int init_status_page(struct intel_engine_cs *engine)
2016
{
2017
	struct drm_i915_gem_object *obj = engine->status_page.obj;
2018

2019
	if (obj == NULL) {
2020
		unsigned flags;
2021
		int ret;
2022

2023
		obj = i915_gem_alloc_object(engine->dev, 4096);
2024 2025 2026 2027
		if (obj == NULL) {
			DRM_ERROR("Failed to allocate status page\n");
			return -ENOMEM;
		}
2028

2029 2030 2031 2032
		ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
		if (ret)
			goto err_unref;

2033
		flags = 0;
2034
		if (!HAS_LLC(engine->dev))
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
			/* On g33, we cannot place HWS above 256MiB, so
			 * restrict its pinning to the low mappable arena.
			 * Though this restriction is not documented for
			 * gen4, gen5, or byt, they also behave similarly
			 * and hang if the HWS is placed at the top of the
			 * GTT. To generalise, it appears that all !llc
			 * platforms have issues with us placing the HWS
			 * above the mappable region (even though we never
			 * actualy map it).
			 */
			flags |= PIN_MAPPABLE;
		ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
2047 2048 2049 2050 2051 2052
		if (ret) {
err_unref:
			drm_gem_object_unreference(&obj->base);
			return ret;
		}

2053
		engine->status_page.obj = obj;
2054
	}
2055

2056 2057 2058
	engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
	engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
2059

2060
	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
2061
			engine->name, engine->status_page.gfx_addr);
2062 2063 2064 2065

	return 0;
}

2066
static int init_phys_status_page(struct intel_engine_cs *engine)
2067
{
2068
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
2069 2070 2071

	if (!dev_priv->status_page_dmah) {
		dev_priv->status_page_dmah =
2072
			drm_pci_alloc(engine->dev, PAGE_SIZE, PAGE_SIZE);
2073 2074 2075 2076
		if (!dev_priv->status_page_dmah)
			return -ENOMEM;
	}

2077 2078
	engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
2079 2080 2081 2082

	return 0;
}

2083
void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2084
{
2085 2086 2087 2088
	if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
		vunmap(ringbuf->virtual_start);
	else
		iounmap(ringbuf->virtual_start);
2089
	ringbuf->virtual_start = NULL;
2090
	ringbuf->vma = NULL;
2091
	i915_gem_object_ggtt_unpin(ringbuf->obj);
2092 2093
}

2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
static u32 *vmap_obj(struct drm_i915_gem_object *obj)
{
	struct sg_page_iter sg_iter;
	struct page **pages;
	void *addr;
	int i;

	pages = drm_malloc_ab(obj->base.size >> PAGE_SHIFT, sizeof(*pages));
	if (pages == NULL)
		return NULL;

	i = 0;
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0)
		pages[i++] = sg_page_iter_page(&sg_iter);

	addr = vmap(pages, i, 0, PAGE_KERNEL);
	drm_free_large(pages);

	return addr;
}

2115 2116 2117 2118
int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
				     struct intel_ringbuffer *ringbuf)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
2119
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2120 2121 2122
	struct drm_i915_gem_object *obj = ringbuf->obj;
	int ret;

2123 2124 2125 2126
	if (HAS_LLC(dev_priv) && !obj->stolen) {
		ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, 0);
		if (ret)
			return ret;
2127

2128
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
2129 2130
		if (ret)
			goto err_unpin;
2131 2132 2133

		ringbuf->virtual_start = vmap_obj(obj);
		if (ringbuf->virtual_start == NULL) {
2134 2135
			ret = -ENOMEM;
			goto err_unpin;
2136 2137 2138 2139 2140
		}
	} else {
		ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
		if (ret)
			return ret;
2141

2142
		ret = i915_gem_object_set_to_gtt_domain(obj, true);
2143 2144
		if (ret)
			goto err_unpin;
2145

2146 2147 2148
		/* Access through the GTT requires the device to be awake. */
		assert_rpm_wakelock_held(dev_priv);

2149
		ringbuf->virtual_start = ioremap_wc(ggtt->mappable_base +
2150 2151
						    i915_gem_obj_ggtt_offset(obj), ringbuf->size);
		if (ringbuf->virtual_start == NULL) {
2152 2153
			ret = -ENOMEM;
			goto err_unpin;
2154
		}
2155 2156
	}

2157
	ringbuf->vma = i915_gem_obj_to_ggtt(obj);
2158
	return 0;
2159 2160 2161 2162

err_unpin:
	i915_gem_object_ggtt_unpin(obj);
	return ret;
2163 2164
}

2165
static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2166
{
2167 2168 2169 2170
	drm_gem_object_unreference(&ringbuf->obj->base);
	ringbuf->obj = NULL;
}

2171 2172
static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
				      struct intel_ringbuffer *ringbuf)
2173
{
2174
	struct drm_i915_gem_object *obj;
2175

2176 2177
	obj = NULL;
	if (!HAS_LLC(dev))
2178
		obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2179
	if (obj == NULL)
2180
		obj = i915_gem_alloc_object(dev, ringbuf->size);
2181 2182
	if (obj == NULL)
		return -ENOMEM;
2183

2184 2185 2186
	/* mark ring buffers as read-only from GPU side by default */
	obj->gt_ro = 1;

2187
	ringbuf->obj = obj;
2188

2189
	return 0;
2190 2191
}

2192 2193 2194 2195 2196 2197 2198
struct intel_ringbuffer *
intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
{
	struct intel_ringbuffer *ring;
	int ret;

	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2199 2200 2201
	if (ring == NULL) {
		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
				 engine->name);
2202
		return ERR_PTR(-ENOMEM);
2203
	}
2204

2205
	ring->engine = engine;
2206
	list_add(&ring->link, &engine->buffers);
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221

	ring->size = size;
	/* Workaround an erratum on the i830 which causes a hang if
	 * the TAIL pointer points to within the last 2 cachelines
	 * of the buffer.
	 */
	ring->effective_size = size;
	if (IS_I830(engine->dev) || IS_845G(engine->dev))
		ring->effective_size -= 2 * CACHELINE_BYTES;

	ring->last_retired_head = -1;
	intel_ring_update_space(ring);

	ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
	if (ret) {
2222 2223 2224
		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
				 engine->name, ret);
		list_del(&ring->link);
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
		kfree(ring);
		return ERR_PTR(ret);
	}

	return ring;
}

void
intel_ringbuffer_free(struct intel_ringbuffer *ring)
{
	intel_destroy_ringbuffer_obj(ring);
2236
	list_del(&ring->link);
2237 2238 2239
	kfree(ring);
}

2240
static int intel_init_ring_buffer(struct drm_device *dev,
2241
				  struct intel_engine_cs *engine)
2242
{
2243
	struct intel_ringbuffer *ringbuf;
2244 2245
	int ret;

2246
	WARN_ON(engine->buffer);
2247

2248 2249 2250 2251 2252 2253 2254 2255
	engine->dev = dev;
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
	INIT_LIST_HEAD(&engine->execlist_queue);
	INIT_LIST_HEAD(&engine->buffers);
	i915_gem_batch_pool_init(dev, &engine->batch_pool);
	memset(engine->semaphore.sync_seqno, 0,
	       sizeof(engine->semaphore.sync_seqno));
2256

2257
	init_waitqueue_head(&engine->irq_queue);
2258

2259
	ringbuf = intel_engine_create_ringbuffer(engine, 32 * PAGE_SIZE);
2260 2261 2262 2263
	if (IS_ERR(ringbuf)) {
		ret = PTR_ERR(ringbuf);
		goto error;
	}
2264
	engine->buffer = ringbuf;
2265

2266
	if (I915_NEED_GFX_HWS(dev)) {
2267
		ret = init_status_page(engine);
2268
		if (ret)
2269
			goto error;
2270
	} else {
2271 2272
		WARN_ON(engine->id != RCS);
		ret = init_phys_status_page(engine);
2273
		if (ret)
2274
			goto error;
2275 2276
	}

2277 2278 2279
	ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
	if (ret) {
		DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2280
				engine->name, ret);
2281 2282
		intel_destroy_ringbuffer_obj(ringbuf);
		goto error;
2283
	}
2284

2285
	ret = i915_cmd_parser_init_ring(engine);
2286
	if (ret)
2287 2288 2289
		goto error;

	return 0;
2290

2291
error:
2292
	intel_cleanup_engine(engine);
2293
	return ret;
2294 2295
}

2296
void intel_cleanup_engine(struct intel_engine_cs *engine)
2297
{
2298
	struct drm_i915_private *dev_priv;
2299

2300
	if (!intel_engine_initialized(engine))
2301 2302
		return;

2303
	dev_priv = to_i915(engine->dev);
2304

2305
	if (engine->buffer) {
2306
		intel_stop_engine(engine);
2307
		WARN_ON(!IS_GEN2(engine->dev) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
2308

2309 2310 2311
		intel_unpin_ringbuffer_obj(engine->buffer);
		intel_ringbuffer_free(engine->buffer);
		engine->buffer = NULL;
2312
	}
2313

2314 2315
	if (engine->cleanup)
		engine->cleanup(engine);
Z
Zou Nan hai 已提交
2316

2317 2318
	if (I915_NEED_GFX_HWS(engine->dev)) {
		cleanup_status_page(engine);
2319
	} else {
2320 2321
		WARN_ON(engine->id != RCS);
		cleanup_phys_status_page(engine);
2322
	}
2323

2324 2325 2326
	i915_cmd_parser_fini_ring(engine);
	i915_gem_batch_pool_fini(&engine->batch_pool);
	engine->dev = NULL;
2327 2328
}

2329
static int ring_wait_for_space(struct intel_engine_cs *engine, int n)
2330
{
2331
	struct intel_ringbuffer *ringbuf = engine->buffer;
2332
	struct drm_i915_gem_request *request;
2333 2334
	unsigned space;
	int ret;
2335

2336 2337
	if (intel_ring_space(ringbuf) >= n)
		return 0;
2338

2339 2340 2341
	/* The whole point of reserving space is to not wait! */
	WARN_ON(ringbuf->reserved_in_use);

2342
	list_for_each_entry(request, &engine->request_list, list) {
2343 2344 2345
		space = __intel_ring_space(request->postfix, ringbuf->tail,
					   ringbuf->size);
		if (space >= n)
2346 2347 2348
			break;
	}

2349
	if (WARN_ON(&request->list == &engine->request_list))
2350 2351
		return -ENOSPC;

2352
	ret = i915_wait_request(request);
2353 2354 2355
	if (ret)
		return ret;

2356
	ringbuf->space = space;
2357 2358 2359
	return 0;
}

2360
static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
2361 2362
{
	uint32_t __iomem *virt;
2363
	int rem = ringbuf->size - ringbuf->tail;
2364

2365
	virt = ringbuf->virtual_start + ringbuf->tail;
2366 2367 2368 2369
	rem /= 4;
	while (rem--)
		iowrite32(MI_NOOP, virt++);

2370
	ringbuf->tail = 0;
2371
	intel_ring_update_space(ringbuf);
2372 2373
}

2374
int intel_engine_idle(struct intel_engine_cs *engine)
2375
{
2376
	struct drm_i915_gem_request *req;
2377 2378

	/* Wait upon the last request to be completed */
2379
	if (list_empty(&engine->request_list))
2380 2381
		return 0;

2382 2383 2384
	req = list_entry(engine->request_list.prev,
			 struct drm_i915_gem_request,
			 list);
2385 2386 2387

	/* Make sure we do not trigger any retires */
	return __i915_wait_request(req,
2388 2389
				   atomic_read(&to_i915(engine->dev)->gpu_error.reset_counter),
				   to_i915(engine->dev)->mm.interruptible,
2390
				   NULL, NULL);
2391 2392
}

2393
int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2394
{
2395
	request->ringbuf = request->engine->buffer;
2396
	return 0;
2397 2398
}

2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
int intel_ring_reserve_space(struct drm_i915_gem_request *request)
{
	/*
	 * The first call merely notes the reserve request and is common for
	 * all back ends. The subsequent localised _begin() call actually
	 * ensures that the reservation is available. Without the begin, if
	 * the request creator immediately submitted the request without
	 * adding any commands to it then there might not actually be
	 * sufficient room for the submission commands.
	 */
	intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);

	return intel_ring_begin(request, 0);
}

2414 2415
void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
{
2416
	WARN_ON(ringbuf->reserved_size);
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
	WARN_ON(ringbuf->reserved_in_use);

	ringbuf->reserved_size = size;
}

void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
{
	WARN_ON(ringbuf->reserved_in_use);

	ringbuf->reserved_size   = 0;
	ringbuf->reserved_in_use = false;
}

void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
{
	WARN_ON(ringbuf->reserved_in_use);

	ringbuf->reserved_in_use = true;
	ringbuf->reserved_tail   = ringbuf->tail;
}

void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
{
	WARN_ON(!ringbuf->reserved_in_use);
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
	if (ringbuf->tail > ringbuf->reserved_tail) {
		WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
		     "request reserved size too small: %d vs %d!\n",
		     ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
	} else {
		/*
		 * The ring was wrapped while the reserved space was in use.
		 * That means that some unknown amount of the ring tail was
		 * no-op filled and skipped. Thus simply adding the ring size
		 * to the tail and doing the above space check will not work.
		 * Rather than attempt to track how much tail was skipped,
		 * it is much simpler to say that also skipping the sanity
		 * check every once in a while is not a big issue.
		 */
	}
2456 2457 2458 2459 2460

	ringbuf->reserved_size   = 0;
	ringbuf->reserved_in_use = false;
}

2461
static int __intel_ring_prepare(struct intel_engine_cs *engine, int bytes)
M
Mika Kuoppala 已提交
2462
{
2463
	struct intel_ringbuffer *ringbuf = engine->buffer;
2464 2465 2466 2467
	int remain_usable = ringbuf->effective_size - ringbuf->tail;
	int remain_actual = ringbuf->size - ringbuf->tail;
	int ret, total_bytes, wait_bytes = 0;
	bool need_wrap = false;
2468

2469 2470 2471 2472
	if (ringbuf->reserved_in_use)
		total_bytes = bytes;
	else
		total_bytes = bytes + ringbuf->reserved_size;
2473

2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
	if (unlikely(bytes > remain_usable)) {
		/*
		 * Not enough space for the basic request. So need to flush
		 * out the remainder and then wait for base + reserved.
		 */
		wait_bytes = remain_actual + total_bytes;
		need_wrap = true;
	} else {
		if (unlikely(total_bytes > remain_usable)) {
			/*
			 * The base request will fit but the reserved space
2485 2486 2487
			 * falls off the end. So don't need an immediate wrap
			 * and only need to effectively wait for the reserved
			 * size space from the start of ringbuffer.
2488 2489 2490 2491 2492
			 */
			wait_bytes = remain_actual + ringbuf->reserved_size;
		} else if (total_bytes > ringbuf->space) {
			/* No wrapping required, just waiting. */
			wait_bytes = total_bytes;
2493
		}
M
Mika Kuoppala 已提交
2494 2495
	}

2496
	if (wait_bytes) {
2497
		ret = ring_wait_for_space(engine, wait_bytes);
M
Mika Kuoppala 已提交
2498 2499
		if (unlikely(ret))
			return ret;
2500 2501 2502

		if (need_wrap)
			__wrap_ring_buffer(ringbuf);
M
Mika Kuoppala 已提交
2503 2504 2505 2506 2507
	}

	return 0;
}

2508
int intel_ring_begin(struct drm_i915_gem_request *req,
2509
		     int num_dwords)
2510
{
2511
	struct intel_engine_cs *engine;
2512
	struct drm_i915_private *dev_priv;
2513
	int ret;
2514

2515
	WARN_ON(req == NULL);
2516
	engine = req->engine;
2517
	dev_priv = req->i915;
2518

2519 2520
	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
				   dev_priv->mm.interruptible);
2521 2522
	if (ret)
		return ret;
2523

2524
	ret = __intel_ring_prepare(engine, num_dwords * sizeof(uint32_t));
2525 2526 2527
	if (ret)
		return ret;

2528
	engine->buffer->space -= num_dwords * sizeof(uint32_t);
2529
	return 0;
2530
}
2531

2532
/* Align the ring tail to a cacheline boundary */
2533
int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2534
{
2535
	struct intel_engine_cs *engine = req->engine;
2536
	int num_dwords = (engine->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2537 2538 2539 2540 2541
	int ret;

	if (num_dwords == 0)
		return 0;

2542
	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2543
	ret = intel_ring_begin(req, num_dwords);
2544 2545 2546 2547
	if (ret)
		return ret;

	while (num_dwords--)
2548
		intel_ring_emit(engine, MI_NOOP);
2549

2550
	intel_ring_advance(engine);
2551 2552 2553 2554

	return 0;
}

2555
void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno)
2556
{
2557
	struct drm_i915_private *dev_priv = to_i915(engine->dev);
2558

2559 2560 2561 2562 2563 2564 2565 2566
	/* Our semaphore implementation is strictly monotonic (i.e. we proceed
	 * so long as the semaphore value in the register/page is greater
	 * than the sync value), so whenever we reset the seqno,
	 * so long as we reset the tracking semaphore value to 0, it will
	 * always be before the next request's seqno. If we don't reset
	 * the semaphore value, then when the seqno moves backwards all
	 * future waits will complete instantly (causing rendering corruption).
	 */
2567
	if (INTEL_INFO(dev_priv)->gen == 6 || INTEL_INFO(dev_priv)->gen == 7) {
2568 2569
		I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
		I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
2570
		if (HAS_VEBOX(dev_priv))
2571
			I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
2572
	}
2573 2574 2575 2576 2577 2578 2579 2580
	if (dev_priv->semaphore_obj) {
		struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
		struct page *page = i915_gem_object_get_dirty_page(obj, 0);
		void *semaphores = kmap(page);
		memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
		       0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
		kunmap(page);
	}
2581 2582
	memset(engine->semaphore.sync_seqno, 0,
	       sizeof(engine->semaphore.sync_seqno));
2583

2584
	engine->set_seqno(engine, seqno);
2585
	engine->last_submitted_seqno = seqno;
2586

2587
	engine->hangcheck.seqno = seqno;
2588
}
2589

2590
static void gen6_bsd_ring_write_tail(struct intel_engine_cs *engine,
2591
				     u32 value)
2592
{
2593
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
2594 2595

       /* Every tail move must follow the sequence below */
2596 2597 2598 2599

	/* Disable notification that the ring is IDLE. The GT
	 * will then assume that it is busy and bring it out of rc6.
	 */
2600
	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2601 2602 2603 2604
		   _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));

	/* Clear the context id. Here be magic! */
	I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2605

2606
	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2607
	if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2608 2609 2610
		      GEN6_BSD_SLEEP_INDICATOR) == 0,
		     50))
		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2611

2612
	/* Now that the ring is fully powered up, update the tail */
2613 2614
	I915_WRITE_TAIL(engine, value);
	POSTING_READ(RING_TAIL(engine->mmio_base));
2615 2616 2617 2618

	/* Let the ring send IDLE messages to the GT again,
	 * and so let it sleep to conserve power when idle.
	 */
2619
	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2620
		   _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2621 2622
}

2623
static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2624
			       u32 invalidate, u32 flush)
2625
{
2626
	struct intel_engine_cs *engine = req->engine;
2627
	uint32_t cmd;
2628 2629
	int ret;

2630
	ret = intel_ring_begin(req, 4);
2631 2632 2633
	if (ret)
		return ret;

2634
	cmd = MI_FLUSH_DW;
2635
	if (INTEL_INFO(engine->dev)->gen >= 8)
B
Ben Widawsky 已提交
2636
		cmd += 1;
2637 2638 2639 2640 2641 2642 2643 2644

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2645 2646 2647 2648 2649 2650
	/*
	 * Bspec vol 1c.5 - video engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2651
	if (invalidate & I915_GEM_GPU_DOMAINS)
2652 2653
		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;

2654 2655 2656 2657 2658 2659
	intel_ring_emit(engine, cmd);
	intel_ring_emit(engine,
			I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
	if (INTEL_INFO(engine->dev)->gen >= 8) {
		intel_ring_emit(engine, 0); /* upper addr */
		intel_ring_emit(engine, 0); /* value */
B
Ben Widawsky 已提交
2660
	} else  {
2661 2662
		intel_ring_emit(engine, 0);
		intel_ring_emit(engine, MI_NOOP);
B
Ben Widawsky 已提交
2663
	}
2664
	intel_ring_advance(engine);
2665
	return 0;
2666 2667
}

2668
static int
2669
gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
2670
			      u64 offset, u32 len,
2671
			      unsigned dispatch_flags)
2672
{
2673
	struct intel_engine_cs *engine = req->engine;
2674
	bool ppgtt = USES_PPGTT(engine->dev) &&
2675
			!(dispatch_flags & I915_DISPATCH_SECURE);
2676 2677
	int ret;

2678
	ret = intel_ring_begin(req, 4);
2679 2680 2681 2682
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
2683
	intel_ring_emit(engine, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2684 2685
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2686 2687 2688 2689
	intel_ring_emit(engine, lower_32_bits(offset));
	intel_ring_emit(engine, upper_32_bits(offset));
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
2690 2691 2692 2693

	return 0;
}

2694
static int
2695
hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2696 2697
			     u64 offset, u32 len,
			     unsigned dispatch_flags)
2698
{
2699
	struct intel_engine_cs *engine = req->engine;
2700 2701
	int ret;

2702
	ret = intel_ring_begin(req, 2);
2703 2704 2705
	if (ret)
		return ret;

2706
	intel_ring_emit(engine,
2707
			MI_BATCH_BUFFER_START |
2708
			(dispatch_flags & I915_DISPATCH_SECURE ?
2709 2710 2711
			 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2712
	/* bit0-7 is the length on GEN6+ */
2713 2714
	intel_ring_emit(engine, offset);
	intel_ring_advance(engine);
2715 2716 2717 2718

	return 0;
}

2719
static int
2720
gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
2721
			      u64 offset, u32 len,
2722
			      unsigned dispatch_flags)
2723
{
2724
	struct intel_engine_cs *engine = req->engine;
2725
	int ret;
2726

2727
	ret = intel_ring_begin(req, 2);
2728 2729
	if (ret)
		return ret;
2730

2731
	intel_ring_emit(engine,
2732
			MI_BATCH_BUFFER_START |
2733 2734
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
2735
	/* bit0-7 is the length on GEN6+ */
2736 2737
	intel_ring_emit(engine, offset);
	intel_ring_advance(engine);
2738

2739
	return 0;
2740 2741
}

2742 2743
/* Blitter support (SandyBridge+) */

2744
static int gen6_ring_flush(struct drm_i915_gem_request *req,
2745
			   u32 invalidate, u32 flush)
Z
Zou Nan hai 已提交
2746
{
2747
	struct intel_engine_cs *engine = req->engine;
2748
	struct drm_device *dev = engine->dev;
2749
	uint32_t cmd;
2750 2751
	int ret;

2752
	ret = intel_ring_begin(req, 4);
2753 2754 2755
	if (ret)
		return ret;

2756
	cmd = MI_FLUSH_DW;
2757
	if (INTEL_INFO(dev)->gen >= 8)
B
Ben Widawsky 已提交
2758
		cmd += 1;
2759 2760 2761 2762 2763 2764 2765 2766

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2767 2768 2769 2770 2771 2772
	/*
	 * Bspec vol 1c.3 - blitter engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2773
	if (invalidate & I915_GEM_DOMAIN_RENDER)
2774
		cmd |= MI_INVALIDATE_TLB;
2775 2776 2777
	intel_ring_emit(engine, cmd);
	intel_ring_emit(engine,
			I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2778
	if (INTEL_INFO(dev)->gen >= 8) {
2779 2780
		intel_ring_emit(engine, 0); /* upper addr */
		intel_ring_emit(engine, 0); /* value */
B
Ben Widawsky 已提交
2781
	} else  {
2782 2783
		intel_ring_emit(engine, 0);
		intel_ring_emit(engine, MI_NOOP);
B
Ben Widawsky 已提交
2784
	}
2785
	intel_ring_advance(engine);
R
Rodrigo Vivi 已提交
2786

2787
	return 0;
Z
Zou Nan hai 已提交
2788 2789
}

2790 2791
int intel_init_render_ring_buffer(struct drm_device *dev)
{
2792
	struct drm_i915_private *dev_priv = dev->dev_private;
2793
	struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2794 2795
	struct drm_i915_gem_object *obj;
	int ret;
2796

2797 2798 2799 2800
	engine->name = "render ring";
	engine->id = RCS;
	engine->exec_id = I915_EXEC_RENDER;
	engine->mmio_base = RENDER_RING_BASE;
2801

B
Ben Widawsky 已提交
2802
	if (INTEL_INFO(dev)->gen >= 8) {
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
		if (i915_semaphore_is_enabled(dev)) {
			obj = i915_gem_alloc_object(dev, 4096);
			if (obj == NULL) {
				DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
				i915.semaphores = 0;
			} else {
				i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
				ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
				if (ret != 0) {
					drm_gem_object_unreference(&obj->base);
					DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
					i915.semaphores = 0;
				} else
					dev_priv->semaphore_obj = obj;
			}
		}
2819

2820 2821 2822 2823 2824 2825
		engine->init_context = intel_rcs_ctx_init;
		engine->add_request = gen6_add_request;
		engine->flush = gen8_render_ring_flush;
		engine->irq_get = gen8_ring_get_irq;
		engine->irq_put = gen8_ring_put_irq;
		engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2826 2827
		engine->irq_seqno_barrier = gen6_seqno_barrier;
		engine->get_seqno = ring_get_seqno;
2828
		engine->set_seqno = ring_set_seqno;
B
Ben Widawsky 已提交
2829
		if (i915_semaphore_is_enabled(dev)) {
2830
			WARN_ON(!dev_priv->semaphore_obj);
2831 2832 2833
			engine->semaphore.sync_to = gen8_ring_sync;
			engine->semaphore.signal = gen8_rcs_signal;
			GEN8_RING_SEMAPHORE_INIT(engine);
B
Ben Widawsky 已提交
2834 2835
		}
	} else if (INTEL_INFO(dev)->gen >= 6) {
2836 2837 2838
		engine->init_context = intel_rcs_ctx_init;
		engine->add_request = gen6_add_request;
		engine->flush = gen7_render_ring_flush;
2839
		if (INTEL_INFO(dev)->gen == 6)
2840 2841 2842 2843
			engine->flush = gen6_render_ring_flush;
		engine->irq_get = gen6_ring_get_irq;
		engine->irq_put = gen6_ring_put_irq;
		engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2844 2845
		engine->irq_seqno_barrier = gen6_seqno_barrier;
		engine->get_seqno = ring_get_seqno;
2846
		engine->set_seqno = ring_set_seqno;
B
Ben Widawsky 已提交
2847
		if (i915_semaphore_is_enabled(dev)) {
2848 2849
			engine->semaphore.sync_to = gen6_ring_sync;
			engine->semaphore.signal = gen6_signal;
B
Ben Widawsky 已提交
2850 2851 2852 2853 2854 2855 2856
			/*
			 * The current semaphore is only applied on pre-gen8
			 * platform.  And there is no VCS2 ring on the pre-gen8
			 * platform. So the semaphore between RCS and VCS2 is
			 * initialized as INVALID.  Gen8 will initialize the
			 * sema between VCS2 and RCS later.
			 */
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
			engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
			engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
			engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
			engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
			engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
			engine->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
			engine->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
			engine->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
			engine->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
			engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
B
Ben Widawsky 已提交
2867
		}
2868
	} else if (IS_GEN5(dev)) {
2869 2870 2871 2872 2873 2874 2875
		engine->add_request = pc_render_add_request;
		engine->flush = gen4_render_ring_flush;
		engine->get_seqno = pc_render_get_seqno;
		engine->set_seqno = pc_render_set_seqno;
		engine->irq_get = gen5_ring_get_irq;
		engine->irq_put = gen5_ring_put_irq;
		engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2876
					GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2877
	} else {
2878
		engine->add_request = i9xx_add_request;
2879
		if (INTEL_INFO(dev)->gen < 4)
2880
			engine->flush = gen2_render_ring_flush;
2881
		else
2882 2883 2884
			engine->flush = gen4_render_ring_flush;
		engine->get_seqno = ring_get_seqno;
		engine->set_seqno = ring_set_seqno;
C
Chris Wilson 已提交
2885
		if (IS_GEN2(dev)) {
2886 2887
			engine->irq_get = i8xx_ring_get_irq;
			engine->irq_put = i8xx_ring_put_irq;
C
Chris Wilson 已提交
2888
		} else {
2889 2890
			engine->irq_get = i9xx_ring_get_irq;
			engine->irq_put = i9xx_ring_put_irq;
C
Chris Wilson 已提交
2891
		}
2892
		engine->irq_enable_mask = I915_USER_INTERRUPT;
2893
	}
2894
	engine->write_tail = ring_write_tail;
B
Ben Widawsky 已提交
2895

2896
	if (IS_HASWELL(dev))
2897
		engine->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2898
	else if (IS_GEN8(dev))
2899
		engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2900
	else if (INTEL_INFO(dev)->gen >= 6)
2901
		engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2902
	else if (INTEL_INFO(dev)->gen >= 4)
2903
		engine->dispatch_execbuffer = i965_dispatch_execbuffer;
2904
	else if (IS_I830(dev) || IS_845G(dev))
2905
		engine->dispatch_execbuffer = i830_dispatch_execbuffer;
2906
	else
2907 2908 2909
		engine->dispatch_execbuffer = i915_dispatch_execbuffer;
	engine->init_hw = init_render_ring;
	engine->cleanup = render_ring_cleanup;
2910

2911 2912
	/* Workaround batchbuffer to combat CS tlb bug. */
	if (HAS_BROKEN_CS_TLB(dev)) {
2913
		obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2914 2915 2916 2917 2918
		if (obj == NULL) {
			DRM_ERROR("Failed to allocate batch bo\n");
			return -ENOMEM;
		}

2919
		ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2920 2921 2922 2923 2924 2925
		if (ret != 0) {
			drm_gem_object_unreference(&obj->base);
			DRM_ERROR("Failed to ping batch bo\n");
			return ret;
		}

2926 2927
		engine->scratch.obj = obj;
		engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2928 2929
	}

2930
	ret = intel_init_ring_buffer(dev, engine);
2931 2932 2933 2934
	if (ret)
		return ret;

	if (INTEL_INFO(dev)->gen >= 5) {
2935
		ret = intel_init_pipe_control(engine);
2936 2937 2938 2939 2940
		if (ret)
			return ret;
	}

	return 0;
2941 2942 2943 2944
}

int intel_init_bsd_ring_buffer(struct drm_device *dev)
{
2945
	struct drm_i915_private *dev_priv = dev->dev_private;
2946
	struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2947

2948 2949 2950
	engine->name = "bsd ring";
	engine->id = VCS;
	engine->exec_id = I915_EXEC_BSD;
2951

2952
	engine->write_tail = ring_write_tail;
2953
	if (INTEL_INFO(dev)->gen >= 6) {
2954
		engine->mmio_base = GEN6_BSD_RING_BASE;
2955 2956
		/* gen6 bsd needs a special wa for tail updates */
		if (IS_GEN6(dev))
2957 2958 2959
			engine->write_tail = gen6_bsd_ring_write_tail;
		engine->flush = gen6_bsd_ring_flush;
		engine->add_request = gen6_add_request;
2960 2961
		engine->irq_seqno_barrier = gen6_seqno_barrier;
		engine->get_seqno = ring_get_seqno;
2962
		engine->set_seqno = ring_set_seqno;
2963
		if (INTEL_INFO(dev)->gen >= 8) {
2964
			engine->irq_enable_mask =
2965
				GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2966 2967 2968
			engine->irq_get = gen8_ring_get_irq;
			engine->irq_put = gen8_ring_put_irq;
			engine->dispatch_execbuffer =
2969
				gen8_ring_dispatch_execbuffer;
B
Ben Widawsky 已提交
2970
			if (i915_semaphore_is_enabled(dev)) {
2971 2972 2973
				engine->semaphore.sync_to = gen8_ring_sync;
				engine->semaphore.signal = gen8_xcs_signal;
				GEN8_RING_SEMAPHORE_INIT(engine);
B
Ben Widawsky 已提交
2974
			}
2975
		} else {
2976 2977 2978 2979
			engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
			engine->irq_get = gen6_ring_get_irq;
			engine->irq_put = gen6_ring_put_irq;
			engine->dispatch_execbuffer =
2980
				gen6_ring_dispatch_execbuffer;
B
Ben Widawsky 已提交
2981
			if (i915_semaphore_is_enabled(dev)) {
2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
				engine->semaphore.sync_to = gen6_ring_sync;
				engine->semaphore.signal = gen6_signal;
				engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
				engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
				engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
				engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
				engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
				engine->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
				engine->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
				engine->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
				engine->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
				engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
B
Ben Widawsky 已提交
2994
			}
2995
		}
2996
	} else {
2997 2998 2999 3000 3001
		engine->mmio_base = BSD_RING_BASE;
		engine->flush = bsd_ring_flush;
		engine->add_request = i9xx_add_request;
		engine->get_seqno = ring_get_seqno;
		engine->set_seqno = ring_set_seqno;
3002
		if (IS_GEN5(dev)) {
3003 3004 3005
			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
			engine->irq_get = gen5_ring_get_irq;
			engine->irq_put = gen5_ring_put_irq;
3006
		} else {
3007 3008 3009
			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
			engine->irq_get = i9xx_ring_get_irq;
			engine->irq_put = i9xx_ring_put_irq;
3010
		}
3011
		engine->dispatch_execbuffer = i965_dispatch_execbuffer;
3012
	}
3013
	engine->init_hw = init_ring_common;
3014

3015
	return intel_init_ring_buffer(dev, engine);
3016
}
3017

3018
/**
3019
 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
3020 3021 3022 3023
 */
int intel_init_bsd2_ring_buffer(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3024
	struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
3025 3026 3027 3028 3029 3030 3031 3032 3033

	engine->name = "bsd2 ring";
	engine->id = VCS2;
	engine->exec_id = I915_EXEC_BSD;

	engine->write_tail = ring_write_tail;
	engine->mmio_base = GEN8_BSD2_RING_BASE;
	engine->flush = gen6_bsd_ring_flush;
	engine->add_request = gen6_add_request;
3034 3035
	engine->irq_seqno_barrier = gen6_seqno_barrier;
	engine->get_seqno = ring_get_seqno;
3036 3037
	engine->set_seqno = ring_set_seqno;
	engine->irq_enable_mask =
3038
			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
3039 3040 3041
	engine->irq_get = gen8_ring_get_irq;
	engine->irq_put = gen8_ring_put_irq;
	engine->dispatch_execbuffer =
3042
			gen8_ring_dispatch_execbuffer;
3043
	if (i915_semaphore_is_enabled(dev)) {
3044 3045 3046
		engine->semaphore.sync_to = gen8_ring_sync;
		engine->semaphore.signal = gen8_xcs_signal;
		GEN8_RING_SEMAPHORE_INIT(engine);
3047
	}
3048
	engine->init_hw = init_ring_common;
3049

3050
	return intel_init_ring_buffer(dev, engine);
3051 3052
}

3053 3054
int intel_init_blt_ring_buffer(struct drm_device *dev)
{
3055
	struct drm_i915_private *dev_priv = dev->dev_private;
3056
	struct intel_engine_cs *engine = &dev_priv->engine[BCS];
3057 3058 3059 3060 3061 3062 3063 3064 3065

	engine->name = "blitter ring";
	engine->id = BCS;
	engine->exec_id = I915_EXEC_BLT;

	engine->mmio_base = BLT_RING_BASE;
	engine->write_tail = ring_write_tail;
	engine->flush = gen6_ring_flush;
	engine->add_request = gen6_add_request;
3066 3067
	engine->irq_seqno_barrier = gen6_seqno_barrier;
	engine->get_seqno = ring_get_seqno;
3068
	engine->set_seqno = ring_set_seqno;
3069
	if (INTEL_INFO(dev)->gen >= 8) {
3070
		engine->irq_enable_mask =
3071
			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
3072 3073 3074
		engine->irq_get = gen8_ring_get_irq;
		engine->irq_put = gen8_ring_put_irq;
		engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
B
Ben Widawsky 已提交
3075
		if (i915_semaphore_is_enabled(dev)) {
3076 3077 3078
			engine->semaphore.sync_to = gen8_ring_sync;
			engine->semaphore.signal = gen8_xcs_signal;
			GEN8_RING_SEMAPHORE_INIT(engine);
B
Ben Widawsky 已提交
3079
		}
3080
	} else {
3081 3082 3083 3084
		engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
		engine->irq_get = gen6_ring_get_irq;
		engine->irq_put = gen6_ring_put_irq;
		engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
B
Ben Widawsky 已提交
3085
		if (i915_semaphore_is_enabled(dev)) {
3086 3087
			engine->semaphore.signal = gen6_signal;
			engine->semaphore.sync_to = gen6_ring_sync;
B
Ben Widawsky 已提交
3088 3089 3090 3091 3092 3093 3094
			/*
			 * The current semaphore is only applied on pre-gen8
			 * platform.  And there is no VCS2 ring on the pre-gen8
			 * platform. So the semaphore between BCS and VCS2 is
			 * initialized as INVALID.  Gen8 will initialize the
			 * sema between BCS and VCS2 later.
			 */
3095 3096 3097 3098 3099 3100 3101 3102 3103 3104
			engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
			engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
			engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
			engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
			engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
			engine->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
			engine->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
			engine->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
			engine->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
			engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
B
Ben Widawsky 已提交
3105
		}
3106
	}
3107
	engine->init_hw = init_ring_common;
3108

3109
	return intel_init_ring_buffer(dev, engine);
3110
}
3111

B
Ben Widawsky 已提交
3112 3113
int intel_init_vebox_ring_buffer(struct drm_device *dev)
{
3114
	struct drm_i915_private *dev_priv = dev->dev_private;
3115
	struct intel_engine_cs *engine = &dev_priv->engine[VECS];
B
Ben Widawsky 已提交
3116

3117 3118 3119
	engine->name = "video enhancement ring";
	engine->id = VECS;
	engine->exec_id = I915_EXEC_VEBOX;
B
Ben Widawsky 已提交
3120

3121 3122 3123 3124
	engine->mmio_base = VEBOX_RING_BASE;
	engine->write_tail = ring_write_tail;
	engine->flush = gen6_ring_flush;
	engine->add_request = gen6_add_request;
3125 3126
	engine->irq_seqno_barrier = gen6_seqno_barrier;
	engine->get_seqno = ring_get_seqno;
3127
	engine->set_seqno = ring_set_seqno;
3128 3129

	if (INTEL_INFO(dev)->gen >= 8) {
3130
		engine->irq_enable_mask =
3131
			GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
3132 3133 3134
		engine->irq_get = gen8_ring_get_irq;
		engine->irq_put = gen8_ring_put_irq;
		engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
B
Ben Widawsky 已提交
3135
		if (i915_semaphore_is_enabled(dev)) {
3136 3137 3138
			engine->semaphore.sync_to = gen8_ring_sync;
			engine->semaphore.signal = gen8_xcs_signal;
			GEN8_RING_SEMAPHORE_INIT(engine);
B
Ben Widawsky 已提交
3139
		}
3140
	} else {
3141 3142 3143 3144
		engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
		engine->irq_get = hsw_vebox_get_irq;
		engine->irq_put = hsw_vebox_put_irq;
		engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
B
Ben Widawsky 已提交
3145
		if (i915_semaphore_is_enabled(dev)) {
3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
			engine->semaphore.sync_to = gen6_ring_sync;
			engine->semaphore.signal = gen6_signal;
			engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
			engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
			engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
			engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
			engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
			engine->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
			engine->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
			engine->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
			engine->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
			engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
B
Ben Widawsky 已提交
3158
		}
3159
	}
3160
	engine->init_hw = init_ring_common;
B
Ben Widawsky 已提交
3161

3162
	return intel_init_ring_buffer(dev, engine);
B
Ben Widawsky 已提交
3163 3164
}

3165
int
3166
intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
3167
{
3168
	struct intel_engine_cs *engine = req->engine;
3169 3170
	int ret;

3171
	if (!engine->gpu_caches_dirty)
3172 3173
		return 0;

3174
	ret = engine->flush(req, 0, I915_GEM_GPU_DOMAINS);
3175 3176 3177
	if (ret)
		return ret;

3178
	trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
3179

3180
	engine->gpu_caches_dirty = false;
3181 3182 3183 3184
	return 0;
}

int
3185
intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
3186
{
3187
	struct intel_engine_cs *engine = req->engine;
3188 3189 3190 3191
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
3192
	if (engine->gpu_caches_dirty)
3193 3194
		flush_domains = I915_GEM_GPU_DOMAINS;

3195
	ret = engine->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3196 3197 3198
	if (ret)
		return ret;

3199
	trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3200

3201
	engine->gpu_caches_dirty = false;
3202 3203
	return 0;
}
3204 3205

void
3206
intel_stop_engine(struct intel_engine_cs *engine)
3207 3208 3209
{
	int ret;

3210
	if (!intel_engine_initialized(engine))
3211 3212
		return;

3213
	ret = intel_engine_idle(engine);
3214
	if (ret && !i915_reset_in_progress(&to_i915(engine->dev)->gpu_error))
3215
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3216
			  engine->name, ret);
3217

3218
	stop_ring(engine);
3219
}