intel_ringbuffer.c 84.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright © 2008-2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Zou Nan hai <nanhai.zou@intel.com>
 *    Xiang Hai hao<haihao.xiang@intel.com>
 *
 */

30
#include <linux/log2.h>
31
#include <drm/drmP.h>
32
#include "i915_drv.h"
33
#include <drm/i915_drm.h>
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36

37 38 39 40 41
/* Rough estimate of the typical request size, performing a flush,
 * set-context and then emitting the batch.
 */
#define LEGACY_REQUEST_SIZE 200

42
int __intel_ring_space(int head, int tail, int size)
43
{
44 45
	int space = head - tail;
	if (space <= 0)
46
		space += size;
47
	return space - I915_RING_FREE_SPACE;
48 49
}

50 51 52 53 54 55 56 57 58 59 60
void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
{
	if (ringbuf->last_retired_head != -1) {
		ringbuf->head = ringbuf->last_retired_head;
		ringbuf->last_retired_head = -1;
	}

	ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
					    ringbuf->tail, ringbuf->size);
}

61
static void __intel_ring_advance(struct intel_engine_cs *engine)
62
{
63
	struct intel_ringbuffer *ringbuf = engine->buffer;
64
	ringbuf->tail &= ringbuf->size - 1;
65
	engine->write_tail(engine, ringbuf->tail);
66 67
}

68
static int
69
gen2_render_ring_flush(struct drm_i915_gem_request *req,
70 71 72
		       u32	invalidate_domains,
		       u32	flush_domains)
{
73
	struct intel_engine_cs *engine = req->engine;
74 75 76 77
	u32 cmd;
	int ret;

	cmd = MI_FLUSH;
78
	if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
79 80 81 82 83
		cmd |= MI_NO_WRITE_FLUSH;

	if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
		cmd |= MI_READ_FLUSH;

84
	ret = intel_ring_begin(req, 2);
85 86 87
	if (ret)
		return ret;

88 89 90
	intel_ring_emit(engine, cmd);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
91 92 93 94 95

	return 0;
}

static int
96
gen4_render_ring_flush(struct drm_i915_gem_request *req,
97 98
		       u32	invalidate_domains,
		       u32	flush_domains)
99
{
100
	struct intel_engine_cs *engine = req->engine;
101
	u32 cmd;
102
	int ret;
103

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
	/*
	 * read/write caches:
	 *
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
	 * also flushed at 2d versus 3d pipeline switches.
	 *
	 * read-only caches:
	 *
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
	 * MI_READ_FLUSH is set, and is always flushed on 965.
	 *
	 * I915_GEM_DOMAIN_COMMAND may not exist?
	 *
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
	 * invalidated when MI_EXE_FLUSH is set.
	 *
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
	 * invalidated with every MI_FLUSH.
	 *
	 * TLBs:
	 *
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
	 * are flushed at any MI_FLUSH.
	 */

	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
133
	if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
134 135 136
		cmd &= ~MI_NO_WRITE_FLUSH;
	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
		cmd |= MI_EXE_FLUSH;
137

138
	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
139
	    (IS_G4X(req->i915) || IS_GEN5(req->i915)))
140
		cmd |= MI_INVALIDATE_ISP;
141

142
	ret = intel_ring_begin(req, 2);
143 144
	if (ret)
		return ret;
145

146 147 148
	intel_ring_emit(engine, cmd);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
149 150

	return 0;
151 152
}

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
/**
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 * implementing two workarounds on gen6.  From section 1.4.7.1
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 *
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 * produced by non-pipelined state commands), software needs to first
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 * 0.
 *
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 *
 * And the workaround for these two requires this workaround first:
 *
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 * BEFORE the pipe-control with a post-sync op and no write-cache
 * flushes.
 *
 * And this last workaround is tricky because of the requirements on
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 * volume 2 part 1:
 *
 *     "1 of the following must also be set:
 *      - Render Target Cache Flush Enable ([12] of DW1)
 *      - Depth Cache Flush Enable ([0] of DW1)
 *      - Stall at Pixel Scoreboard ([1] of DW1)
 *      - Depth Stall ([13] of DW1)
 *      - Post-Sync Operation ([13] of DW1)
 *      - Notify Enable ([8] of DW1)"
 *
 * The cache flushes require the workaround flush that triggered this
 * one, so we can't use it.  Depth stall would trigger the same.
 * Post-sync nonzero is what triggered this second workaround, so we
 * can't use that one either.  Notify enable is IRQs, which aren't
 * really our business.  That leaves only stall at scoreboard.
 */
static int
191
intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
192
{
193
	struct intel_engine_cs *engine = req->engine;
194
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
195 196
	int ret;

197
	ret = intel_ring_begin(req, 6);
198 199 200
	if (ret)
		return ret;

201 202
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
203
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
204 205 206 207 208
	intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
	intel_ring_emit(engine, 0); /* low dword */
	intel_ring_emit(engine, 0); /* high dword */
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
209

210
	ret = intel_ring_begin(req, 6);
211 212 213
	if (ret)
		return ret;

214 215 216 217 218 219 220
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(engine, PIPE_CONTROL_QW_WRITE);
	intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
221 222 223 224 225

	return 0;
}

static int
226 227
gen6_render_ring_flush(struct drm_i915_gem_request *req,
		       u32 invalidate_domains, u32 flush_domains)
228
{
229
	struct intel_engine_cs *engine = req->engine;
230
	u32 flags = 0;
231
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
232 233
	int ret;

234
	/* Force SNB workarounds for PIPE_CONTROL flushes */
235
	ret = intel_emit_post_sync_nonzero_flush(req);
236 237 238
	if (ret)
		return ret;

239 240 241 242
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
243 244 245 246 247 248 249
	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
		/*
		 * Ensure that any following seqno writes only happen
		 * when the render cache is indeed flushed.
		 */
250
		flags |= PIPE_CONTROL_CS_STALL;
251 252 253 254 255 256 257 258 259 260 261
	}
	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		/*
		 * TLB invalidate requires a post-sync write.
		 */
262
		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
263
	}
264

265
	ret = intel_ring_begin(req, 4);
266 267 268
	if (ret)
		return ret;

269 270 271 272 273
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(engine, flags);
	intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(engine, 0);
	intel_ring_advance(engine);
274 275 276 277

	return 0;
}

278
static int
279
gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
280
{
281
	struct intel_engine_cs *engine = req->engine;
282 283
	int ret;

284
	ret = intel_ring_begin(req, 4);
285 286 287
	if (ret)
		return ret;

288 289
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
290
			      PIPE_CONTROL_STALL_AT_SCOREBOARD);
291 292 293
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, 0);
	intel_ring_advance(engine);
294 295 296 297

	return 0;
}

298
static int
299
gen7_render_ring_flush(struct drm_i915_gem_request *req,
300 301
		       u32 invalidate_domains, u32 flush_domains)
{
302
	struct intel_engine_cs *engine = req->engine;
303
	u32 flags = 0;
304
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
305 306
	int ret;

307 308 309 310 311 312 313 314 315 316
	/*
	 * Ensure that any following seqno writes only happen when the render
	 * cache is indeed flushed.
	 *
	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
	 * don't try to be clever and just set it unconditionally.
	 */
	flags |= PIPE_CONTROL_CS_STALL;

317 318 319 320 321 322 323
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
324
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
325
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
326 327 328 329 330 331 332 333
	}
	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
334
		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
335 336 337 338
		/*
		 * TLB invalidate requires a post-sync write.
		 */
		flags |= PIPE_CONTROL_QW_WRITE;
339
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
340

341 342
		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;

343 344 345
		/* Workaround: we must issue a pipe_control with CS-stall bit
		 * set before a pipe_control command that has the state cache
		 * invalidate bit set. */
346
		gen7_render_ring_cs_stall_wa(req);
347 348
	}

349
	ret = intel_ring_begin(req, 4);
350 351 352
	if (ret)
		return ret;

353 354 355 356 357
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(engine, flags);
	intel_ring_emit(engine, scratch_addr);
	intel_ring_emit(engine, 0);
	intel_ring_advance(engine);
358 359 360 361

	return 0;
}

362
static int
363
gen8_emit_pipe_control(struct drm_i915_gem_request *req,
364 365
		       u32 flags, u32 scratch_addr)
{
366
	struct intel_engine_cs *engine = req->engine;
367 368
	int ret;

369
	ret = intel_ring_begin(req, 6);
370 371 372
	if (ret)
		return ret;

373 374 375 376 377 378 379
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(engine, flags);
	intel_ring_emit(engine, scratch_addr);
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, 0);
	intel_ring_advance(engine);
380 381 382 383

	return 0;
}

B
Ben Widawsky 已提交
384
static int
385
gen8_render_ring_flush(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
386 387 388
		       u32 invalidate_domains, u32 flush_domains)
{
	u32 flags = 0;
389
	u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
390
	int ret;
B
Ben Widawsky 已提交
391 392 393 394 395 396

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
397
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
398
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
B
Ben Widawsky 已提交
399 400 401 402 403 404 405 406 407 408
	}
	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
409 410

		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
411
		ret = gen8_emit_pipe_control(req,
412 413 414 415 416
					     PIPE_CONTROL_CS_STALL |
					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
					     0);
		if (ret)
			return ret;
B
Ben Widawsky 已提交
417 418
	}

419
	return gen8_emit_pipe_control(req, flags, scratch_addr);
B
Ben Widawsky 已提交
420 421
}

422
static void ring_write_tail(struct intel_engine_cs *engine,
423
			    u32 value)
424
{
425
	struct drm_i915_private *dev_priv = engine->i915;
426
	I915_WRITE_TAIL(engine, value);
427 428
}

429
u64 intel_ring_get_active_head(struct intel_engine_cs *engine)
430
{
431
	struct drm_i915_private *dev_priv = engine->i915;
432
	u64 acthd;
433

434
	if (INTEL_GEN(dev_priv) >= 8)
435 436
		acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
					 RING_ACTHD_UDW(engine->mmio_base));
437
	else if (INTEL_GEN(dev_priv) >= 4)
438
		acthd = I915_READ(RING_ACTHD(engine->mmio_base));
439 440 441 442
	else
		acthd = I915_READ(ACTHD);

	return acthd;
443 444
}

445
static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
446
{
447
	struct drm_i915_private *dev_priv = engine->i915;
448 449 450
	u32 addr;

	addr = dev_priv->status_page_dmah->busaddr;
451
	if (INTEL_GEN(dev_priv) >= 4)
452 453 454 455
		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
	I915_WRITE(HWS_PGA, addr);
}

456
static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
457
{
458
	struct drm_i915_private *dev_priv = engine->i915;
459
	i915_reg_t mmio;
460 461 462 463

	/* The ring status page addresses are no longer next to the rest of
	 * the ring registers as of gen7.
	 */
464
	if (IS_GEN7(dev_priv)) {
465
		switch (engine->id) {
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
		case RCS:
			mmio = RENDER_HWS_PGA_GEN7;
			break;
		case BCS:
			mmio = BLT_HWS_PGA_GEN7;
			break;
		/*
		 * VCS2 actually doesn't exist on Gen7. Only shut up
		 * gcc switch check warning
		 */
		case VCS2:
		case VCS:
			mmio = BSD_HWS_PGA_GEN7;
			break;
		case VECS:
			mmio = VEBOX_HWS_PGA_GEN7;
			break;
		}
484
	} else if (IS_GEN6(dev_priv)) {
485
		mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
486 487
	} else {
		/* XXX: gen8 returns to sanity */
488
		mmio = RING_HWS_PGA(engine->mmio_base);
489 490
	}

491
	I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
492 493 494 495 496 497 498 499 500
	POSTING_READ(mmio);

	/*
	 * Flush the TLB for this page
	 *
	 * FIXME: These two bits have disappeared on gen8, so a question
	 * arises: do we still need this and if so how should we go about
	 * invalidating the TLB?
	 */
501
	if (IS_GEN(dev_priv, 6, 7)) {
502
		i915_reg_t reg = RING_INSTPM(engine->mmio_base);
503 504

		/* ring should be idle before issuing a sync flush*/
505
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
506 507 508 509

		I915_WRITE(reg,
			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
					      INSTPM_SYNC_FLUSH));
510 511 512
		if (intel_wait_for_register(dev_priv,
					    reg, INSTPM_SYNC_FLUSH, 0,
					    1000))
513
			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
514
				  engine->name);
515 516 517
	}
}

518
static bool stop_ring(struct intel_engine_cs *engine)
519
{
520
	struct drm_i915_private *dev_priv = engine->i915;
521

522
	if (!IS_GEN2(dev_priv)) {
523
		I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
524 525 526 527 528
		if (intel_wait_for_register(dev_priv,
					    RING_MI_MODE(engine->mmio_base),
					    MODE_IDLE,
					    MODE_IDLE,
					    1000)) {
529 530
			DRM_ERROR("%s : timed out trying to stop ring\n",
				  engine->name);
531 532 533 534
			/* Sometimes we observe that the idle flag is not
			 * set even though the ring is empty. So double
			 * check before giving up.
			 */
535
			if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
536
				return false;
537 538
		}
	}
539

540 541 542
	I915_WRITE_CTL(engine, 0);
	I915_WRITE_HEAD(engine, 0);
	engine->write_tail(engine, 0);
543

544
	if (!IS_GEN2(dev_priv)) {
545 546
		(void)I915_READ_CTL(engine);
		I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
547
	}
548

549
	return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
550
}
551

552 553 554 555 556
void intel_engine_init_hangcheck(struct intel_engine_cs *engine)
{
	memset(&engine->hangcheck, 0, sizeof(engine->hangcheck));
}

557
static int init_ring_common(struct intel_engine_cs *engine)
558
{
559
	struct drm_i915_private *dev_priv = engine->i915;
560
	struct intel_ringbuffer *ringbuf = engine->buffer;
561
	struct drm_i915_gem_object *obj = ringbuf->obj;
562 563
	int ret = 0;

564
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
565

566
	if (!stop_ring(engine)) {
567
		/* G45 ring initialization often fails to reset head to zero */
568 569
		DRM_DEBUG_KMS("%s head not reset to zero "
			      "ctl %08x head %08x tail %08x start %08x\n",
570 571 572 573 574
			      engine->name,
			      I915_READ_CTL(engine),
			      I915_READ_HEAD(engine),
			      I915_READ_TAIL(engine),
			      I915_READ_START(engine));
575

576
		if (!stop_ring(engine)) {
577 578
			DRM_ERROR("failed to set %s head to zero "
				  "ctl %08x head %08x tail %08x start %08x\n",
579 580 581 582 583
				  engine->name,
				  I915_READ_CTL(engine),
				  I915_READ_HEAD(engine),
				  I915_READ_TAIL(engine),
				  I915_READ_START(engine));
584 585
			ret = -EIO;
			goto out;
586
		}
587 588
	}

589
	if (I915_NEED_GFX_HWS(dev_priv))
590
		intel_ring_setup_status_page(engine);
591
	else
592
		ring_setup_phys_status_page(engine);
593

594
	/* Enforce ordering by reading HEAD register back */
595
	I915_READ_HEAD(engine);
596

597 598 599 600
	/* Initialize the ring. This must happen _after_ we've cleared the ring
	 * registers with the above sequence (the readback of the HEAD registers
	 * also enforces ordering), otherwise the hw might lose the new ring
	 * register values. */
601
	I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
602 603

	/* WaClearRingBufHeadRegAtInit:ctg,elk */
604
	if (I915_READ_HEAD(engine))
605
		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
606 607 608
			  engine->name, I915_READ_HEAD(engine));
	I915_WRITE_HEAD(engine, 0);
	(void)I915_READ_HEAD(engine);
609

610
	I915_WRITE_CTL(engine,
611
			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
612
			| RING_VALID);
613 614

	/* If the head is still not zero, the ring is dead */
615 616 617
	if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
		     I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
		     (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
618
		DRM_ERROR("%s initialization failed "
619
			  "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
620 621 622 623 624 625
			  engine->name,
			  I915_READ_CTL(engine),
			  I915_READ_CTL(engine) & RING_VALID,
			  I915_READ_HEAD(engine), I915_READ_TAIL(engine),
			  I915_READ_START(engine),
			  (unsigned long)i915_gem_obj_ggtt_offset(obj));
626 627
		ret = -EIO;
		goto out;
628 629
	}

630
	ringbuf->last_retired_head = -1;
631 632
	ringbuf->head = I915_READ_HEAD(engine);
	ringbuf->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
633
	intel_ring_update_space(ringbuf);
634

635
	intel_engine_init_hangcheck(engine);
636

637
out:
638
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
639 640

	return ret;
641 642
}

643
void intel_fini_pipe_control(struct intel_engine_cs *engine)
644
{
645
	if (engine->scratch.obj == NULL)
646 647
		return;

648
	i915_gem_object_ggtt_unpin(engine->scratch.obj);
649 650
	drm_gem_object_unreference(&engine->scratch.obj->base);
	engine->scratch.obj = NULL;
651 652
}

653
int intel_init_pipe_control(struct intel_engine_cs *engine, int size)
654
{
655
	struct drm_i915_gem_object *obj;
656 657
	int ret;

658
	WARN_ON(engine->scratch.obj);
659

660
	obj = i915_gem_object_create_stolen(&engine->i915->drm, size);
661
	if (!obj)
662
		obj = i915_gem_object_create(&engine->i915->drm, size);
663 664 665
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate scratch page\n");
		ret = PTR_ERR(obj);
666 667
		goto err;
	}
668

669
	ret = i915_gem_obj_ggtt_pin(obj, 4096, PIN_HIGH);
670 671
	if (ret)
		goto err_unref;
672

673 674
	engine->scratch.obj = obj;
	engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
675
	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
676
			 engine->name, engine->scratch.gtt_offset);
677 678 679
	return 0;

err_unref:
680
	drm_gem_object_unreference(&engine->scratch.obj->base);
681 682 683 684
err:
	return ret;
}

685
static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
686
{
687
	struct intel_engine_cs *engine = req->engine;
688 689
	struct i915_workarounds *w = &req->i915->workarounds;
	int ret, i;
690

691
	if (w->count == 0)
692
		return 0;
693

694
	engine->gpu_caches_dirty = true;
695
	ret = intel_ring_flush_all_caches(req);
696 697
	if (ret)
		return ret;
698

699
	ret = intel_ring_begin(req, (w->count * 2 + 2));
700 701 702
	if (ret)
		return ret;

703
	intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(w->count));
704
	for (i = 0; i < w->count; i++) {
705 706
		intel_ring_emit_reg(engine, w->reg[i].addr);
		intel_ring_emit(engine, w->reg[i].value);
707
	}
708
	intel_ring_emit(engine, MI_NOOP);
709

710
	intel_ring_advance(engine);
711

712
	engine->gpu_caches_dirty = true;
713
	ret = intel_ring_flush_all_caches(req);
714 715
	if (ret)
		return ret;
716

717
	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
718

719
	return 0;
720 721
}

722
static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
723 724 725
{
	int ret;

726
	ret = intel_ring_workarounds_emit(req);
727 728 729
	if (ret != 0)
		return ret;

730
	ret = i915_gem_render_state_init(req);
731
	if (ret)
732
		return ret;
733

734
	return 0;
735 736
}

737
static int wa_add(struct drm_i915_private *dev_priv,
738 739
		  i915_reg_t addr,
		  const u32 mask, const u32 val)
740 741 742 743 744 745 746 747 748 749 750 751 752
{
	const u32 idx = dev_priv->workarounds.count;

	if (WARN_ON(idx >= I915_MAX_WA_REGS))
		return -ENOSPC;

	dev_priv->workarounds.reg[idx].addr = addr;
	dev_priv->workarounds.reg[idx].value = val;
	dev_priv->workarounds.reg[idx].mask = mask;

	dev_priv->workarounds.count++;

	return 0;
753 754
}

755
#define WA_REG(addr, mask, val) do { \
756
		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
757 758
		if (r) \
			return r; \
759
	} while (0)
760 761

#define WA_SET_BIT_MASKED(addr, mask) \
762
	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
763 764

#define WA_CLR_BIT_MASKED(addr, mask) \
765
	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
766

767
#define WA_SET_FIELD_MASKED(addr, mask, value) \
768
	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
769

770 771
#define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
#define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
772

773
#define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
774

775 776
static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
				 i915_reg_t reg)
777
{
778
	struct drm_i915_private *dev_priv = engine->i915;
779
	struct i915_workarounds *wa = &dev_priv->workarounds;
780
	const uint32_t index = wa->hw_whitelist_count[engine->id];
781 782 783 784

	if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
		return -EINVAL;

785
	WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
786
		 i915_mmio_reg_offset(reg));
787
	wa->hw_whitelist_count[engine->id]++;
788 789 790 791

	return 0;
}

792
static int gen8_init_workarounds(struct intel_engine_cs *engine)
793
{
794
	struct drm_i915_private *dev_priv = engine->i915;
795 796

	WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
797

798 799 800
	/* WaDisableAsyncFlipPerfMode:bdw,chv */
	WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);

801 802 803 804
	/* WaDisablePartialInstShootdown:bdw,chv */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

805 806 807 808 809
	/* Use Force Non-Coherent whenever executing a 3D context. This is a
	 * workaround for for a possible hang in the unlikely event a TLB
	 * invalidation occurs during a PSD flush.
	 */
	/* WaForceEnableNonCoherent:bdw,chv */
810
	/* WaHdcDisableFetchWhenMasked:bdw,chv */
811
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
812
			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
813 814
			  HDC_FORCE_NON_COHERENT);

815 816 817 818 819 820 821 822 823 824
	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
	 *  polygons in the same 8x4 pixel/sample area to be processed without
	 *  stalling waiting for the earlier ones to write to Hierarchical Z
	 *  buffer."
	 *
	 * This optimization is off by default for BDW and CHV; turn it on.
	 */
	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);

825 826 827
	/* Wa4x4STCOptimizationDisable:bdw,chv */
	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);

828 829 830 831 832 833 834 835 836 837 838 839
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN6_WIZ_HASHING_MASK,
			    GEN6_WIZ_HASHING_16x4);

840 841 842
	return 0;
}

843
static int bdw_init_workarounds(struct intel_engine_cs *engine)
844
{
845
	struct drm_i915_private *dev_priv = engine->i915;
846
	int ret;
847

848
	ret = gen8_init_workarounds(engine);
849 850 851
	if (ret)
		return ret;

852
	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
853
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
854

855
	/* WaDisableDopClockGating:bdw */
856 857
	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
			  DOP_CLOCK_GATING_DISABLE);
858

859 860
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN8_SAMPLER_POWER_BYPASS_DIS);
861

862
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
863 864 865
			  /* WaForceContextSaveRestoreNonCoherent:bdw */
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
866
			  (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
867 868 869 870

	return 0;
}

871
static int chv_init_workarounds(struct intel_engine_cs *engine)
872
{
873
	struct drm_i915_private *dev_priv = engine->i915;
874
	int ret;
875

876
	ret = gen8_init_workarounds(engine);
877 878 879
	if (ret)
		return ret;

880
	/* WaDisableThreadStallDopClockGating:chv */
881
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
882

883 884 885
	/* Improve HiZ throughput on CHV. */
	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);

886 887 888
	return 0;
}

889
static int gen9_init_workarounds(struct intel_engine_cs *engine)
890
{
891
	struct drm_i915_private *dev_priv = engine->i915;
892
	int ret;
893

894 895 896
	/* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
	I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));

897
	/* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
898 899 900
	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);

901
	/* WaDisableKillLogic:bxt,skl,kbl */
902 903 904
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   ECOCHK_DIS_TLB);

905 906
	/* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
	/* WaDisablePartialInstShootdown:skl,bxt,kbl */
907
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
908
			  FLOW_CONTROL_ENABLE |
909 910
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

911
	/* Syncing dependencies between camera and graphics:skl,bxt,kbl */
912 913 914
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);

915
	/* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
916 917
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
918 919
		WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
				  GEN9_DG_MIRROR_FIX_ENABLE);
920

921
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
922 923
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
924 925
		WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
				  GEN9_RHWO_OPTIMIZATION_DISABLE);
926 927 928 929 930
		/*
		 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
		 * but we do that in per ctx batchbuffer as there is an issue
		 * with this register not getting restored on ctx restore
		 */
931 932
	}

933 934
	/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
	/* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
935 936 937
	WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
			  GEN9_ENABLE_YV12_BUGFIX |
			  GEN9_ENABLE_GPGPU_PREEMPTION);
938

939 940
	/* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
	/* WaDisablePartialResolveInVc:skl,bxt,kbl */
941 942
	WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
					 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
943

944
	/* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
945 946 947
	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
			  GEN9_CCS_TLB_PREFETCH_ENABLE);

948
	/* WaDisableMaskBasedCammingInRCC:skl,bxt */
949 950
	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_C0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
951 952 953
		WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
				  PIXEL_MASK_CAMMING_DISABLE);

954 955 956 957
	/* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
958

959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
	/* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
	 * both tied to WaForceContextSaveRestoreNonCoherent
	 * in some hsds for skl. We keep the tie for all gen9. The
	 * documentation is a bit hazy and so we want to get common behaviour,
	 * even though there is no clear evidence we would need both on kbl/bxt.
	 * This area has been source of system hangs so we play it safe
	 * and mimic the skl regardless of what bspec says.
	 *
	 * Use Force Non-Coherent whenever executing a 3D context. This
	 * is a workaround for a possible hang in the unlikely event
	 * a TLB invalidation occurs during a PSD flush.
	 */

	/* WaForceEnableNonCoherent:skl,bxt,kbl */
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  HDC_FORCE_NON_COHERENT);

	/* WaDisableHDCInvalidation:skl,bxt,kbl */
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   BDW_DISABLE_HDC_INVALIDATION);

980 981 982 983
	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
	if (IS_SKYLAKE(dev_priv) ||
	    IS_KABYLAKE(dev_priv) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
984 985 986
		WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
				  GEN8_SAMPLER_POWER_BYPASS_DIS);

987
	/* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
988 989
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);

990
	/* WaOCLCoherentLineFlush:skl,bxt,kbl */
991 992 993
	I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
				    GEN8_LQSC_FLUSH_COHERENT_LINES));

994 995 996 997 998
	/* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
	ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
	if (ret)
		return ret;

999
	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
1000
	ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
1001 1002 1003
	if (ret)
		return ret;

1004
	/* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
1005
	ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
1006 1007 1008
	if (ret)
		return ret;

1009 1010 1011
	return 0;
}

1012
static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
1013
{
1014
	struct drm_i915_private *dev_priv = engine->i915;
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
	u8 vals[3] = { 0, 0, 0 };
	unsigned int i;

	for (i = 0; i < 3; i++) {
		u8 ss;

		/*
		 * Only consider slices where one, and only one, subslice has 7
		 * EUs
		 */
1025
		if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
			continue;

		/*
		 * subslice_7eu[i] != 0 (because of the check above) and
		 * ss_max == 4 (maximum number of subslices possible per slice)
		 *
		 * ->    0 <= ss <= 3;
		 */
		ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
		vals[i] = 3 - ss;
	}

	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
		return 0;

	/* Tune IZ hashing. See intel_device_info_runtime_init() */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN9_IZ_HASHING_MASK(2) |
			    GEN9_IZ_HASHING_MASK(1) |
			    GEN9_IZ_HASHING_MASK(0),
			    GEN9_IZ_HASHING(2, vals[2]) |
			    GEN9_IZ_HASHING(1, vals[1]) |
			    GEN9_IZ_HASHING(0, vals[0]));

	return 0;
}

1053
static int skl_init_workarounds(struct intel_engine_cs *engine)
1054
{
1055
	struct drm_i915_private *dev_priv = engine->i915;
1056
	int ret;
1057

1058
	ret = gen9_init_workarounds(engine);
1059 1060
	if (ret)
		return ret;
1061

1062 1063 1064 1065 1066
	/*
	 * Actual WA is to disable percontext preemption granularity control
	 * until D0 which is the default case so this is equivalent to
	 * !WaDisablePerCtxtPreemptionGranularityControl:skl
	 */
1067
	if (IS_SKL_REVID(dev_priv, SKL_REVID_E0, REVID_FOREVER)) {
1068 1069 1070 1071
		I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
	}

1072
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0)) {
1073 1074 1075 1076 1077 1078 1079 1080
		/* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
		I915_WRITE(FF_SLICE_CS_CHICKEN2,
			   _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
	}

	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
	 * involving this register should also be added to WA batch as required.
	 */
1081
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0))
1082 1083 1084 1085 1086
		/* WaDisableLSQCROPERFforOCL:skl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);

	/* WaEnableGapsTsvCreditFix:skl */
1087
	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, REVID_FOREVER)) {
1088 1089 1090 1091
		I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
					   GEN9_GAPS_TSV_CREDIT_DISABLE));
	}

1092
	/* WaDisablePowerCompilerClockGating:skl */
1093
	if (IS_SKL_REVID(dev_priv, SKL_REVID_B0, SKL_REVID_B0))
1094 1095 1096
		WA_SET_BIT_MASKED(HIZ_CHICKEN,
				  BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);

1097
	/* WaBarrierPerformanceFixDisable:skl */
1098
	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_D0))
1099 1100 1101 1102
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
				  HDC_FENCE_DEST_SLM_DISABLE |
				  HDC_BARRIER_PERFORMANCE_DISABLE);

1103
	/* WaDisableSbeCacheDispatchPortSharing:skl */
1104
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0))
1105 1106 1107 1108
		WA_SET_BIT_MASKED(
			GEN7_HALF_SLICE_CHICKEN1,
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);

1109 1110 1111
	/* WaDisableGafsUnitClkGating:skl */
	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);

1112 1113 1114 1115 1116
	/* WaInPlaceDecompressionHang:skl */
	if (IS_SKL_REVID(dev_priv, SKL_REVID_H0, REVID_FOREVER))
		WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
			   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

1117
	/* WaDisableLSQCROPERFforOCL:skl */
1118
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1119 1120 1121
	if (ret)
		return ret;

1122
	return skl_tune_iz_hashing(engine);
1123 1124
}

1125
static int bxt_init_workarounds(struct intel_engine_cs *engine)
1126
{
1127
	struct drm_i915_private *dev_priv = engine->i915;
1128
	int ret;
1129

1130
	ret = gen9_init_workarounds(engine);
1131 1132
	if (ret)
		return ret;
1133

1134 1135
	/* WaStoreMultiplePTEenable:bxt */
	/* This is a requirement according to Hardware specification */
1136
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1137 1138 1139
		I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);

	/* WaSetClckGatingDisableMedia:bxt */
1140
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1141 1142 1143 1144
		I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
					    ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
	}

1145 1146 1147 1148
	/* WaDisableThreadStallDopClockGating:bxt */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  STALL_DOP_GATING_DISABLE);

1149 1150 1151 1152 1153 1154
	/* WaDisablePooledEuLoadBalancingFix:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
		WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
				  GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
	}

1155
	/* WaDisableSbeCacheDispatchPortSharing:bxt */
1156
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
1157 1158 1159 1160 1161
		WA_SET_BIT_MASKED(
			GEN7_HALF_SLICE_CHICKEN1,
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
	}

1162 1163 1164
	/* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
	/* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
	/* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1165
	/* WaDisableLSQCROPERFforOCL:bxt */
1166
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1167
		ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1168 1169
		if (ret)
			return ret;
1170

1171
		ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1172 1173
		if (ret)
			return ret;
1174 1175
	}

1176
	/* WaProgramL3SqcReg1DefaultForPerf:bxt */
1177
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
1178 1179
		I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
					   L3_HIGH_PRIO_CREDITS(2));
1180

1181 1182
	/* WaToEnableHwFixForPushConstHWBug:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
1183 1184 1185
		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

1186 1187 1188 1189 1190
	/* WaInPlaceDecompressionHang:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
		WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
			   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

1191 1192 1193
	return 0;
}

1194 1195
static int kbl_init_workarounds(struct intel_engine_cs *engine)
{
1196
	struct drm_i915_private *dev_priv = engine->i915;
1197 1198 1199 1200 1201 1202
	int ret;

	ret = gen9_init_workarounds(engine);
	if (ret)
		return ret;

1203 1204 1205 1206
	/* WaEnableGapsTsvCreditFix:kbl */
	I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
				   GEN9_GAPS_TSV_CREDIT_DISABLE));

1207 1208 1209 1210 1211
	/* WaDisableDynamicCreditSharing:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		WA_SET_BIT(GAMT_CHKN_BIT_REG,
			   GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);

1212 1213 1214 1215 1216
	/* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
	if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
				  HDC_FENCE_DEST_SLM_DISABLE);

1217 1218 1219 1220 1221 1222 1223 1224
	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
	 * involving this register should also be added to WA batch as required.
	 */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
		/* WaDisableLSQCROPERFforOCL:kbl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);

1225 1226
	/* WaToEnableHwFixForPushConstHWBug:kbl */
	if (IS_KBL_REVID(dev_priv, KBL_REVID_C0, REVID_FOREVER))
1227 1228 1229
		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

1230 1231 1232
	/* WaDisableGafsUnitClkGating:kbl */
	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);

1233 1234 1235 1236 1237
	/* WaDisableSbeCacheDispatchPortSharing:kbl */
	WA_SET_BIT_MASKED(
		GEN7_HALF_SLICE_CHICKEN1,
		GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);

1238 1239 1240 1241
	/* WaInPlaceDecompressionHang:kbl */
	WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
		   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

1242 1243 1244 1245 1246
	/* WaDisableLSQCROPERFforOCL:kbl */
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
	if (ret)
		return ret;

1247 1248 1249
	return 0;
}

1250
int init_workarounds_ring(struct intel_engine_cs *engine)
1251
{
1252
	struct drm_i915_private *dev_priv = engine->i915;
1253

1254
	WARN_ON(engine->id != RCS);
1255 1256

	dev_priv->workarounds.count = 0;
1257
	dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1258

1259
	if (IS_BROADWELL(dev_priv))
1260
		return bdw_init_workarounds(engine);
1261

1262
	if (IS_CHERRYVIEW(dev_priv))
1263
		return chv_init_workarounds(engine);
1264

1265
	if (IS_SKYLAKE(dev_priv))
1266
		return skl_init_workarounds(engine);
1267

1268
	if (IS_BROXTON(dev_priv))
1269
		return bxt_init_workarounds(engine);
1270

1271 1272 1273
	if (IS_KABYLAKE(dev_priv))
		return kbl_init_workarounds(engine);

1274 1275 1276
	return 0;
}

1277
static int init_render_ring(struct intel_engine_cs *engine)
1278
{
1279
	struct drm_i915_private *dev_priv = engine->i915;
1280
	int ret = init_ring_common(engine);
1281 1282
	if (ret)
		return ret;
1283

1284
	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1285
	if (IS_GEN(dev_priv, 4, 6))
1286
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1287 1288 1289 1290

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
1291
	 *
1292
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1293
	 */
1294
	if (IS_GEN(dev_priv, 6, 7))
1295 1296
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

1297
	/* Required for the hardware to program scanline values for waiting */
1298
	/* WaEnableFlushTlbInvalidationMode:snb */
1299
	if (IS_GEN6(dev_priv))
1300
		I915_WRITE(GFX_MODE,
1301
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1302

1303
	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1304
	if (IS_GEN7(dev_priv))
1305
		I915_WRITE(GFX_MODE_GEN7,
1306
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1307
			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1308

1309
	if (IS_GEN6(dev_priv)) {
1310 1311 1312 1313 1314 1315
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
		 * "If this bit is set, STCunit will have LRA as replacement
		 *  policy. [...] This bit must be reset.  LRA replacement
		 *  policy is not supported."
		 */
		I915_WRITE(CACHE_MODE_0,
1316
			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1317 1318
	}

1319
	if (IS_GEN(dev_priv, 6, 7))
1320
		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1321

1322 1323
	if (INTEL_INFO(dev_priv)->gen >= 6)
		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1324

1325
	return init_workarounds_ring(engine);
1326 1327
}

1328
static void render_ring_cleanup(struct intel_engine_cs *engine)
1329
{
1330
	struct drm_i915_private *dev_priv = engine->i915;
1331 1332 1333 1334 1335 1336

	if (dev_priv->semaphore_obj) {
		i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
		drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
		dev_priv->semaphore_obj = NULL;
	}
1337

1338
	intel_fini_pipe_control(engine);
1339 1340
}

1341
static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1342 1343 1344
			   unsigned int num_dwords)
{
#define MBOX_UPDATE_DWORDS 8
1345
	struct intel_engine_cs *signaller = signaller_req->engine;
1346
	struct drm_i915_private *dev_priv = signaller_req->i915;
1347
	struct intel_engine_cs *waiter;
1348 1349
	enum intel_engine_id id;
	int ret, num_rings;
1350

1351
	num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1352 1353 1354
	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
#undef MBOX_UPDATE_DWORDS

1355
	ret = intel_ring_begin(signaller_req, num_dwords);
1356 1357 1358
	if (ret)
		return ret;

1359 1360
	for_each_engine_id(waiter, dev_priv, id) {
		u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1361 1362 1363 1364 1365 1366
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

		intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
					   PIPE_CONTROL_QW_WRITE |
1367
					   PIPE_CONTROL_CS_STALL);
1368 1369
		intel_ring_emit(signaller, lower_32_bits(gtt_offset));
		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1370
		intel_ring_emit(signaller, signaller_req->seqno);
1371 1372
		intel_ring_emit(signaller, 0);
		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1373
					   MI_SEMAPHORE_TARGET(waiter->hw_id));
1374 1375 1376 1377 1378 1379
		intel_ring_emit(signaller, 0);
	}

	return 0;
}

1380
static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1381 1382 1383
			   unsigned int num_dwords)
{
#define MBOX_UPDATE_DWORDS 6
1384
	struct intel_engine_cs *signaller = signaller_req->engine;
1385
	struct drm_i915_private *dev_priv = signaller_req->i915;
1386
	struct intel_engine_cs *waiter;
1387 1388
	enum intel_engine_id id;
	int ret, num_rings;
1389

1390
	num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1391 1392 1393
	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
#undef MBOX_UPDATE_DWORDS

1394
	ret = intel_ring_begin(signaller_req, num_dwords);
1395 1396 1397
	if (ret)
		return ret;

1398 1399
	for_each_engine_id(waiter, dev_priv, id) {
		u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1400 1401 1402 1403 1404 1405 1406 1407
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

		intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
					   MI_FLUSH_DW_OP_STOREDW);
		intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
					   MI_FLUSH_DW_USE_GTT);
		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1408
		intel_ring_emit(signaller, signaller_req->seqno);
1409
		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1410
					   MI_SEMAPHORE_TARGET(waiter->hw_id));
1411 1412 1413 1414 1415 1416
		intel_ring_emit(signaller, 0);
	}

	return 0;
}

1417
static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1418
		       unsigned int num_dwords)
1419
{
1420
	struct intel_engine_cs *signaller = signaller_req->engine;
1421
	struct drm_i915_private *dev_priv = signaller_req->i915;
1422
	struct intel_engine_cs *useless;
1423 1424
	enum intel_engine_id id;
	int ret, num_rings;
1425

1426
#define MBOX_UPDATE_DWORDS 3
1427
	num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1428 1429
	num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
#undef MBOX_UPDATE_DWORDS
1430

1431
	ret = intel_ring_begin(signaller_req, num_dwords);
1432 1433 1434
	if (ret)
		return ret;

1435 1436
	for_each_engine_id(useless, dev_priv, id) {
		i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[id];
1437 1438

		if (i915_mmio_reg_valid(mbox_reg)) {
1439
			intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1440
			intel_ring_emit_reg(signaller, mbox_reg);
1441
			intel_ring_emit(signaller, signaller_req->seqno);
1442 1443
		}
	}
1444

1445 1446 1447 1448
	/* If num_dwords was rounded, make sure the tail pointer is correct */
	if (num_rings % 2 == 0)
		intel_ring_emit(signaller, MI_NOOP);

1449
	return 0;
1450 1451
}

1452 1453
/**
 * gen6_add_request - Update the semaphore mailbox registers
1454 1455
 *
 * @request - request to write to the ring
1456 1457 1458 1459
 *
 * Update the mailbox registers in the *other* rings with the current seqno.
 * This acts like a signal in the canonical semaphore.
 */
1460
static int
1461
gen6_add_request(struct drm_i915_gem_request *req)
1462
{
1463
	struct intel_engine_cs *engine = req->engine;
1464
	int ret;
1465

1466 1467
	if (engine->semaphore.signal)
		ret = engine->semaphore.signal(req, 4);
B
Ben Widawsky 已提交
1468
	else
1469
		ret = intel_ring_begin(req, 4);
B
Ben Widawsky 已提交
1470

1471 1472 1473
	if (ret)
		return ret;

1474 1475 1476
	intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
	intel_ring_emit(engine,
			I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1477
	intel_ring_emit(engine, req->seqno);
1478 1479
	intel_ring_emit(engine, MI_USER_INTERRUPT);
	__intel_ring_advance(engine);
1480 1481 1482 1483

	return 0;
}

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
static int
gen8_render_add_request(struct drm_i915_gem_request *req)
{
	struct intel_engine_cs *engine = req->engine;
	int ret;

	if (engine->semaphore.signal)
		ret = engine->semaphore.signal(req, 8);
	else
		ret = intel_ring_begin(req, 8);
	if (ret)
		return ret;

	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(engine, (PIPE_CONTROL_GLOBAL_GTT_IVB |
				 PIPE_CONTROL_CS_STALL |
				 PIPE_CONTROL_QW_WRITE));
	intel_ring_emit(engine, intel_hws_seqno_address(req->engine));
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, i915_gem_request_get_seqno(req));
	/* We're thrashing one dword of HWS. */
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, MI_USER_INTERRUPT);
	intel_ring_emit(engine, MI_NOOP);
	__intel_ring_advance(engine);

	return 0;
}

1513
static inline bool i915_gem_has_seqno_wrapped(struct drm_i915_private *dev_priv,
1514 1515 1516 1517 1518
					      u32 seqno)
{
	return dev_priv->last_seqno < seqno;
}

1519 1520 1521 1522 1523 1524 1525
/**
 * intel_ring_sync - sync the waiter to the signaller on seqno
 *
 * @waiter - ring that is waiting
 * @signaller - ring which has, or will signal
 * @seqno - seqno which the waiter will block on
 */
1526 1527

static int
1528
gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1529 1530 1531
	       struct intel_engine_cs *signaller,
	       u32 seqno)
{
1532
	struct intel_engine_cs *waiter = waiter_req->engine;
1533
	struct drm_i915_private *dev_priv = waiter_req->i915;
1534
	u64 offset = GEN8_WAIT_OFFSET(waiter, signaller->id);
1535
	struct i915_hw_ppgtt *ppgtt;
1536 1537
	int ret;

1538
	ret = intel_ring_begin(waiter_req, 4);
1539 1540 1541 1542 1543 1544 1545
	if (ret)
		return ret;

	intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
				MI_SEMAPHORE_GLOBAL_GTT |
				MI_SEMAPHORE_SAD_GTE_SDD);
	intel_ring_emit(waiter, seqno);
1546 1547
	intel_ring_emit(waiter, lower_32_bits(offset));
	intel_ring_emit(waiter, upper_32_bits(offset));
1548
	intel_ring_advance(waiter);
1549 1550 1551 1552 1553 1554 1555 1556 1557

	/* When the !RCS engines idle waiting upon a semaphore, they lose their
	 * pagetables and we must reload them before executing the batch.
	 * We do this on the i915_switch_context() following the wait and
	 * before the dispatch.
	 */
	ppgtt = waiter_req->ctx->ppgtt;
	if (ppgtt && waiter_req->engine->id != RCS)
		ppgtt->pd_dirty_rings |= intel_engine_flag(waiter_req->engine);
1558 1559 1560
	return 0;
}

1561
static int
1562
gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1563
	       struct intel_engine_cs *signaller,
1564
	       u32 seqno)
1565
{
1566
	struct intel_engine_cs *waiter = waiter_req->engine;
1567 1568 1569
	u32 dw1 = MI_SEMAPHORE_MBOX |
		  MI_SEMAPHORE_COMPARE |
		  MI_SEMAPHORE_REGISTER;
1570 1571
	u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
	int ret;
1572

1573 1574 1575 1576 1577 1578
	/* Throughout all of the GEM code, seqno passed implies our current
	 * seqno is >= the last seqno executed. However for hardware the
	 * comparison is strictly greater than.
	 */
	seqno -= 1;

1579
	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1580

1581
	ret = intel_ring_begin(waiter_req, 4);
1582 1583 1584
	if (ret)
		return ret;

1585
	/* If seqno wrap happened, omit the wait with no-ops */
1586
	if (likely(!i915_gem_has_seqno_wrapped(waiter_req->i915, seqno))) {
1587
		intel_ring_emit(waiter, dw1 | wait_mbox);
1588 1589 1590 1591 1592 1593 1594 1595 1596
		intel_ring_emit(waiter, seqno);
		intel_ring_emit(waiter, 0);
		intel_ring_emit(waiter, MI_NOOP);
	} else {
		intel_ring_emit(waiter, MI_NOOP);
		intel_ring_emit(waiter, MI_NOOP);
		intel_ring_emit(waiter, MI_NOOP);
		intel_ring_emit(waiter, MI_NOOP);
	}
1597
	intel_ring_advance(waiter);
1598 1599 1600 1601

	return 0;
}

1602 1603
static void
gen5_seqno_barrier(struct intel_engine_cs *ring)
1604
{
1605 1606 1607
	/* MI_STORE are internally buffered by the GPU and not flushed
	 * either by MI_FLUSH or SyncFlush or any other combination of
	 * MI commands.
1608
	 *
1609 1610 1611 1612 1613 1614 1615
	 * "Only the submission of the store operation is guaranteed.
	 * The write result will be complete (coherent) some time later
	 * (this is practically a finite period but there is no guaranteed
	 * latency)."
	 *
	 * Empirically, we observe that we need a delay of at least 75us to
	 * be sure that the seqno write is visible by the CPU.
1616
	 */
1617
	usleep_range(125, 250);
1618 1619
}

1620 1621
static void
gen6_seqno_barrier(struct intel_engine_cs *engine)
1622
{
1623
	struct drm_i915_private *dev_priv = engine->i915;
1624

1625 1626
	/* Workaround to force correct ordering between irq and seqno writes on
	 * ivb (and maybe also on snb) by reading from a CS register (like
1627 1628 1629 1630 1631 1632 1633 1634 1635
	 * ACTHD) before reading the status page.
	 *
	 * Note that this effectively stalls the read by the time it takes to
	 * do a memory transaction, which more or less ensures that the write
	 * from the GPU has sufficient time to invalidate the CPU cacheline.
	 * Alternatively we could delay the interrupt from the CS ring to give
	 * the write time to land, but that would incur a delay after every
	 * batch i.e. much more frequent than a delay when waiting for the
	 * interrupt (with the same net latency).
1636 1637 1638
	 *
	 * Also note that to prevent whole machine hangs on gen7, we have to
	 * take the spinlock to guard against concurrent cacheline access.
1639
	 */
1640
	spin_lock_irq(&dev_priv->uncore.lock);
1641
	POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1642
	spin_unlock_irq(&dev_priv->uncore.lock);
1643 1644
}

1645 1646
static void
gen5_irq_enable(struct intel_engine_cs *engine)
1647
{
1648
	gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
1649 1650 1651
}

static void
1652
gen5_irq_disable(struct intel_engine_cs *engine)
1653
{
1654
	gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
1655 1656
}

1657 1658
static void
i9xx_irq_enable(struct intel_engine_cs *engine)
1659
{
1660
	struct drm_i915_private *dev_priv = engine->i915;
1661

1662 1663 1664
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1665 1666
}

1667
static void
1668
i9xx_irq_disable(struct intel_engine_cs *engine)
1669
{
1670
	struct drm_i915_private *dev_priv = engine->i915;
1671

1672 1673
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
1674 1675
}

1676 1677
static void
i8xx_irq_enable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1678
{
1679
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
1680

1681 1682 1683
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
	POSTING_READ16(RING_IMR(engine->mmio_base));
C
Chris Wilson 已提交
1684 1685 1686
}

static void
1687
i8xx_irq_disable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1688
{
1689
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
1690

1691 1692
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
C
Chris Wilson 已提交
1693 1694
}

1695
static int
1696
bsd_ring_flush(struct drm_i915_gem_request *req,
1697 1698
	       u32     invalidate_domains,
	       u32     flush_domains)
1699
{
1700
	struct intel_engine_cs *engine = req->engine;
1701 1702
	int ret;

1703
	ret = intel_ring_begin(req, 2);
1704 1705 1706
	if (ret)
		return ret;

1707 1708 1709
	intel_ring_emit(engine, MI_FLUSH);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
1710
	return 0;
1711 1712
}

1713
static int
1714
i9xx_add_request(struct drm_i915_gem_request *req)
1715
{
1716
	struct intel_engine_cs *engine = req->engine;
1717 1718
	int ret;

1719
	ret = intel_ring_begin(req, 4);
1720 1721
	if (ret)
		return ret;
1722

1723 1724 1725
	intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
	intel_ring_emit(engine,
			I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1726
	intel_ring_emit(engine, req->seqno);
1727 1728
	intel_ring_emit(engine, MI_USER_INTERRUPT);
	__intel_ring_advance(engine);
1729

1730
	return 0;
1731 1732
}

1733 1734
static void
gen6_irq_enable(struct intel_engine_cs *engine)
1735
{
1736
	struct drm_i915_private *dev_priv = engine->i915;
1737

1738 1739 1740
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask |
			 engine->irq_keep_mask));
1741
	gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1742 1743 1744
}

static void
1745
gen6_irq_disable(struct intel_engine_cs *engine)
1746
{
1747
	struct drm_i915_private *dev_priv = engine->i915;
1748

1749
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1750
	gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1751 1752
}

1753 1754
static void
hsw_vebox_irq_enable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1755
{
1756
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1757

1758 1759
	I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
	gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1760 1761 1762
}

static void
1763
hsw_vebox_irq_disable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1764
{
1765
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1766

1767 1768
	I915_WRITE_IMR(engine, ~0);
	gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1769 1770
}

1771 1772
static void
gen8_irq_enable(struct intel_engine_cs *engine)
1773
{
1774
	struct drm_i915_private *dev_priv = engine->i915;
1775

1776 1777 1778
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask |
			 engine->irq_keep_mask));
1779
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1780 1781 1782
}

static void
1783
gen8_irq_disable(struct intel_engine_cs *engine)
1784
{
1785
	struct drm_i915_private *dev_priv = engine->i915;
1786

1787
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1788 1789
}

1790
static int
1791
i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
1792
			 u64 offset, u32 length,
1793
			 unsigned dispatch_flags)
1794
{
1795
	struct intel_engine_cs *engine = req->engine;
1796
	int ret;
1797

1798
	ret = intel_ring_begin(req, 2);
1799 1800 1801
	if (ret)
		return ret;

1802
	intel_ring_emit(engine,
1803 1804
			MI_BATCH_BUFFER_START |
			MI_BATCH_GTT |
1805 1806
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
1807 1808
	intel_ring_emit(engine, offset);
	intel_ring_advance(engine);
1809

1810 1811 1812
	return 0;
}

1813 1814
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
#define I830_BATCH_LIMIT (256*1024)
1815 1816
#define I830_TLB_ENTRIES (2)
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1817
static int
1818
i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1819 1820
			 u64 offset, u32 len,
			 unsigned dispatch_flags)
1821
{
1822
	struct intel_engine_cs *engine = req->engine;
1823
	u32 cs_offset = engine->scratch.gtt_offset;
1824
	int ret;
1825

1826
	ret = intel_ring_begin(req, 6);
1827 1828
	if (ret)
		return ret;
1829

1830
	/* Evict the invalid PTE TLBs */
1831 1832 1833 1834 1835 1836 1837
	intel_ring_emit(engine, COLOR_BLT_CMD | BLT_WRITE_RGBA);
	intel_ring_emit(engine, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
	intel_ring_emit(engine, I830_TLB_ENTRIES << 16 | 4); /* load each page */
	intel_ring_emit(engine, cs_offset);
	intel_ring_emit(engine, 0xdeadbeef);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
1838

1839
	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1840 1841 1842
		if (len > I830_BATCH_LIMIT)
			return -ENOSPC;

1843
		ret = intel_ring_begin(req, 6 + 2);
1844 1845
		if (ret)
			return ret;
1846 1847 1848 1849 1850

		/* Blit the batch (which has now all relocs applied) to the
		 * stable batch scratch bo area (so that the CS never
		 * stumbles over its tlb invalidation bug) ...
		 */
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
		intel_ring_emit(engine, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
		intel_ring_emit(engine,
				BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
		intel_ring_emit(engine, DIV_ROUND_UP(len, 4096) << 16 | 4096);
		intel_ring_emit(engine, cs_offset);
		intel_ring_emit(engine, 4096);
		intel_ring_emit(engine, offset);

		intel_ring_emit(engine, MI_FLUSH);
		intel_ring_emit(engine, MI_NOOP);
		intel_ring_advance(engine);
1862 1863

		/* ... and execute it. */
1864
		offset = cs_offset;
1865
	}
1866

1867
	ret = intel_ring_begin(req, 2);
1868 1869 1870
	if (ret)
		return ret;

1871 1872 1873 1874
	intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					  0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(engine);
1875

1876 1877 1878 1879
	return 0;
}

static int
1880
i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
1881
			 u64 offset, u32 len,
1882
			 unsigned dispatch_flags)
1883
{
1884
	struct intel_engine_cs *engine = req->engine;
1885 1886
	int ret;

1887
	ret = intel_ring_begin(req, 2);
1888 1889 1890
	if (ret)
		return ret;

1891 1892 1893 1894
	intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					  0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(engine);
1895 1896 1897 1898

	return 0;
}

1899
static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1900
{
1901
	struct drm_i915_private *dev_priv = engine->i915;
1902 1903 1904 1905

	if (!dev_priv->status_page_dmah)
		return;

1906
	drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
1907
	engine->status_page.page_addr = NULL;
1908 1909
}

1910
static void cleanup_status_page(struct intel_engine_cs *engine)
1911
{
1912
	struct drm_i915_gem_object *obj;
1913

1914
	obj = engine->status_page.obj;
1915
	if (obj == NULL)
1916 1917
		return;

1918
	kunmap(sg_page(obj->pages->sgl));
B
Ben Widawsky 已提交
1919
	i915_gem_object_ggtt_unpin(obj);
1920
	drm_gem_object_unreference(&obj->base);
1921
	engine->status_page.obj = NULL;
1922 1923
}

1924
static int init_status_page(struct intel_engine_cs *engine)
1925
{
1926
	struct drm_i915_gem_object *obj = engine->status_page.obj;
1927

1928
	if (obj == NULL) {
1929
		unsigned flags;
1930
		int ret;
1931

1932
		obj = i915_gem_object_create(&engine->i915->drm, 4096);
1933
		if (IS_ERR(obj)) {
1934
			DRM_ERROR("Failed to allocate status page\n");
1935
			return PTR_ERR(obj);
1936
		}
1937

1938 1939 1940 1941
		ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
		if (ret)
			goto err_unref;

1942
		flags = 0;
1943
		if (!HAS_LLC(engine->i915))
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
			/* On g33, we cannot place HWS above 256MiB, so
			 * restrict its pinning to the low mappable arena.
			 * Though this restriction is not documented for
			 * gen4, gen5, or byt, they also behave similarly
			 * and hang if the HWS is placed at the top of the
			 * GTT. To generalise, it appears that all !llc
			 * platforms have issues with us placing the HWS
			 * above the mappable region (even though we never
			 * actualy map it).
			 */
			flags |= PIN_MAPPABLE;
		ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1956 1957 1958 1959 1960 1961
		if (ret) {
err_unref:
			drm_gem_object_unreference(&obj->base);
			return ret;
		}

1962
		engine->status_page.obj = obj;
1963
	}
1964

1965 1966 1967
	engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
	engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1968

1969
	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1970
			engine->name, engine->status_page.gfx_addr);
1971 1972 1973 1974

	return 0;
}

1975
static int init_phys_status_page(struct intel_engine_cs *engine)
1976
{
1977
	struct drm_i915_private *dev_priv = engine->i915;
1978 1979 1980

	if (!dev_priv->status_page_dmah) {
		dev_priv->status_page_dmah =
1981
			drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
1982 1983 1984 1985
		if (!dev_priv->status_page_dmah)
			return -ENOMEM;
	}

1986 1987
	engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1988 1989 1990 1991

	return 0;
}

1992
void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1993
{
1994 1995 1996
	GEM_BUG_ON(ringbuf->vma == NULL);
	GEM_BUG_ON(ringbuf->virtual_start == NULL);

1997
	if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
1998
		i915_gem_object_unpin_map(ringbuf->obj);
1999
	else
2000
		i915_vma_unpin_iomap(ringbuf->vma);
2001
	ringbuf->virtual_start = NULL;
2002

2003
	i915_gem_object_ggtt_unpin(ringbuf->obj);
2004
	ringbuf->vma = NULL;
2005 2006
}

2007
int intel_pin_and_map_ringbuffer_obj(struct drm_i915_private *dev_priv,
2008 2009 2010
				     struct intel_ringbuffer *ringbuf)
{
	struct drm_i915_gem_object *obj = ringbuf->obj;
2011 2012
	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
	unsigned flags = PIN_OFFSET_BIAS | 4096;
2013
	void *addr;
2014 2015
	int ret;

2016
	if (HAS_LLC(dev_priv) && !obj->stolen) {
2017
		ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
2018 2019
		if (ret)
			return ret;
2020

2021
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
2022 2023
		if (ret)
			goto err_unpin;
2024

2025 2026 2027
		addr = i915_gem_object_pin_map(obj);
		if (IS_ERR(addr)) {
			ret = PTR_ERR(addr);
2028
			goto err_unpin;
2029 2030
		}
	} else {
2031 2032
		ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
					    flags | PIN_MAPPABLE);
2033 2034
		if (ret)
			return ret;
2035

2036
		ret = i915_gem_object_set_to_gtt_domain(obj, true);
2037 2038
		if (ret)
			goto err_unpin;
2039

2040 2041 2042
		/* Access through the GTT requires the device to be awake. */
		assert_rpm_wakelock_held(dev_priv);

2043 2044 2045
		addr = i915_vma_pin_iomap(i915_gem_obj_to_ggtt(obj));
		if (IS_ERR(addr)) {
			ret = PTR_ERR(addr);
2046
			goto err_unpin;
2047
		}
2048 2049
	}

2050
	ringbuf->virtual_start = addr;
2051
	ringbuf->vma = i915_gem_obj_to_ggtt(obj);
2052
	return 0;
2053 2054 2055 2056

err_unpin:
	i915_gem_object_ggtt_unpin(obj);
	return ret;
2057 2058
}

2059
static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2060
{
2061 2062 2063 2064
	drm_gem_object_unreference(&ringbuf->obj->base);
	ringbuf->obj = NULL;
}

2065 2066
static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
				      struct intel_ringbuffer *ringbuf)
2067
{
2068
	struct drm_i915_gem_object *obj;
2069

2070 2071
	obj = NULL;
	if (!HAS_LLC(dev))
2072
		obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2073
	if (obj == NULL)
2074
		obj = i915_gem_object_create(dev, ringbuf->size);
2075 2076
	if (IS_ERR(obj))
		return PTR_ERR(obj);
2077

2078 2079 2080
	/* mark ring buffers as read-only from GPU side by default */
	obj->gt_ro = 1;

2081
	ringbuf->obj = obj;
2082

2083
	return 0;
2084 2085
}

2086 2087 2088 2089 2090 2091 2092
struct intel_ringbuffer *
intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
{
	struct intel_ringbuffer *ring;
	int ret;

	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2093 2094 2095
	if (ring == NULL) {
		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
				 engine->name);
2096
		return ERR_PTR(-ENOMEM);
2097
	}
2098

2099
	ring->engine = engine;
2100
	list_add(&ring->link, &engine->buffers);
2101 2102 2103 2104 2105 2106 2107

	ring->size = size;
	/* Workaround an erratum on the i830 which causes a hang if
	 * the TAIL pointer points to within the last 2 cachelines
	 * of the buffer.
	 */
	ring->effective_size = size;
2108
	if (IS_I830(engine->i915) || IS_845G(engine->i915))
2109 2110 2111 2112 2113
		ring->effective_size -= 2 * CACHELINE_BYTES;

	ring->last_retired_head = -1;
	intel_ring_update_space(ring);

2114
	ret = intel_alloc_ringbuffer_obj(&engine->i915->drm, ring);
2115
	if (ret) {
2116 2117 2118
		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
				 engine->name, ret);
		list_del(&ring->link);
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
		kfree(ring);
		return ERR_PTR(ret);
	}

	return ring;
}

void
intel_ringbuffer_free(struct intel_ringbuffer *ring)
{
	intel_destroy_ringbuffer_obj(ring);
2130
	list_del(&ring->link);
2131 2132 2133
	kfree(ring);
}

2134 2135 2136 2137 2138 2139
static int intel_ring_context_pin(struct i915_gem_context *ctx,
				  struct intel_engine_cs *engine)
{
	struct intel_context *ce = &ctx->engine[engine->id];
	int ret;

2140
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150

	if (ce->pin_count++)
		return 0;

	if (ce->state) {
		ret = i915_gem_obj_ggtt_pin(ce->state, ctx->ggtt_alignment, 0);
		if (ret)
			goto error;
	}

2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
	/* The kernel context is only used as a placeholder for flushing the
	 * active context. It is never used for submitting user rendering and
	 * as such never requires the golden render context, and so we can skip
	 * emitting it when we switch to the kernel context. This is required
	 * as during eviction we cannot allocate and pin the renderstate in
	 * order to initialise the context.
	 */
	if (ctx == ctx->i915->kernel_context)
		ce->initialised = true;

2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
	i915_gem_context_reference(ctx);
	return 0;

error:
	ce->pin_count = 0;
	return ret;
}

static void intel_ring_context_unpin(struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine)
{
	struct intel_context *ce = &ctx->engine[engine->id];

2174
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184

	if (--ce->pin_count)
		return;

	if (ce->state)
		i915_gem_object_ggtt_unpin(ce->state);

	i915_gem_context_unreference(ctx);
}

2185
static int intel_init_ring_buffer(struct drm_device *dev,
2186
				  struct intel_engine_cs *engine)
2187
{
2188
	struct drm_i915_private *dev_priv = to_i915(dev);
2189
	struct intel_ringbuffer *ringbuf;
2190 2191
	int ret;

2192
	WARN_ON(engine->buffer);
2193

2194
	engine->i915 = dev_priv;
2195 2196 2197 2198 2199 2200 2201
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
	INIT_LIST_HEAD(&engine->execlist_queue);
	INIT_LIST_HEAD(&engine->buffers);
	i915_gem_batch_pool_init(dev, &engine->batch_pool);
	memset(engine->semaphore.sync_seqno, 0,
	       sizeof(engine->semaphore.sync_seqno));
2202

2203 2204 2205
	ret = intel_engine_init_breadcrumbs(engine);
	if (ret)
		goto error;
2206

2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
	/* We may need to do things with the shrinker which
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
	ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
	if (ret)
		goto error;

2218
	ringbuf = intel_engine_create_ringbuffer(engine, 32 * PAGE_SIZE);
2219 2220 2221 2222
	if (IS_ERR(ringbuf)) {
		ret = PTR_ERR(ringbuf);
		goto error;
	}
2223
	engine->buffer = ringbuf;
2224

2225
	if (I915_NEED_GFX_HWS(dev_priv)) {
2226
		ret = init_status_page(engine);
2227
		if (ret)
2228
			goto error;
2229
	} else {
2230 2231
		WARN_ON(engine->id != RCS);
		ret = init_phys_status_page(engine);
2232
		if (ret)
2233
			goto error;
2234 2235
	}

2236
	ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ringbuf);
2237 2238
	if (ret) {
		DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2239
				engine->name, ret);
2240 2241
		intel_destroy_ringbuffer_obj(ringbuf);
		goto error;
2242
	}
2243

2244
	ret = i915_cmd_parser_init_ring(engine);
2245
	if (ret)
2246 2247 2248
		goto error;

	return 0;
2249

2250
error:
2251
	intel_cleanup_engine(engine);
2252
	return ret;
2253 2254
}

2255
void intel_cleanup_engine(struct intel_engine_cs *engine)
2256
{
2257
	struct drm_i915_private *dev_priv;
2258

2259
	if (!intel_engine_initialized(engine))
2260 2261
		return;

2262
	dev_priv = engine->i915;
2263

2264
	if (engine->buffer) {
2265
		intel_stop_engine(engine);
2266
		WARN_ON(!IS_GEN2(dev_priv) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
2267

2268 2269 2270
		intel_unpin_ringbuffer_obj(engine->buffer);
		intel_ringbuffer_free(engine->buffer);
		engine->buffer = NULL;
2271
	}
2272

2273 2274
	if (engine->cleanup)
		engine->cleanup(engine);
Z
Zou Nan hai 已提交
2275

2276
	if (I915_NEED_GFX_HWS(dev_priv)) {
2277
		cleanup_status_page(engine);
2278
	} else {
2279 2280
		WARN_ON(engine->id != RCS);
		cleanup_phys_status_page(engine);
2281
	}
2282

2283 2284
	i915_cmd_parser_fini_ring(engine);
	i915_gem_batch_pool_fini(&engine->batch_pool);
2285
	intel_engine_fini_breadcrumbs(engine);
2286 2287 2288

	intel_ring_context_unpin(dev_priv->kernel_context, engine);

2289
	engine->i915 = NULL;
2290 2291
}

2292
int intel_engine_idle(struct intel_engine_cs *engine)
2293
{
2294
	struct drm_i915_gem_request *req;
2295 2296

	/* Wait upon the last request to be completed */
2297
	if (list_empty(&engine->request_list))
2298 2299
		return 0;

2300 2301 2302
	req = list_entry(engine->request_list.prev,
			 struct drm_i915_gem_request,
			 list);
2303 2304 2305

	/* Make sure we do not trigger any retires */
	return __i915_wait_request(req,
2306
				   req->i915->mm.interruptible,
2307
				   NULL, NULL);
2308 2309
}

2310
int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2311
{
2312 2313 2314 2315 2316 2317
	int ret;

	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
2318
	request->reserved_space += LEGACY_REQUEST_SIZE;
2319

2320
	request->ringbuf = request->engine->buffer;
2321 2322 2323 2324 2325

	ret = intel_ring_begin(request, 0);
	if (ret)
		return ret;

2326
	request->reserved_space -= LEGACY_REQUEST_SIZE;
2327
	return 0;
2328 2329
}

2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
{
	struct intel_ringbuffer *ringbuf = req->ringbuf;
	struct intel_engine_cs *engine = req->engine;
	struct drm_i915_gem_request *target;

	intel_ring_update_space(ringbuf);
	if (ringbuf->space >= bytes)
		return 0;

	/*
	 * Space is reserved in the ringbuffer for finalising the request,
	 * as that cannot be allowed to fail. During request finalisation,
	 * reserved_space is set to 0 to stop the overallocation and the
	 * assumption is that then we never need to wait (which has the
	 * risk of failing with EINTR).
	 *
	 * See also i915_gem_request_alloc() and i915_add_request().
	 */
2349
	GEM_BUG_ON(!req->reserved_space);
2350 2351 2352 2353

	list_for_each_entry(target, &engine->request_list, list) {
		unsigned space;

2354
		/*
2355 2356 2357
		 * The request queue is per-engine, so can contain requests
		 * from multiple ringbuffers. Here, we must ignore any that
		 * aren't from the ringbuffer we're considering.
2358
		 */
2359 2360 2361 2362 2363 2364 2365 2366
		if (target->ringbuf != ringbuf)
			continue;

		/* Would completion of this request free enough space? */
		space = __intel_ring_space(target->postfix, ringbuf->tail,
					   ringbuf->size);
		if (space >= bytes)
			break;
2367
	}
2368

2369 2370 2371 2372
	if (WARN_ON(&target->list == &engine->request_list))
		return -ENOSPC;

	return i915_wait_request(target);
2373 2374
}

2375
int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
M
Mika Kuoppala 已提交
2376
{
2377
	struct intel_ringbuffer *ringbuf = req->ringbuf;
2378
	int remain_actual = ringbuf->size - ringbuf->tail;
2379 2380 2381
	int remain_usable = ringbuf->effective_size - ringbuf->tail;
	int bytes = num_dwords * sizeof(u32);
	int total_bytes, wait_bytes;
2382
	bool need_wrap = false;
2383

2384
	total_bytes = bytes + req->reserved_space;
2385

2386 2387 2388 2389 2390 2391 2392
	if (unlikely(bytes > remain_usable)) {
		/*
		 * Not enough space for the basic request. So need to flush
		 * out the remainder and then wait for base + reserved.
		 */
		wait_bytes = remain_actual + total_bytes;
		need_wrap = true;
2393 2394 2395 2396 2397 2398 2399
	} else if (unlikely(total_bytes > remain_usable)) {
		/*
		 * The base request will fit but the reserved space
		 * falls off the end. So we don't need an immediate wrap
		 * and only need to effectively wait for the reserved
		 * size space from the start of ringbuffer.
		 */
2400
		wait_bytes = remain_actual + req->reserved_space;
2401
	} else {
2402 2403
		/* No wrapping required, just waiting. */
		wait_bytes = total_bytes;
M
Mika Kuoppala 已提交
2404 2405
	}

2406 2407
	if (wait_bytes > ringbuf->space) {
		int ret = wait_for_space(req, wait_bytes);
M
Mika Kuoppala 已提交
2408 2409
		if (unlikely(ret))
			return ret;
2410

2411
		intel_ring_update_space(ringbuf);
2412 2413
		if (unlikely(ringbuf->space < wait_bytes))
			return -EAGAIN;
M
Mika Kuoppala 已提交
2414 2415
	}

2416 2417 2418
	if (unlikely(need_wrap)) {
		GEM_BUG_ON(remain_actual > ringbuf->space);
		GEM_BUG_ON(ringbuf->tail + remain_actual > ringbuf->size);
2419

2420 2421 2422 2423 2424 2425
		/* Fill the tail with MI_NOOP */
		memset(ringbuf->virtual_start + ringbuf->tail,
		       0, remain_actual);
		ringbuf->tail = 0;
		ringbuf->space -= remain_actual;
	}
2426

2427 2428
	ringbuf->space -= bytes;
	GEM_BUG_ON(ringbuf->space < 0);
2429
	return 0;
2430
}
2431

2432
/* Align the ring tail to a cacheline boundary */
2433
int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2434
{
2435
	struct intel_engine_cs *engine = req->engine;
2436
	int num_dwords = (engine->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2437 2438 2439 2440 2441
	int ret;

	if (num_dwords == 0)
		return 0;

2442
	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2443
	ret = intel_ring_begin(req, num_dwords);
2444 2445 2446 2447
	if (ret)
		return ret;

	while (num_dwords--)
2448
		intel_ring_emit(engine, MI_NOOP);
2449

2450
	intel_ring_advance(engine);
2451 2452 2453 2454

	return 0;
}

2455
void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno)
2456
{
2457
	struct drm_i915_private *dev_priv = engine->i915;
2458

2459 2460 2461 2462 2463 2464 2465 2466
	/* Our semaphore implementation is strictly monotonic (i.e. we proceed
	 * so long as the semaphore value in the register/page is greater
	 * than the sync value), so whenever we reset the seqno,
	 * so long as we reset the tracking semaphore value to 0, it will
	 * always be before the next request's seqno. If we don't reset
	 * the semaphore value, then when the seqno moves backwards all
	 * future waits will complete instantly (causing rendering corruption).
	 */
2467
	if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
2468 2469
		I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
		I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
2470
		if (HAS_VEBOX(dev_priv))
2471
			I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
2472
	}
2473 2474 2475 2476 2477 2478 2479 2480
	if (dev_priv->semaphore_obj) {
		struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
		struct page *page = i915_gem_object_get_dirty_page(obj, 0);
		void *semaphores = kmap(page);
		memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
		       0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
		kunmap(page);
	}
2481 2482
	memset(engine->semaphore.sync_seqno, 0,
	       sizeof(engine->semaphore.sync_seqno));
2483

2484 2485 2486
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
	if (engine->irq_seqno_barrier)
		engine->irq_seqno_barrier(engine);
2487
	engine->last_submitted_seqno = seqno;
2488

2489
	engine->hangcheck.seqno = seqno;
2490 2491 2492 2493 2494 2495 2496

	/* After manually advancing the seqno, fake the interrupt in case
	 * there are any waiters for that seqno.
	 */
	rcu_read_lock();
	intel_engine_wakeup(engine);
	rcu_read_unlock();
2497
}
2498

2499
static void gen6_bsd_ring_write_tail(struct intel_engine_cs *engine,
2500
				     u32 value)
2501
{
2502
	struct drm_i915_private *dev_priv = engine->i915;
2503

2504 2505
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

2506
       /* Every tail move must follow the sequence below */
2507 2508 2509 2510

	/* Disable notification that the ring is IDLE. The GT
	 * will then assume that it is busy and bring it out of rc6.
	 */
2511 2512
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2513 2514

	/* Clear the context id. Here be magic! */
2515
	I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
2516

2517
	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2518 2519 2520 2521 2522
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_BSD_SLEEP_PSMI_CONTROL,
				       GEN6_BSD_SLEEP_INDICATOR,
				       0,
				       50))
2523
		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2524

2525
	/* Now that the ring is fully powered up, update the tail */
2526 2527
	I915_WRITE_FW(RING_TAIL(engine->mmio_base), value);
	POSTING_READ_FW(RING_TAIL(engine->mmio_base));
2528 2529 2530 2531

	/* Let the ring send IDLE messages to the GT again,
	 * and so let it sleep to conserve power when idle.
	 */
2532 2533 2534 2535
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2536 2537
}

2538
static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2539
			       u32 invalidate, u32 flush)
2540
{
2541
	struct intel_engine_cs *engine = req->engine;
2542
	uint32_t cmd;
2543 2544
	int ret;

2545
	ret = intel_ring_begin(req, 4);
2546 2547 2548
	if (ret)
		return ret;

2549
	cmd = MI_FLUSH_DW;
2550
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
2551
		cmd += 1;
2552 2553 2554 2555 2556 2557 2558 2559

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2560 2561 2562 2563 2564 2565
	/*
	 * Bspec vol 1c.5 - video engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2566
	if (invalidate & I915_GEM_GPU_DOMAINS)
2567 2568
		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;

2569 2570 2571
	intel_ring_emit(engine, cmd);
	intel_ring_emit(engine,
			I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2572
	if (INTEL_GEN(req->i915) >= 8) {
2573 2574
		intel_ring_emit(engine, 0); /* upper addr */
		intel_ring_emit(engine, 0); /* value */
B
Ben Widawsky 已提交
2575
	} else  {
2576 2577
		intel_ring_emit(engine, 0);
		intel_ring_emit(engine, MI_NOOP);
B
Ben Widawsky 已提交
2578
	}
2579
	intel_ring_advance(engine);
2580
	return 0;
2581 2582
}

2583
static int
2584
gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
2585
			      u64 offset, u32 len,
2586
			      unsigned dispatch_flags)
2587
{
2588
	struct intel_engine_cs *engine = req->engine;
2589
	bool ppgtt = USES_PPGTT(engine->dev) &&
2590
			!(dispatch_flags & I915_DISPATCH_SECURE);
2591 2592
	int ret;

2593
	ret = intel_ring_begin(req, 4);
2594 2595 2596 2597
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
2598
	intel_ring_emit(engine, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2599 2600
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2601 2602 2603 2604
	intel_ring_emit(engine, lower_32_bits(offset));
	intel_ring_emit(engine, upper_32_bits(offset));
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
2605 2606 2607 2608

	return 0;
}

2609
static int
2610
hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2611 2612
			     u64 offset, u32 len,
			     unsigned dispatch_flags)
2613
{
2614
	struct intel_engine_cs *engine = req->engine;
2615 2616
	int ret;

2617
	ret = intel_ring_begin(req, 2);
2618 2619 2620
	if (ret)
		return ret;

2621
	intel_ring_emit(engine,
2622
			MI_BATCH_BUFFER_START |
2623
			(dispatch_flags & I915_DISPATCH_SECURE ?
2624 2625 2626
			 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2627
	/* bit0-7 is the length on GEN6+ */
2628 2629
	intel_ring_emit(engine, offset);
	intel_ring_advance(engine);
2630 2631 2632 2633

	return 0;
}

2634
static int
2635
gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
2636
			      u64 offset, u32 len,
2637
			      unsigned dispatch_flags)
2638
{
2639
	struct intel_engine_cs *engine = req->engine;
2640
	int ret;
2641

2642
	ret = intel_ring_begin(req, 2);
2643 2644
	if (ret)
		return ret;
2645

2646
	intel_ring_emit(engine,
2647
			MI_BATCH_BUFFER_START |
2648 2649
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
2650
	/* bit0-7 is the length on GEN6+ */
2651 2652
	intel_ring_emit(engine, offset);
	intel_ring_advance(engine);
2653

2654
	return 0;
2655 2656
}

2657 2658
/* Blitter support (SandyBridge+) */

2659
static int gen6_ring_flush(struct drm_i915_gem_request *req,
2660
			   u32 invalidate, u32 flush)
Z
Zou Nan hai 已提交
2661
{
2662
	struct intel_engine_cs *engine = req->engine;
2663
	uint32_t cmd;
2664 2665
	int ret;

2666
	ret = intel_ring_begin(req, 4);
2667 2668 2669
	if (ret)
		return ret;

2670
	cmd = MI_FLUSH_DW;
2671
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
2672
		cmd += 1;
2673 2674 2675 2676 2677 2678 2679 2680

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2681 2682 2683 2684 2685 2686
	/*
	 * Bspec vol 1c.3 - blitter engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2687
	if (invalidate & I915_GEM_DOMAIN_RENDER)
2688
		cmd |= MI_INVALIDATE_TLB;
2689 2690 2691
	intel_ring_emit(engine, cmd);
	intel_ring_emit(engine,
			I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2692
	if (INTEL_GEN(req->i915) >= 8) {
2693 2694
		intel_ring_emit(engine, 0); /* upper addr */
		intel_ring_emit(engine, 0); /* value */
B
Ben Widawsky 已提交
2695
	} else  {
2696 2697
		intel_ring_emit(engine, 0);
		intel_ring_emit(engine, MI_NOOP);
B
Ben Widawsky 已提交
2698
	}
2699
	intel_ring_advance(engine);
R
Rodrigo Vivi 已提交
2700

2701
	return 0;
Z
Zou Nan hai 已提交
2702 2703
}

2704 2705 2706
static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
				       struct intel_engine_cs *engine)
{
2707
	struct drm_i915_gem_object *obj;
2708
	int ret, i;
2709 2710 2711 2712 2713

	if (!i915_semaphore_is_enabled(dev_priv))
		return;

	if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore_obj) {
2714
		obj = i915_gem_object_create(&dev_priv->drm, 4096);
2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
		if (IS_ERR(obj)) {
			DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
			i915.semaphores = 0;
		} else {
			i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
			ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
			if (ret != 0) {
				drm_gem_object_unreference(&obj->base);
				DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
				i915.semaphores = 0;
			} else {
				dev_priv->semaphore_obj = obj;
			}
		}
	}

2731 2732 2733 2734
	if (!i915_semaphore_is_enabled(dev_priv))
		return;

	if (INTEL_GEN(dev_priv) >= 8) {
2735 2736
		u64 offset = i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj);

2737 2738
		engine->semaphore.sync_to = gen8_ring_sync;
		engine->semaphore.signal = gen8_xcs_signal;
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749

		for (i = 0; i < I915_NUM_ENGINES; i++) {
			u64 ring_offset;

			if (i != engine->id)
				ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
			else
				ring_offset = MI_SEMAPHORE_SYNC_INVALID;

			engine->semaphore.signal_ggtt[i] = ring_offset;
		}
2750 2751 2752
	} else if (INTEL_GEN(dev_priv) >= 6) {
		engine->semaphore.sync_to = gen6_ring_sync;
		engine->semaphore.signal = gen6_signal;
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800

		/*
		 * The current semaphore is only applied on pre-gen8
		 * platform.  And there is no VCS2 ring on the pre-gen8
		 * platform. So the semaphore between RCS and VCS2 is
		 * initialized as INVALID.  Gen8 will initialize the
		 * sema between VCS2 and RCS later.
		 */
		for (i = 0; i < I915_NUM_ENGINES; i++) {
			static const struct {
				u32 wait_mbox;
				i915_reg_t mbox_reg;
			} sem_data[I915_NUM_ENGINES][I915_NUM_ENGINES] = {
				[RCS] = {
					[VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
					[BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
					[VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
				},
				[VCS] = {
					[RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
					[BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
					[VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
				},
				[BCS] = {
					[RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
					[VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
					[VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
				},
				[VECS] = {
					[RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
					[VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
					[BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
				},
			};
			u32 wait_mbox;
			i915_reg_t mbox_reg;

			if (i == engine->id || i == VCS2) {
				wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
				mbox_reg = GEN6_NOSYNC;
			} else {
				wait_mbox = sem_data[engine->id][i].wait_mbox;
				mbox_reg = sem_data[engine->id][i].mbox_reg;
			}

			engine->semaphore.mbox.wait[i] = wait_mbox;
			engine->semaphore.mbox.signal[i] = mbox_reg;
		}
2801 2802 2803
	}
}

2804 2805 2806 2807
static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
				struct intel_engine_cs *engine)
{
	if (INTEL_GEN(dev_priv) >= 8) {
2808 2809
		engine->irq_enable = gen8_irq_enable;
		engine->irq_disable = gen8_irq_disable;
2810 2811
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 6) {
2812 2813
		engine->irq_enable = gen6_irq_enable;
		engine->irq_disable = gen6_irq_disable;
2814 2815
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 5) {
2816 2817
		engine->irq_enable = gen5_irq_enable;
		engine->irq_disable = gen5_irq_disable;
2818
		engine->irq_seqno_barrier = gen5_seqno_barrier;
2819
	} else if (INTEL_GEN(dev_priv) >= 3) {
2820 2821
		engine->irq_enable = i9xx_irq_enable;
		engine->irq_disable = i9xx_irq_disable;
2822
	} else {
2823 2824
		engine->irq_enable = i8xx_irq_enable;
		engine->irq_disable = i8xx_irq_disable;
2825 2826 2827
	}
}

2828 2829 2830
static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
				      struct intel_engine_cs *engine)
{
2831
	engine->init_hw = init_ring_common;
2832
	engine->write_tail = ring_write_tail;
2833

2834 2835
	engine->add_request = i9xx_add_request;
	if (INTEL_GEN(dev_priv) >= 6)
2836
		engine->add_request = gen6_add_request;
2837 2838 2839 2840

	if (INTEL_GEN(dev_priv) >= 8)
		engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
	else if (INTEL_GEN(dev_priv) >= 6)
2841
		engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2842
	else if (INTEL_GEN(dev_priv) >= 4)
2843
		engine->dispatch_execbuffer = i965_dispatch_execbuffer;
2844 2845 2846 2847
	else if (IS_I830(dev_priv) || IS_845G(dev_priv))
		engine->dispatch_execbuffer = i830_dispatch_execbuffer;
	else
		engine->dispatch_execbuffer = i915_dispatch_execbuffer;
2848

2849
	intel_ring_init_irq(dev_priv, engine);
2850
	intel_ring_init_semaphores(dev_priv, engine);
2851 2852
}

2853 2854
int intel_init_render_ring_buffer(struct drm_device *dev)
{
2855
	struct drm_i915_private *dev_priv = to_i915(dev);
2856
	struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2857
	int ret;
2858

2859 2860 2861
	engine->name = "render ring";
	engine->id = RCS;
	engine->exec_id = I915_EXEC_RENDER;
2862
	engine->hw_id = 0;
2863
	engine->mmio_base = RENDER_RING_BASE;
2864

2865 2866
	intel_ring_default_vfuncs(dev_priv, engine);

2867
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2868 2869
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2870

2871
	if (INTEL_GEN(dev_priv) >= 8) {
2872
		engine->init_context = intel_rcs_ctx_init;
2873
		engine->add_request = gen8_render_add_request;
2874
		engine->flush = gen8_render_ring_flush;
2875
		if (i915_semaphore_is_enabled(dev_priv))
2876
			engine->semaphore.signal = gen8_rcs_signal;
2877
	} else if (INTEL_GEN(dev_priv) >= 6) {
2878 2879
		engine->init_context = intel_rcs_ctx_init;
		engine->flush = gen7_render_ring_flush;
2880
		if (IS_GEN6(dev_priv))
2881
			engine->flush = gen6_render_ring_flush;
2882
	} else if (IS_GEN5(dev_priv)) {
2883
		engine->flush = gen4_render_ring_flush;
2884
	} else {
2885
		if (INTEL_GEN(dev_priv) < 4)
2886
			engine->flush = gen2_render_ring_flush;
2887
		else
2888 2889
			engine->flush = gen4_render_ring_flush;
		engine->irq_enable_mask = I915_USER_INTERRUPT;
2890
	}
B
Ben Widawsky 已提交
2891

2892
	if (IS_HASWELL(dev_priv))
2893
		engine->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2894

2895 2896
	engine->init_hw = init_render_ring;
	engine->cleanup = render_ring_cleanup;
2897

2898
	ret = intel_init_ring_buffer(dev, engine);
2899 2900 2901
	if (ret)
		return ret;

2902
	if (INTEL_GEN(dev_priv) >= 6) {
2903 2904 2905 2906 2907
		ret = intel_init_pipe_control(engine, 4096);
		if (ret)
			return ret;
	} else if (HAS_BROKEN_CS_TLB(dev_priv)) {
		ret = intel_init_pipe_control(engine, I830_WA_SIZE);
2908 2909 2910 2911 2912
		if (ret)
			return ret;
	}

	return 0;
2913 2914 2915 2916
}

int intel_init_bsd_ring_buffer(struct drm_device *dev)
{
2917
	struct drm_i915_private *dev_priv = to_i915(dev);
2918
	struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2919

2920 2921 2922
	engine->name = "bsd ring";
	engine->id = VCS;
	engine->exec_id = I915_EXEC_BSD;
2923
	engine->hw_id = 1;
2924

2925 2926
	intel_ring_default_vfuncs(dev_priv, engine);

2927
	if (INTEL_GEN(dev_priv) >= 6) {
2928
		engine->mmio_base = GEN6_BSD_RING_BASE;
2929
		/* gen6 bsd needs a special wa for tail updates */
2930
		if (IS_GEN6(dev_priv))
2931 2932
			engine->write_tail = gen6_bsd_ring_write_tail;
		engine->flush = gen6_bsd_ring_flush;
2933
		if (INTEL_GEN(dev_priv) >= 8)
2934
			engine->irq_enable_mask =
2935
				GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2936
		else
2937
			engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2938
	} else {
2939 2940
		engine->mmio_base = BSD_RING_BASE;
		engine->flush = bsd_ring_flush;
2941
		if (IS_GEN5(dev_priv))
2942
			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2943
		else
2944
			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2945 2946
	}

2947
	return intel_init_ring_buffer(dev, engine);
2948
}
2949

2950
/**
2951
 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2952 2953 2954
 */
int intel_init_bsd2_ring_buffer(struct drm_device *dev)
{
2955
	struct drm_i915_private *dev_priv = to_i915(dev);
2956
	struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
2957 2958 2959 2960

	engine->name = "bsd2 ring";
	engine->id = VCS2;
	engine->exec_id = I915_EXEC_BSD;
2961
	engine->hw_id = 4;
2962
	engine->mmio_base = GEN8_BSD2_RING_BASE;
2963 2964 2965

	intel_ring_default_vfuncs(dev_priv, engine);

2966 2967
	engine->flush = gen6_bsd_ring_flush;
	engine->irq_enable_mask =
2968 2969
			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;

2970
	return intel_init_ring_buffer(dev, engine);
2971 2972
}

2973 2974
int intel_init_blt_ring_buffer(struct drm_device *dev)
{
2975
	struct drm_i915_private *dev_priv = to_i915(dev);
2976
	struct intel_engine_cs *engine = &dev_priv->engine[BCS];
2977 2978 2979 2980

	engine->name = "blitter ring";
	engine->id = BCS;
	engine->exec_id = I915_EXEC_BLT;
2981
	engine->hw_id = 2;
2982
	engine->mmio_base = BLT_RING_BASE;
2983 2984 2985

	intel_ring_default_vfuncs(dev_priv, engine);

2986
	engine->flush = gen6_ring_flush;
2987
	if (INTEL_GEN(dev_priv) >= 8)
2988
		engine->irq_enable_mask =
2989
			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2990
	else
2991
		engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2992

2993
	return intel_init_ring_buffer(dev, engine);
2994
}
2995

B
Ben Widawsky 已提交
2996 2997
int intel_init_vebox_ring_buffer(struct drm_device *dev)
{
2998
	struct drm_i915_private *dev_priv = to_i915(dev);
2999
	struct intel_engine_cs *engine = &dev_priv->engine[VECS];
B
Ben Widawsky 已提交
3000

3001 3002 3003
	engine->name = "video enhancement ring";
	engine->id = VECS;
	engine->exec_id = I915_EXEC_VEBOX;
3004
	engine->hw_id = 3;
3005
	engine->mmio_base = VEBOX_RING_BASE;
3006 3007 3008

	intel_ring_default_vfuncs(dev_priv, engine);

3009
	engine->flush = gen6_ring_flush;
3010

3011
	if (INTEL_GEN(dev_priv) >= 8) {
3012
		engine->irq_enable_mask =
3013
			GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
3014
	} else {
3015
		engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
3016 3017
		engine->irq_enable = hsw_vebox_irq_enable;
		engine->irq_disable = hsw_vebox_irq_disable;
3018
	}
B
Ben Widawsky 已提交
3019

3020
	return intel_init_ring_buffer(dev, engine);
B
Ben Widawsky 已提交
3021 3022
}

3023
int
3024
intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
3025
{
3026
	struct intel_engine_cs *engine = req->engine;
3027 3028
	int ret;

3029
	if (!engine->gpu_caches_dirty)
3030 3031
		return 0;

3032
	ret = engine->flush(req, 0, I915_GEM_GPU_DOMAINS);
3033 3034 3035
	if (ret)
		return ret;

3036
	trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
3037

3038
	engine->gpu_caches_dirty = false;
3039 3040 3041 3042
	return 0;
}

int
3043
intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
3044
{
3045
	struct intel_engine_cs *engine = req->engine;
3046 3047 3048 3049
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
3050
	if (engine->gpu_caches_dirty)
3051 3052
		flush_domains = I915_GEM_GPU_DOMAINS;

3053
	ret = engine->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3054 3055 3056
	if (ret)
		return ret;

3057
	trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3058

3059
	engine->gpu_caches_dirty = false;
3060 3061
	return 0;
}
3062 3063

void
3064
intel_stop_engine(struct intel_engine_cs *engine)
3065 3066 3067
{
	int ret;

3068
	if (!intel_engine_initialized(engine))
3069 3070
		return;

3071
	ret = intel_engine_idle(engine);
3072
	if (ret)
3073
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3074
			  engine->name, ret);
3075

3076
	stop_ring(engine);
3077
}