README.md 33.9 KB
Newer Older
R
ruri 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
中文 | [English](README_en.md)

# 图像分类以及模型库

## 内容
- [简介](#简介)
- [快速开始](#快速开始)
    - [安装说明](#安装说明)
    - [数据准备](#数据准备)
    - [模型训练](#模型训练)
    - [参数微调](#参数微调)
    - [模型评估](#模型评估)
    - [模型预测](#模型预测)
- [进阶使用](#进阶使用)
    - [Mixup训练](#mixup训练)
    - [混合精度训练](#混合精度训练)
17
    - [DALI预处理](#DALI预处理)
R
ruri 已提交
18 19 20 21 22 23
    - [自定义数据集](#自定义数据集)
- [已发布模型及其性能](#已发布模型及其性能)
- [FAQ](#faq)
- [参考文献](#参考文献)
- [版本更新](#版本更新)
- [如何贡献代码](#如何贡献代码)
24 25 26

---

R
ruri 已提交
27 28
## 简介
图像分类是计算机视觉的重要领域,它的目标是将图像分类到预定义的标签。近期,许多研究者提出很多不同种类的神经网络,并且极大的提升了分类算法的性能。本页将介绍如何使用PaddlePaddle进行图像分类。
29

L
Li Fuchen 已提交
30 31
同时推荐用户参考[ IPython Notebook demo](https://aistudio.baidu.com/aistudio/projectDetail/122278)

R
ruri 已提交
32
## 快速开始
33

R
ruri 已提交
34
### 安装说明
35

R
ruri 已提交
36
在当前目录下运行样例代码需要python 2.7及以上版本,PadddlePaddle Fluid v1.6或以上的版本。如果你的运行环境中的PaddlePaddle低于此版本,请根据 [安装文档](https://www.paddlepaddle.org.cn/install/quick) 中的说明来更新PaddlePaddle。
37

R
ruri 已提交
38
#### 环境依赖
39

R
ruri 已提交
40
python >= 2.7
R
ruri 已提交
41
运行训练代码需要安装numpy,cv2
R
ruri 已提交
42

R
ruri 已提交
43 44 45 46 47 48
```bash
pip install opencv-python
pip install numpy
```

### 数据准备
49

50
下面给出了ImageNet分类任务的样例,
R
ruri 已提交
51
在Linux系统下通过如下的方式进行数据的准备:
52 53 54 55
```
cd data/ILSVRC2012/
sh download_imagenet2012.sh
```
R
ruri 已提交
56
```download_imagenet2012.sh```脚本中,通过下面三步来准备数据:
57

R
ruri 已提交
58
**步骤一:** 首先在```image-net.org```网站上完成注册,用于获得一对```Username``````AccessKey```
59

R
ruri 已提交
60
**步骤二:** 从ImageNet官网下载ImageNet-2012的图像数据。训练以及验证数据集会分别被下载到"train" 和 "val" 目录中。注意,ImageNet数据的大小超过140GB,下载非常耗时;已经自行下载ImageNet的用户可以直接将数据组织放置到```data/ILSVRC2012```
61

R
ruri 已提交
62
**步骤三:** 下载训练与验证集合对应的标签文件。下面两个文件分别包含了训练集合与验证集合中图像的标签:
63

R
ruri 已提交
64
* train_list.txt: ImageNet-2012训练集合的标签文件,每一行采用"空格"分隔图像路径与标注,例如:
65 66 67
```
train/n02483708/n02483708_2436.jpeg 369
```
R
ruri 已提交
68
* val_list.txt: ImageNet-2012验证集合的标签文件,每一行采用"空格"分隔图像路径与标注,例如:
69 70 71
```
val/ILSVRC2012_val_00000001.jpeg 65
```
R
ruri 已提交
72
注意:可能需要根据本地环境调整reader.py中相关路径来正确读取数据。
73

74
**Windows系统下请用户自行下载ImageNet数据,[label下载链接](http://paddle-imagenet-models.bj.bcebos.com/ImageNet_label.tgz)**
R
ruri 已提交
75

R
ruri 已提交
76
### 模型训练
77

R
ruri 已提交
78
数据准备完毕后,可以通过如下的方式启动训练:
79 80
```
python train.py \
R
ruri 已提交
81 82
       --model=ResNet50 \
       --batch_size=256 \
83 84 85 86 87 88 89 90
       --total_images=1281167 \
       --class_dim=1000 \
       --image_shape=3,224,224 \
       --model_save_dir=output/ \
       --lr_strategy=piecewise_decay \
       --lr=0.1
```

R
ruri 已提交
91 92 93 94 95 96
注意: 当添加如step_epochs这种列表型参数,需要去掉"=",如:--step_epochs 10 20 30

或通过run.sh 启动训练

```bash
bash run.sh train 模型名
97
```
R
ruri 已提交
98

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
**多进程模型训练:**

如果你有多张GPU卡的话,我们强烈建议你使用多进程模式来训练模型,这会极大的提升训练速度。启动方式如下:
```
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m paddle.distributed.launch train.py \
       --model=ResNet50 \
       --batch_size=256 \
       --total_images=1281167 \
       --class_dim=1000 \
       --image_shape=3,224,224 \
       --model_save_dir=output/ \
       --lr_strategy=piecewise_decay \
       --reader_thread=4 \
       --lr=0.1
```
或者参考 scripts/train/ResNet50_dist.sh

R
ruri 已提交
116 117 118 119 120 121 122 123
**参数说明:**

环境配置部分:

* **data_dir**: 数据存储路径,默认值: "./data/ILSVRC2012/"
* **model_save_dir**: 模型存储路径,默认值: "output/"
* **pretrained_model**: 加载预训练模型路径,默认值: None
* **checkpoint**: 加载用于继续训练的检查点(指定具体模型存储路径,如"output/ResNet50/100/"),默认值: None
124 125
* **print_step**: 打印训练信息的batch步数,默认值:10
* **save_step**: 保存模型的epoch步数,默认值:1
R
ruri 已提交
126 127 128 129 130 131

模型类型和超参配置:

* **model**: 模型名称, 默认值: "ResNet50"
* **total_images**: 图片数,ImageNet2012,默认值: 1281167
* **class_dim**: 类别数,默认值: 1000
R
ruri 已提交
132
* **image_shape**: 图片大小,默认值: 3 224 224
R
ruri 已提交
133 134 135 136 137 138 139 140
* **num_epochs**: 训练回合数,默认值: 120
* **batch_size**: batch size大小(所有设备),默认值: 8
* **test_batch_size**: 测试batch大小,默认值:16
* **lr_strategy**: 学习率变化策略,默认值: "piecewise_decay"
* **lr**: 初始学习率,默认值: 0.1
* **l2_decay**: l2_decay值,默认值: 1e-4
* **momentum_rate**: momentum_rate值,默认值: 0.9
* **step_epochs**: piecewise dacay的decay step,默认值:[30,60,90]
141 142
* **decay_epochs**: exponential decay的间隔epoch数, 默认值: 2.4.
* **decay_rate**: exponential decay的下降率, 默认值: 0.97.
R
ruri 已提交
143 144 145 146 147 148 149 150 151

数据读取器和预处理配置:

* **lower_scale**: 数据随机裁剪处理时的lower scale值, upper scale值固定为1.0,默认值:0.08
* **lower_ratio**: 数据随机裁剪处理时的lower ratio值,默认值:3./4.
* **upper_ratio**: 数据随机裁剪处理时的upper ratio值,默认值:4./3.
* **resize_short_size**: 指定数据处理时改变图像大小的短边值,默认值: 256
* **use_mixup**: 是否对数据进行mixup处理,默认值: False
* **mixup_alpha**: 指定mixup处理时的alpha值,默认值: 0.2
152
* **use_aa**: 是否对数据进行auto augment处理. 默认值: False.
R
ruri 已提交
153 154 155 156 157 158 159 160 161 162 163
* **reader_thread**: 多线程reader的线程数量,默认值: 8
* **reader_buf_size**: 多线程reader的buf_size, 默认值: 2048
* **interpolation**: 插值方法, 默认值:None
* **image_mean**: 图片均值,默认值:[0.485, 0.456, 0.406]
* **image_std**: 图片std,默认值:[0.229, 0.224, 0.225]


一些开关:

* **use_gpu**: 是否在GPU上运行,默认值: True
* **use_label_smoothing**: 是否对数据进行label smoothing处理,默认值: False
164
* **label_smoothing_epsilon**: label_smoothing的epsilon, 默认值:0.1
R
ruri 已提交
165
* **random_seed**: 随机数种子, 默认值: 1000
166
* **padding_type**: efficientNet中卷积操作的padding方式, 默认值: "SAME".
167
* **use_se**: efficientNet中是否使用Squeeze-and-Excitation模块, 默认值: True.
168 169
* **use_ema**: 是否在更新模型参数时使用ExponentialMovingAverage. 默认值: False.
* **ema_decay**: ExponentialMovingAverage的decay rate. 默认值: 0.9999.
R
ruri 已提交
170 171 172 173 174 175 176 177 178

**数据读取器说明:** 数据读取器定义在```reader.py```文件中,现在默认基于cv2的数据读取器, 在[训练阶段](#模型训练),默认采用的增广方式是随机裁剪与水平翻转, 而在[模型评估](#模型评估)[模型预测](#模型预测)阶段用的默认方式是中心裁剪。当前支持的数据增广方式有:

* 旋转
* 颜色抖动(暂未实现)
* 随机裁剪
* 中心裁剪
* 长宽调整
* 水平翻转
179
* 自动增广
R
ruri 已提交
180 181 182 183 184 185

### 参数微调

参数微调(Finetune)是指在特定任务上微调已训练模型的参数。可以下载[已发布模型及其性能](#已发布模型及其性能)并且设置```path_to_pretrain_model```为模型所在路径,微调一个模型可以采用如下的命令:

```bash
186
python train.py \
R
ruri 已提交
187
       --model=model_name \
188
       --pretrained_model=${path_to_pretrain_model}
189
```
R
ruri 已提交
190
注意:根据具体模型和任务添加并调整其他参数
191

R
ruri 已提交
192
### 模型评估
193

R
ruri 已提交
194
模型评估(Eval)是指对训练完毕的模型评估各类性能指标。可以下载[已发布模型及其性能](#已发布模型及其性能)并且设置```path_to_pretrain_model```为模型所在路径。运行如下的命令,可以获得模型top-1/top-5精度:
195

R
ruri 已提交
196
```bash
197
python eval.py \
R
ruri 已提交
198
       --model=model_name \
199 200
       --pretrained_model=${path_to_pretrain_model}
```
R
ruri 已提交
201
注意:根据具体模型和任务添加并调整其他参数
202

203 204 205 206 207 208 209 210
### 指数滑动平均的模型评估

注意: 如果你使用指数滑动平均来训练模型(--use_ema=True),并且想要评估指数滑动平均后的模型,需要使用ema_clean.py将训练中保存下来的ema模型名字转换成原始模型参数的名字。

```
python ema_clean.py \
       --ema_model_dir=your_ema_model_dir \
       --cleaned_model_dir=your_cleaned_model_dir
L
Li Fuchen 已提交
211

212 213 214 215 216
python eval.py \
       --model=model_name \
       --pretrained_model=your_cleaned_model_dir
```

R
ruri 已提交
217
### 模型预测
218

R
ruri 已提交
219
模型预测(Infer)可以获取一个模型的预测分数或者图像的特征,可以下载[已发布模型及其性能](#已发布模型及其性能)并且设置```path_to_pretrain_model```为模型所在路径。运行如下的命令获得预测结果:
220

R
ruri 已提交
221
**参数说明:**
222

R
ruri 已提交
223 224 225 226 227
* **save_inference**: 是否保存模型,默认值:False
* **topk**: 按照置信由高到低排序标签结果,返回的结果数量,默认值:1
* **label_path**: 可读标签文件路径,默认值:"./utils/tools/readable_label.txt"

```bash
228
python infer.py \
R
ruri 已提交
229
       --model=model_name \
230 231
       --pretrained_model=${path_to_pretrain_model}
```
R
ruri 已提交
232 233 234
注意:根据具体模型和任务添加并调整其他参数

模型预测默认ImageNet1000类类别,标签文件存储在/utils/tools/readable_label.txt中,如果使用自定义数据,请指定--label_path参数
235

236

R
ruri 已提交
237
## 进阶使用
238

R
ruri 已提交
239
### Mixup训练
240

R
ruri 已提交
241
训练中指定 --use_mixup=True 开启Mixup训练,本模型库中所有后缀为_vd的模型即代表开启Mixup训练
242

R
ruri 已提交
243
Mixup相关介绍参考[mixup: Beyond Empirical Risk Minimization](https://arxiv.org/abs/1710.09412)
244

R
ruri 已提交
245
### 混合精度训练
246

R
ruri 已提交
247
FP16相关内容已经迁移至PaddlePaddle/Fleet 中
248

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
### DALI预处理

使用[Nvidia DALI](https://github.com/NVIDIA/DALI)预处理类库可以加速训练并提高GPU利用率。

DALI预处理目前支持标准ImageNet处理步骤( random crop -> resize -> flip -> normalize),并且支持列表文件或者文件夹方式的数据集格式。

指定`--use_dali=True`即可开启DALI预处理,如下面的例子中,使用DALI训练ShuffleNet v2 0.25x,在8卡v100上,图片吞吐可以达到10000张/秒以上,GPU利用率在85%以上。

``` bash
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
export FLAGS_fraction_of_gpu_memory_to_use=0.80

python -m paddle.distributed.launch train.py \
       --model=ShuffleNetV2_x0_25 \
       --batch_size=2048 \
       --class_dim=1000 \
       --image_shape=3,224,224 \
       --lr_strategy=cosine_decay_warmup \
       --num_epochs=240 \
       --lr=0.5 \
       --l2_decay=3e-5 \
       --lower_scale=0.64 \
       --lower_ratio=0.8 \
       --upper_ratio=1.2 \
       --use_dali=True
```

更多DALI相关用例请参考[DALI Paddle插件文档](https://docs.nvidia.com/deeplearning/sdk/dali-master-branch-user-guide/docs/plugins/paddle_tutorials.html)

#### 注意事项

1. PaddlePaddle需使用1.6或以上的版本,并且需要使用GCC5.4以上编译器编译。
2. Nvidia DALI需要使用[#1371](https://github.com/NVIDIA/DALI/pull/1371)以后的git版本。请参考[此文档](https://docs.nvidia.com/deeplearning/sdk/dali-master-branch-user-guide/docs/installation.html)安装nightly版本或从源码安装。
3. 因为DALI使用GPU进行图片预处理,需要占用部分显存,请适当调整 `FLAGS_fraction_of_gpu_memory_to_use`环境变量(如`0.8`)来预留部分显存供DALI使用。

R
ruri 已提交
284
### 自定义数据集
285

R
ruri 已提交
286 287 288
PaddlePaddle/Models ImageClassification 支持自定义数据

1. 组织自定义数据,调整数据读取器以正确的传入数据
289 290 291 292 293
2. 注意更改训练脚本中
--data_dim 类别数为自定义数据类别数
--total_image 图片数量
3. 当进行finetune时,
指定--pretrained_model 加载预训练模型,注意:本模型库提供的是基于ImageNet 1000类数据的预训练模型,当使用不同类别数的数据时,请删除预训练模型中fc_weight 和fc_offset参数
R
ruri 已提交
294 295 296 297 298 299


## 已发布模型及其性能
表格中列出了在models目录下目前支持的图像分类模型,并且给出了已完成训练的模型在ImageNet-2012验证集合上的top-1和top-5精度,以及Paddle Fluid和Paddle TensorRT基于动态链接库的预测时间(测试GPU型号为NVIDIA® Tesla® P4)。
可以通过点击相应模型的名称下载对应的预训练模型。

R
ruri 已提交
300
#### 注意事项
R
ruri 已提交
301

R
ruri 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
- 特殊参数配置

<table>
<tr>
    <td><b>Model</b>
    </td>
    <td><b>输入图像分辨率</b>
    </td>
    <td><b>参数 resize_short_size</b>
    </td>
</tr>
<tr>
   <td>Inception, Xception
   </td>
   <td>299
   </td>
   <td>320
   </td>
</tr>
<tr>
    <td> DarkNet53
    </td>
    <td>256
    </td>
    <td>256
    </td>
</tr>
<tr>
   <td>Fix_ResNeXt101_32x48d_wsl
   </td>
   <td>320
   </td>
   <td>320
   </td>
</tr>
<tr>
   <td rowspan="8"> EfficientNet: <br/><br/>
   预测时的resize_short_size在其分辨率的长或高的基础上加32<br/>
   在该系列模型训练和预测的过程中<br/>
   图片resize参数interpolation的值设置为2(cubic插值方式)<br/>
   该模型在训练过程中使用了指数滑动平均策略<br/>
   具体请参考<a href="https://www.paddlepaddle.org.cn/documentation/docs/zh/1.5/api_cn/optimizer_cn.html#exponentialmovingaverage">指数滑动平均</a>
   </td>
   <td>B0: 224
   </td>
   <td>256
   </td>
</tr>
<tr>
   <td>B1: 240
   </td>
   <td>272
   </td>
</tr>
<tr>
   <td>B2: 260
   </td>
   <td>292
   </td>
</tr>
<tr>
   <td>B3: 300
   </td>
   <td>332
   </td>
</tr>
<tr>
   <td>B4: 380
   </td>
   <td>412
   </td>
</tr>
<tr>
   <td>B5: 456
   </td>
   <td>488
   </td>
</tr>
<tr>
   <td>B6: 528
   </td>
   <td>560
   </td>
</tr>
<tr>

   <td>B7: 600
   </td>
   <td>632
   </td>
</tr>
<tr>
    <td>其余分类模型
    </td>
    <td>224
    </td>
    <td>256
    </td>
</tr>
</table>


- 调用动态链接库预测时需要将训练模型转换为二进制模型。

    ```bash
    python infer.py \
           --model=model_name \
           --pretrained_model=${path_to_pretrain_model} \
           --save_inference=True
    ```

- ResNeXt101_wsl系列的预训练模型转自pytorch模型,详情见[ResNeXt wsl](https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/)
414 415


C
cuicheng01 已提交
416
### AlexNet
R
ruri 已提交
417 418
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
419
|[AlexNet](http://paddle-imagenet-models-name.bj.bcebos.com/AlexNet_pretrained.tar) | 56.72% | 79.17% | 3.083 | 2.566 |
C
cuicheng01 已提交
420

C
cuicheng01 已提交
421
### SqueezeNet
R
ruri 已提交
422 423
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
424 425
|[SqueezeNet1_0](https://paddle-imagenet-models-name.bj.bcebos.com/SqueezeNet1_0_pretrained.tar) | 59.60% | 81.66% | 2.740 | 1.719 |
|[SqueezeNet1_1](https://paddle-imagenet-models-name.bj.bcebos.com/SqueezeNet1_1_pretrained.tar) | 60.08% | 81.85% | 2.751 | 1.282 |
R
ruri 已提交
426 427 428 429

### VGG Series
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
430 431 432 433
|[VGG11](https://paddle-imagenet-models-name.bj.bcebos.com/VGG11_pretrained.tar) | 69.28% | 89.09% | 8.223 | 6.619 |
|[VGG13](https://paddle-imagenet-models-name.bj.bcebos.com/VGG13_pretrained.tar) | 70.02% | 89.42% | 9.512 | 7.566 |
|[VGG16](https://paddle-imagenet-models-name.bj.bcebos.com/VGG16_pretrained.tar) | 72.00% | 90.69% | 11.315 | 8.985 |
|[VGG19](https://paddle-imagenet-models-name.bj.bcebos.com/VGG19_pretrained.tar) | 72.56% | 90.93% | 13.096 | 9.997 |
R
ruri 已提交
434 435 436 437

### MobileNet Series
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
438 439 440
|[MobileNetV1_x0_25](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_x0_25_pretrained.tar) | 51.43% | 75.46% | 2.283 | 0.838 |
|[MobileNetV1_x0_5](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_x0_5_pretrained.tar) | 63.52% | 84.73% | 2.378 | 1.052 |
|[MobileNetV1_x0_75](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_x0_75_pretrained.tar) | 68.81% | 88.23% | 2.540 | 1.376 |
R
ruri 已提交
441
|[MobileNetV1](http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar) | 70.99% | 89.68% | 2.609 |1.615 |
442 443 444 445 446 447
|[MobileNetV2_x0_25](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_25_pretrained.tar) | 53.21% | 76.52% | 4.267 | 2.791 |
|[MobileNetV2_x0_5](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_5_pretrained.tar) | 65.03% | 85.72% | 4.514 | 3.008 |
|[MobileNetV2_x0_75](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_75_pretrained.tar) | 69.83% | 89.01% | 4.313 | 3.504 |
|[MobileNetV2](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar) | 72.15% | 90.65% | 4.546 | 3.874 |
|[MobileNetV2_x1_5](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x1_5_pretrained.tar) | 74.12% | 91.67% | 5.235 | 4.771 |
|[MobileNetV2_x2_0](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x2_0_pretrained.tar) | 75.23% | 92.58% | 6.680 | 5.649 |
448
|[MobileNetV3_small_x1_0](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_0_pretrained.tar) | 67.46% | 87.12% | 6.809 |  |
R
ruri 已提交
449 450 451 452 453

### ShuffleNet Series
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
|[ShuffleNetV2](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_pretrained.tar) | 68.80% | 88.45% | 6.101 | 3.616 |
454 455 456 457 458 459
|[ShuffleNetV2_x0_25](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_25_pretrained.tar) | 49.90% | 73.79% | 5.956 | 2.505 |
|[ShuffleNetV2_x0_33](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_33_pretrained.tar) | 53.73% | 77.05% | 5.896 | 2.519 |
|[ShuffleNetV2_x0_5](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_5_pretrained.tar) | 60.32% | 82.26% | 6.048 | 2.642 |
|[ShuffleNetV2_x1_5](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x1_5_pretrained.tar) | 71.63% | 90.15% | 6.113 | 3.164 |
|[ShuffleNetV2_x2_0](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x2_0_pretrained.tar) | 73.15% | 91.20% | 6.430 | 3.954 |
|[ShuffleNetV2_swish](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_swish_pretrained.tar) | 70.03% | 89.17% | 6.078 | 4.976 |
R
ruri 已提交
460 461 462 463

### ResNet Series
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
464 465 466 467 468 469 470 471 472 473 474 475 476
|[ResNet18](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_pretrained.tar) | 70.98% | 89.92% | 3.456 | 2.261 |
|[ResNet18_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_vd_pretrained.tar) | 72.26% | 90.80% | 3.847 | 2.404 |
|[ResNet34](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_pretrained.tar) | 74.57% | 92.14% | 5.668 | 3.424 |
|[ResNet34_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_vd_pretrained.tar) | 75.98% | 92.98% | 6.089 | 3.544 |
|[ResNet50](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar) | 76.50% | 93.00% | 8.787 | 5.137 |
|[ResNet50_vc](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vc_pretrained.tar) |78.35% | 94.03% | 9.013 | 5.285 |
|[ResNet50_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar) | 79.12% | 94.44% | 9.058 | 5.259 |
|[ResNet50_vd_v2](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_v2_pretrained.tar) | 79.84% | 94.93% | 9.058 | 5.259 |
|[ResNet101](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar) | 77.56% | 93.64% | 15.447 | 8.473 |
|[ResNet101_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar) | 80.17% | 94.97% | 15.685 | 8.574 |
|[ResNet152](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_pretrained.tar) | 78.26% | 93.96% | 21.816 | 11.646 |
|[ResNet152_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_vd_pretrained.tar) | 80.59% | 95.30% | 22.041 | 11.858 |
|[ResNet200_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet200_vd_pretrained.tar) | 80.93% | 95.33% | 28.015 | 14.896 |
R
ruri 已提交
477 478 479 480

### ResNeXt Series
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
481 482 483 484 485 486 487 488 489 490 491
|[ResNeXt50_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_32x4d_pretrained.tar) | 77.75% | 93.82% | 12.863 | 9.241 |
|[ResNeXt50_vd_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_vd_32x4d_pretrained.tar) | 79.56% | 94.62% | 13.673 | 9.162 |
|[ResNeXt50_64x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_64x4d_pretrained.tar) | 78.43% | 94.13% | 28.162 | 15.935 |
|[ResNeXt50_vd_64x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_vd_64x4d_pretrained.tar) | 80.12% | 94.86% | 20.888 | 15.938 |
|[ResNeXt101_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x4d_pretrained.tar) | 78.65% | 94.19% | 24.154 | 17.661 |
|[ResNeXt101_vd_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_32x4d_pretrained.tar) | 80.33% | 95.12% | 24.701 | 17.249 |
|[ResNeXt101_64x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_64x4d_pretrained.tar) | 78.43% | 94.13% | 41.073 | 31.288 |
|[ResNeXt101_vd_64x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_64x4d_pretrained.tar) | 80.78% | 95.20% | 42.277 | 32.620 |
|[ResNeXt152_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_32x4d_pretrained.tar) | 78.98% | 94.33% | 37.007 | 26.981 |
|[ResNeXt152_64x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_64x4d_pretrained.tar) | 79.51% | 94.71% | 58.966 | 47.915 |
|[ResNeXt152_vd_64x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_vd_64x4d_pretrained.tar) | 81.08% | 95.34% | 60.947 | 47.406 |
R
ruri 已提交
492 493 494 495

### DenseNet Series
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
496 497 498 499 500
|[DenseNet121](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet121_pretrained.tar) | 75.66% | 92.58% | 12.437 | 5.592 |
|[DenseNet161](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet161_pretrained.tar) | 78.57% | 94.14% | 27.717 | 12.254 |
|[DenseNet169](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet169_pretrained.tar) | 76.81% | 93.31% | 18.941 | 7.742 |
|[DenseNet201](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet201_pretrained.tar) | 77.63% | 93.66% | 26.583 | 10.066 |
|[DenseNet264](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet264_pretrained.tar) | 77.96% | 93.85% | 41.495 | 14.740 |
R
ruri 已提交
501

502 503 504
### DPN Series
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
505 506 507 508 509
|[DPN68](https://paddle-imagenet-models-name.bj.bcebos.com/DPN68_pretrained.tar) | 76.78% | 93.43% | 18.446 | 6.199 |
|[DPN92](https://paddle-imagenet-models-name.bj.bcebos.com/DPN92_pretrained.tar) | 79.85% | 94.80% | 25.748 | 21.029 |
|[DPN98](https://paddle-imagenet-models-name.bj.bcebos.com/DPN98_pretrained.tar) | 80.59% | 95.10% | 29.421 | 13.411 |
|[DPN107](https://paddle-imagenet-models-name.bj.bcebos.com/DPN107_pretrained.tar) | 80.89% | 95.32% | 41.071 | 18.885 |
|[DPN131](https://paddle-imagenet-models-name.bj.bcebos.com/DPN131_pretrained.tar) | 80.70% | 95.14% | 41.179 | 18.246 |
510

R
ruri 已提交
511 512 513
### SENet Series
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
514 515 516 517
|[SE_ResNet50_vd](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNet50_vd_pretrained.tar) | 79.52% | 94.75% | 10.345 | 7.631 |
|[SE_ResNeXt50_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt50_32x4d_pretrained.tar) | 78.44% | 93.96% | 14.916 | 12.305 |
|[SE_ResNeXt101_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt101_32x4d_pretrained.tar) | 79.12% | 94.20% | 30.085 | 23.218 |
|[SENet154_vd](https://paddle-imagenet-models-name.bj.bcebos.com/SENet154_vd_pretrained.tar) | 81.40% | 95.48% | 71.892 | 53.131 |
R
ruri 已提交
518 519 520 521

### Inception Series
| Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
522 523 524 525 526 527 528
|[GoogLeNet](https://paddle-imagenet-models-name.bj.bcebos.com/GoogLeNet_pretrained.tar) | 70.70% | 89.66% | 6.528 | 2.919 |
|[Xception41](https://paddle-imagenet-models-name.bj.bcebos.com/Xception41_pretrained.tar) | 79.30% | 94.53% | 13.757 | 7.885 |
|[Xception41_deeplab](https://paddle-imagenet-models-name.bj.bcebos.com/Xception41_deeplab_pretrained.tar) | 79.55% | 94.38% | 14.268 | 7.257 |
|[Xception65](https://paddle-imagenet-models-name.bj.bcebos.com/Xception65_pretrained.tar) | 81.00% | 95.49% | 19.216 | 10.742 |
|[Xception65_deeplab](https://paddle-imagenet-models-name.bj.bcebos.com/Xception65_deeplab_pretrained.tar) | 80.32% | 94.49% | 19.536 | 10.713 |
|[Xception71](https://paddle-imagenet-models-name.bj.bcebos.com/Xception71_pretrained.tar) | 81.11% | 95.45% | 23.291 | 12.154 |
|[InceptionV4](https://paddle-imagenet-models-name.bj.bcebos.com/InceptionV4_pretrained.tar) | 80.77% | 95.26% | 32.413 | 17.728 |
529

C
cuicheng01 已提交
530
### DarkNet
R
ruri 已提交
531 532
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
533
|[DarkNet53](https://paddle-imagenet-models-name.bj.bcebos.com/DarkNet53_ImageNet1k_pretrained.tar) | 78.04% | 94.05% | 11.969 | 6.300 |
R
ruri 已提交
534 535 536 537

### ResNeXt101_wsl Series
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
538 539 540
|[ResNeXt101_32x8d_wsl](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x8d_wsl_pretrained.tar) | 82.55% | 96.74% | 33.310 | 27.628 |
|[ResNeXt101_32x16d_wsl](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x16d_wsl_pretrained.tar) | 84.24% | 97.26% | 54.320 | 47.599 |
|[ResNeXt101_32x32d_wsl](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x32d_wsl_pretrained.tar) | 84.97% | 97.59% | 97.734 | 81.660 |
R
ruri 已提交
541 542 543
|[ResNeXt101_32x48d_wsl](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x48d_wsl_pretrained.tar) | 85.37% | 97.69% | 161.722 |  |
|[Fix_ResNeXt101_32x48d_wsl](https://paddle-imagenet-models-name.bj.bcebos.com/Fix_ResNeXt101_32x48d_wsl_pretrained.tar) | 86.26% | 97.97% | 236.091 |  |

544 545 546 547
### EfficientNet Series
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
|[EfficientNetB0](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB0_pretrained.tar) | 77.38% | 93.31% | 10.303 | 4.334 |
548 549 550 551 552 553 554
|[EfficientNetB1](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB1_pretrained.tar)<sup>[1](#trans)</sup> | 79.15% | 94.41% | 15.626 | 6.502 |
|[EfficientNetB2](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB2_pretrained.tar)<sup>[1](#trans)</sup> | 79.85% | 94.74% | 17.847 | 7.558 |
|[EfficientNetB3](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB3_pretrained.tar)<sup>[1](#trans)</sup> | 81.15% | 95.41% | 25.993 | 10.937 |
|[EfficientNetB4](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB4_pretrained.tar)<sup>[1](#trans)</sup> | 82.85% | 96.23% | 47.734 | 18.536 |
|[EfficientNetB5](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB5_pretrained.tar)<sup>[1](#trans)</sup> | 83.62% | 96.72% | 88.578 | 32.102 |
|[EfficientNetB6](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB6_pretrained.tar)<sup>[1](#trans)</sup> | 84.00% | 96.88% | 138.670 | 51.059 |
|[EfficientNetB7](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB7_pretrained.tar)<sup>[1](#trans)</sup> | 84.30% | 96.89% | 234.364 | 82.107 |
555
|[EfficientNetB0_small](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB0_Small_pretrained.tar)<sup>[2](#trans)</sup> | 75.80% | 92.58% | 3.342 | 2.729 |
556 557

<a name="trans">[1]</a> 表示该预训练权重是由[官方的代码仓库](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet)转换来的。
C
cuicheng01 已提交
558

559 560
<a name="trans">[2]</a> 表示该预训练权重是在EfficientNetB0的基础上去除se模块,并使用通用的卷积训练的,精度稍稍下降,但是速度大幅提升。

561 562
## FAQ

R
ruri 已提交
563 564 565
**Q:** 加载预训练模型报错,Enforce failed. Expected x_dims[1] == labels_dims[1], but received x_dims[1]:1000 != labels_dims[1]:6.

**A:** 类别数匹配不上,删掉最后一层分类层FC
566

R
ruri 已提交
567
**Q:** reader中报错AttributeError: 'NoneType' object has no attribute 'shape'
568

R
ruri 已提交
569
**A:** 文件路径load错误
570

R
ruri 已提交
571
**Q:** 出现cudaStreamSynchronize an illegal memory access was encountered errno:77 错误
572

R
ruri 已提交
573 574 575 576 577 578 579
**A:** 可能是因为显存问题导致,添加如下环境变量:

    export FLAGS_fast_eager_deletion_mode=1
    export FLAGS_eager_delete_tensor_gb=0.0
    export FLAGS_fraction_of_gpu_memory_to_use=0.98

## 参考文献
580 581 582 583 584 585 586 587
- AlexNet: [imagenet-classification-with-deep-convolutional-neural-networks](https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf), Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton
- ResNet: [Deep Residual Learning for Image Recognitio](https://arxiv.org/abs/1512.03385), Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
- ResNeXt: [Aggregated Residual Transformations for Deep Neural Networks](https://arxiv.org/abs/1611.05431), Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, Kaiming He
- SeResNeXt: [Squeeze-and-Excitation Networks](https://arxiv.org/pdf/1709.01507.pdf)Jie Hu, Li Shen, Samuel Albanie
- ShuffleNetV1: [ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices](https://arxiv.org/abs/1707.01083), Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, Jian Sun
- ShuffleNetV2: [ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design](https://arxiv.org/abs/1807.11164), Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, Jian Sun
- MobileNetV1: [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861), Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam
- MobileNetV2: [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/pdf/1801.04381v4.pdf), Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen
588
- MobileNetV3: [Searching for MobileNetV3](https://arxiv.org/pdf/1905.02244.pdf), Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, Hartwig Adam
589 590
- VGG: [Very Deep Convolutional Networks for Large-scale Image Recognition](https://arxiv.org/pdf/1409.1556), Karen Simonyan, Andrew Zisserman
- GoogLeNet: [Going Deeper with Convolutions](https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf), Christian Szegedy1, Wei Liu2, Yangqing Jia
C
cuicheng01 已提交
591
- Xception: [Xception: Deep Learning with Depthwise Separable Convolutions](https://arxiv.org/abs/1610.02357), Franc ̧ois Chollet
592
- InceptionV4: [Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning](https://arxiv.org/abs/1602.07261), Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi
C
cuicheng01 已提交
593 594
- DarkNet: [YOLOv3: An Incremental Improvement](https://pjreddie.com/media/files/papers/YOLOv3.pdf), Joseph Redmon, Ali Farhadi
- DenseNet: [Densely Connected Convolutional Networks](https://arxiv.org/abs/1608.06993), Gao Huang, Zhuang Liu, Laurens van der Maaten
595
- DPN: [Dual Path Networks](https://arxiv.org/pdf/1707.01629.pdf), Yunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin, Shuicheng Yan, Jiashi Feng
C
cuicheng01 已提交
596 597 598
- SqueezeNet: [SQUEEZENET: ALEXNET-LEVEL ACCURACY WITH 50X FEWER PARAMETERS AND <0.5MB MODEL SIZE](https://arxiv.org/abs/1602.07360), Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, Kurt Keutzer
- ResNeXt101_wsl: [Exploring the Limits of Weakly Supervised Pretraining](https://arxiv.org/abs/1805.00932), Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan, Kaiming He, Manohar Paluri, Yixuan Li, Ashwin Bharambe, Laurens van der Maaten
- Fix_ResNeXt101_wsl: [Fixing the train-test resolution discrepancy](https://arxiv.org/abs/1906.06423), Hugo Touvron, Andrea Vedaldi, Matthijs Douze, Herve ́ Je ́gou
599
- EfficientNet: [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946), Mingxing Tan, Quoc V. Le
600

R
ruri 已提交
601 602 603 604 605 606 607
## 版本更新
- 2018/12/03 **Stage1**: 更新AlexNet,ResNet50,ResNet101,MobileNetV1
- 2018/12/23 **Stage2**: 更新VGG系列,SeResNeXt50_32x4d,SeResNeXt101_32x4d,ResNet152
- 2019/01/31 更新MobileNetV2_x1_0
- 2019/04/01 **Stage3**: 更新ResNet18,ResNet34,GoogLeNet,ShuffleNetV2
- 2019/06/12 **Stage4**: 更新ResNet50_vc,ResNet50_vd,ResNet101_vd,ResNet152_vd,ResNet200_vd,SE154_vd InceptionV4,ResNeXt101_64x4d,ResNeXt101_vd_64x4d
- 2019/06/22 更新ResNet50_vd_v2
608
- 2019/07/02 **Stage5**: 更新MobileNetV2_x0_5,ResNeXt50_32x4d,ResNeXt50_64x4d,Xception41,ResNet101_vd
R
ruri 已提交
609 610
- 2019/07/19 **Stage6**: 更新ShuffleNetV2_x0_25,ShuffleNetV2_x0_33,ShuffleNetV2_x0_5,ShuffleNetV2_x1_0,ShuffleNetV2_x1_5,ShuffleNetV2_x2_0,MobileNetV2_x0_25,MobileNetV2_x1_5,MobileNetV2_x2_0,ResNeXt50_vd_64x4d,ResNeXt101_32x4d,ResNeXt152_32x4d
- 2019/08/01 **Stage7**: 更新DarkNet53,DenseNet121,Densenet161,DenseNet169,DenseNet201,DenseNet264,SqueezeNet1_0,SqueezeNet1_1,ResNeXt50_vd_32x4d,ResNeXt152_64x4d,ResNeXt101_32x8d_wsl,ResNeXt101_32x16d_wsl,ResNeXt101_32x32d_wsl,ResNeXt101_32x48d_wsl,Fix_ResNeXt101_32x48d_wsl
611
- 2019/09/11 **Stage8**: 更新ResNet18_vd,ResNet34_vd,MobileNetV1_x0_25,MobileNetV1_x0_5,MobileNetV1_x0_75,MobileNetV2_x0_75,MobilenNetV3_small_x1_0,DPN68,DPN92,DPN98,DPN107,DPN131,ResNeXt101_vd_32x4d,ResNeXt152_vd_64x4d,Xception65,Xception71,Xception41_deeplab,Xception65_deeplab,SE_ResNet50_vd
612
- 2019/09/20 更新EfficientNet
613

R
ruri 已提交
614
## 如何贡献代码
615

R
ruri 已提交
616
如果你可以修复某个issue或者增加一个新功能,欢迎给我们提交PR。如果对应的PR被接受了,我们将根据贡献的质量和难度进行打分(0-5分,越高越好)。如果你累计获得了10分,可以联系我们获得面试机会或者为你写推荐信。