提交 f1f5353a 编写于 作者: C cuicheng01 提交者: ruri

Update model (#3003)

* add densenet, squeezenet, darknet, resnext, resnext101_wsl pretrained models
上级 4a11ec10
......@@ -166,16 +166,23 @@ The image classification models currently supported by PaddlePaddle are listed i
As the activation function ```swish``` and ```relu6``` which separately used in ShuffleNetV2_swish and MobileNetV2 net are not supported by Paddle TensorRT, inference acceleration performance of them doesn't significient improve. Pretrained models can be downloaded by clicking related model names.
- Note1: ResNet50_vd_v2 is the distilled version of ResNet50_vd.
- Note2: In addition to the image resolution feeded in InceptionV4 and Xception net is ```299x299```, others are ```224x224```.
- Note2: The image resolution feeded in InceptionV4 and Xception net is ```299x299```, Fix_ResNeXt101_32x48d_wsl is ```320x320```, DarkNet is ```256x256```, others are ```224x224```.In test time, the resize_short_size of the DarkNet53 and Fix_ResNeXt101_32x48d_wsl series networks is the same as the width or height of the input image resolution, the InceptionV4 and Xception network resize_short_size is 320, and the other networks resize_short_size are 256.
- Note3: It's necessary to convert the train model to a binary model when appling dynamic link library to infer, One can do it by running following command:
```python infer.py --save_inference=True```
- Note4: The pretrained model of the ResNeXt101_wsl series network is converted from the pytorch model. Please go to [RESNEXT WSL](https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/) for details.
### AlexNet
|model | top-1/top-5 accuracy(CV2) | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |
|[AlexNet](http://paddle-imagenet-models-name.bj.bcebos.com/AlexNet_pretrained.tar) | 56.72%/79.17% | 3.083 | 2.728 |
### SqueezeNet
|model | top-1/top-5 accuracy(CV2) | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |
|[SqueezeNet1_0](https://paddle-imagenet-models-name.bj.bcebos.com/SqueezeNet1_0_pretrained.tar) | 59.60%/81.66% | 2.740 | 1.688 |
|[SqueezeNet1_1](https://paddle-imagenet-models-name.bj.bcebos.com/SqueezeNet1_1_pretrained.tar) | 60.08%/81.85% | 2.751 | 1.270 |
### VGG
|model | top-1/top-5 accuracy(CV2) | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |
......@@ -224,12 +231,23 @@ As the activation function ```swish``` and ```relu6``` which separately used in
|model | top-1/top-5 accuracy(CV2) | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |
|[ResNeXt50_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_32x4d_pretrained.tar) | 77.75%/93.82% | 12.863 | 9.837 |
|[ResNeXt50_vd_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_vd_32x4d_pretrained.tar) | 79.56%/94.62% | 13.673 | 9.991 |
|[ResNeXt50_64x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_64x4d_pretrained.tar) | 78.43%/94.13% | 28.162 | 18.271 |
|[ResNeXt50_vd_64x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_vd_64x4d_pretrained.tar) | 80.12%/94.86% | 20.888 | 17.687 |
|[ResNeXt101_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x4d_pretrained.tar) | 78.65%/94.19% | 24.154 | 21.387 |
|[ResNeXt101_64x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_64x4d_pretrained.tar) | 78.43%/94.13% | 41.073 | 38.736 |
|[ResNeXt101_vd_64x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_64x4d_pretrained.tar) | 80.78%/95.20% | 42.277 | 40.929 |
|[ResNeXt152_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_32x4d_pretrained.tar) | 78.98%/94.33% | 37.007 | 31.301 |
|[ResNeXt152_64x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_64x4d_pretrained.tar) | 79.51%/94.71% | 58.966 | 57.267 |
### DenseNet
|model | top-1/top-5 accuracy(CV2) | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |
|[DenseNet121](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet121_pretrained.tar) | 75.66%/92.58% | 12.437 | 5.813 |
|[DenseNet161](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet161_pretrained.tar) | 78.57%/94.14% | 27.717 | 12.861 |
|[DenseNet169](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet169_pretrained.tar) | 76.81%/93.31% | 18.941 | 8.146 |
|[DenseNet201](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet201_pretrained.tar) | 77.63%/93.66% | 26.583 | 10.549 |
|[DenseNet264](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet264_pretrained.tar) | 77.96%/93.85% | 41.495 | 15.574 |
### SENet
|model | top-1/top-5 accuracy(CV2) | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
......@@ -245,8 +263,19 @@ As the activation function ```swish``` and ```relu6``` which separately used in
|[Xception_41](https://paddle-imagenet-models-name.bj.bcebos.com/Xception41_pretrained.tar) | 79.30%/94.53% | 13.757 | 10.831 |
|[InceptionV4](https://paddle-imagenet-models-name.bj.bcebos.com/InceptionV4_pretrained.tar) | 80.77%/95.26% | 32.413 | 18.154 |
### DarkNet
|model | top-1/top-5 accuracy(CV2) | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |
|[DarkNet53](https://paddle-imagenet-models-name.bj.bcebos.com/DarkNet53_ImageNet1k_pretrained.tar) | 78.04%/94.05% | 11.969 | 7.153 |
### ResNeXt101_wsl
|model | top-1/top-5 accuracy(CV2) | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |
|[ResNeXt101_32x8d_wsl](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x8d_wsl_pretrained.tar) | 82.55%/96.74% | 33.310 | 27.648 |
|[ResNeXt101_32x16d_wsl](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x16d_wsl_pretrained.tar) | 84.24%/97.26% | 54.320 | 46.064 |
|[ResNeXt101_32x32d_wsl](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x32d_wsl_pretrained.tar) | 84.97%/97.59% | 97.734 | 87.961 |
|[ResNeXt101_32x48d_wsl](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x48d_wsl_pretrained.tar) | 85.37%/97.69% | 161.722 | |
|[Fix_ResNeXt101_32x48d_wsl](https://paddle-imagenet-models-name.bj.bcebos.com/Fix_ResNeXt101_32x48d_wsl_pretrained.tar) | 86.26%/97.97% | 236.091 | |
## FAQ
......@@ -272,7 +301,11 @@ Enforce failed. Expected x_dims[1] == labels_dims[1], but received x_dims[1]:100
- GoogLeNet: [Going Deeper with Convolutions](https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf), Christian Szegedy1, Wei Liu2, Yangqing Jia
- Xception: [Xception: Deep Learning with Depthwise Separable Convolutions](https://arxiv.org/abs/1610.02357), Franc ̧ois Chollet
- InceptionV4: [Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning](https://arxiv.org/abs/1602.07261), Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi
- DarkNet: [YOLOv3: An Incremental Improvement](https://pjreddie.com/media/files/papers/YOLOv3.pdf), Joseph Redmon, Ali Farhadi
- DenseNet: [Densely Connected Convolutional Networks](https://arxiv.org/abs/1608.06993), Gao Huang, Zhuang Liu, Laurens van der Maaten
- SqueezeNet: [SQUEEZENET: ALEXNET-LEVEL ACCURACY WITH 50X FEWER PARAMETERS AND <0.5MB MODEL SIZE](https://arxiv.org/abs/1602.07360), Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, Kurt Keutzer
- ResNeXt101_wsl: [Exploring the Limits of Weakly Supervised Pretraining](https://arxiv.org/abs/1805.00932), Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan, Kaiming He, Manohar Paluri, Yixuan Li, Ashwin Bharambe, Laurens van der Maaten
- Fix_ResNeXt101_wsl: [Fixing the train-test resolution discrepancy](https://arxiv.org/abs/1906.06423), Hugo Touvron, Andrea Vedaldi, Matthijs Douze, Herve ́ Je ́gou
## Update
......@@ -284,6 +317,7 @@ Enforce failed. Expected x_dims[1] == labels_dims[1], but received x_dims[1]:100
- 2019/06/22 Update ResNet50_vd_v2
- 2019/07/02 **Stage5**: Update MobileNetV2_x0_5, ResNeXt50_32x4d, ResNeXt50_64x4d, Xception_41, ResNet101_vd
- 2019/07/19 **Stage6**: Update ShuffleNetV2_x0_25, ShuffleNetV2_x0_33, ShuffleNetV2_x0_5, ShuffleNetV2_x1_0, ShuffleNetV2_x1_5, ShuffleNetV2_x2_0, MobileNetV2_x0_25, MobileNetV2_x1_5, MobileNetV2_x2_0, ResNeXt50_vd_64x4d, ResNeXt101_32x4d, ResNeXt152_32x4d
- 2019/08/01 **Stage7**: Update DarkNet53, DenseNet121. Densenet161, DenseNet169, DenseNet201, DenseNet264, SqueezeNet1_0, SqueezeNet1_1, ResNeXt50_vd_32x4d, ResNeXt152_64x4d, ResNeXt101_32x8d_wsl, ResNeXt101_32x16d_wsl, ResNeXt101_32x32d_wsl, ResNeXt101_32x48d_wsl, Fix_ResNeXt101_32x48d_wsl
## Contribute
......
......@@ -154,17 +154,25 @@ python infer.py \
试GPU型号为Tesla P4)。由于Paddle TensorRT对ShuffleNetV2_swish使用的激活函数swish,MobileNetV2使用的激活函数relu6不支持,因此预测加速不明显。可以通过点击相应模型的名称下载对应的预训练模型。
- 注意
1:ResNet50_vd_v2是ResNet50_vd蒸馏版本。
2:除了InceptionV4和Xception采用的输入图像的分辨率为299x299,其余模型测试时使用的分辨率均为224x224
3:调用动态链接库预测时需要将训练模型转换为二进制模型
- 1:ResNet50_vd_v2是ResNet50_vd蒸馏版本。
- 2:InceptionV4和Xception采用的输入图像的分辨率为299x299,DarkNet53为256x256,Fix_ResNeXt101_32x48d_wsl为320x320,其余模型使用的分辨率均为224x224。在预测时,DarkNet53与Fix_ResNeXt101_32x48d_wsl系列网络resize_short_size与输入的图像分辨率的宽或高相同,InceptionV4和Xception网络resize_short_size为320,其余网络resize_short_size均为256
- 3:调用动态链接库预测时需要将训练模型转换为二进制模型
```python infer.py --save_inference=True```
- 4: ResNeXt101_wsl系列的预训练模型转自pytorch模型,详情请移步[RESNEXT WSL](https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/)
### AlexNet
|model | top-1/top-5 accuracy(CV2) | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |
|[AlexNet](http://paddle-imagenet-models-name.bj.bcebos.com/AlexNet_pretrained.tar) | 56.72%/79.17% | 3.083 | 2.728 |
### SqueezeNet
|model | top-1/top-5 accuracy(CV2) | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |
|[SqueezeNet1_0](https://paddle-imagenet-models-name.bj.bcebos.com/SqueezeNet1_0_pretrained.tar) | 59.60%/81.66% | 2.740 | 1.688 |
|[SqueezeNet1_1](https://paddle-imagenet-models-name.bj.bcebos.com/SqueezeNet1_1_pretrained.tar) | 60.08%/81.85% | 2.751 | 1.270 |
### VGG
|model | top-1/top-5 accuracy(CV2) | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |
......@@ -213,12 +221,23 @@ python infer.py \
|model | top-1/top-5 accuracy(CV2) | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |
|[ResNeXt50_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_32x4d_pretrained.tar) | 77.75%/93.82% | 12.863 | 9.837 |
|[ResNeXt50_vd_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_vd_32x4d_pretrained.tar) | 79.56%/94.62% | 13.673 | 9.991 |
|[ResNeXt50_64x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_64x4d_pretrained.tar) | 78.43%/94.13% | 28.162 | 18.271 |
|[ResNeXt50_vd_64x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_vd_64x4d_pretrained.tar) | 80.12%/94.86% | 20.888 | 17.687 |
|[ResNeXt101_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x4d_pretrained.tar) | 78.65%/94.19% | 24.154 | 21.387 |
|[ResNeXt101_64x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_64x4d_pretrained.tar) | 78.43%/94.13% | 41.073 | 38.736 |
|[ResNeXt101_vd_64x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_64x4d_pretrained.tar) | 80.78%/95.20% | 42.277 | 40.929 |
|[ResNeXt152_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_32x4d_pretrained.tar) | 78.98%/94.33% | 37.007 | 31.301 |
|[ResNeXt152_64x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_64x4d_pretrained.tar) | 79.51%/94.71% | 58.966 | 57.267 |
### DenseNet
|model | top-1/top-5 accuracy(CV2) | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |
|[DenseNet121](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet121_pretrained.tar) | 75.66%/92.58% | 12.437 | 5.813 |
|[DenseNet161](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet161_pretrained.tar) | 78.57%/94.14% | 27.717 | 12.861 |
|[DenseNet169](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet169_pretrained.tar) | 76.81%/93.31% | 18.941 | 8.146 |
|[DenseNet201](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet201_pretrained.tar) | 77.63%/93.66% | 26.583 | 10.549 |
|[DenseNet264](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet264_pretrained.tar) | 77.96%/93.85% | 41.495 | 15.574 |
### SENet
|model | top-1/top-5 accuracy(CV2) | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
......@@ -234,7 +253,19 @@ python infer.py \
|[Xception_41](https://paddle-imagenet-models-name.bj.bcebos.com/Xception41_pretrained.tar) | 79.30%/94.53% | 13.757 | 10.831 |
|[InceptionV4](https://paddle-imagenet-models-name.bj.bcebos.com/InceptionV4_pretrained.tar) | 80.77%/95.26% | 32.413 | 18.154 |
### DarkNet
|model | top-1/top-5 accuracy(CV2) | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |
|[DarkNet53](https://paddle-imagenet-models-name.bj.bcebos.com/DarkNet53_ImageNet1k_pretrained.tar) | 78.04%/94.05% | 11.969 | 7.153 |
### ResNeXt101_wsl
|model | top-1/top-5 accuracy(CV2) | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |
|[ResNeXt101_32x8d_wsl](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x8d_wsl_pretrained.tar) | 82.55%/96.74% | 33.310 | 27.648 |
|[ResNeXt101_32x16d_wsl](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x16d_wsl_pretrained.tar) | 84.24%/97.26% | 54.320 | 46.064 |
|[ResNeXt101_32x32d_wsl](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x32d_wsl_pretrained.tar) | 84.97%/97.59% | 97.734 | 87.961 |
|[ResNeXt101_32x48d_wsl](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x48d_wsl_pretrained.tar) | 85.37%/97.69% | 161.722 | |
|[Fix_ResNeXt101_32x48d_wsl](https://paddle-imagenet-models-name.bj.bcebos.com/Fix_ResNeXt101_32x48d_wsl_pretrained.tar) | 86.26%/97.97% | 236.091 | |
## FAQ
......@@ -256,6 +287,11 @@ python infer.py \
- GoogLeNet: [Going Deeper with Convolutions](https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf), Christian Szegedy1, Wei Liu2, Yangqing Jia
- Xception: [Xception: Deep Learning with Depthwise Separable Convolutions](https://arxiv.org/abs/1610.02357), Franc ̧ois Chollet
- InceptionV4: [Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning](https://arxiv.org/abs/1602.07261), Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi
- DarkNet: [YOLOv3: An Incremental Improvement](https://pjreddie.com/media/files/papers/YOLOv3.pdf), Joseph Redmon, Ali Farhadi
- DenseNet: [Densely Connected Convolutional Networks](https://arxiv.org/abs/1608.06993), Gao Huang, Zhuang Liu, Laurens van der Maaten
- SqueezeNet: [SQUEEZENET: ALEXNET-LEVEL ACCURACY WITH 50X FEWER PARAMETERS AND <0.5MB MODEL SIZE](https://arxiv.org/abs/1602.07360), Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, Kurt Keutzer
- ResNeXt101_wsl: [Exploring the Limits of Weakly Supervised Pretraining](https://arxiv.org/abs/1805.00932), Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan, Kaiming He, Manohar Paluri, Yixuan Li, Ashwin Bharambe, Laurens van der Maaten
- Fix_ResNeXt101_wsl: [Fixing the train-test resolution discrepancy](https://arxiv.org/abs/1906.06423), Hugo Touvron, Andrea Vedaldi, Matthijs Douze, Herve ́ Je ́gou
## 版本更新
- 2018/12/03 **Stage1**: 更新AlexNet,ResNet50,ResNet101,MobileNetV1
......@@ -266,6 +302,7 @@ python infer.py \
- 2019/06/22 更新ResNet50_vd_v2
- 2019/07/02 **Stage5**: 更新MobileNetV2_x0_5, ResNeXt50_32x4d, ResNeXt50_64x4d, Xception_41, ResNet101_vd
- 2019/07/19 **Stage6**: 更新ShuffleNetV2_x0_25, ShuffleNetV2_x0_33, ShuffleNetV2_x0_5, ShuffleNetV2_x1_0, ShuffleNetV2_x1_5, ShuffleNetV2_x2_0, MobileNetV2_x0_25, MobileNetV2_x1_5, MobileNetV2_x2_0, ResNeXt50_vd_64x4d, ResNeXt101_32x4d, ResNeXt152_32x4d
- 2019/08/01 **Stage7**: 更新DarkNet53, DenseNet121. Densenet161, DenseNet169, DenseNet201, DenseNet264, SqueezeNet1_0, SqueezeNet1_1, ResNeXt50_vd_32x4d, ResNeXt152_64x4d, ResNeXt101_32x8d_wsl, ResNeXt101_32x16d_wsl, ResNeXt101_32x32d_wsl, ResNeXt101_32x48d_wsl, Fix_ResNeXt101_32x48d_wsl
## 如何贡献代码
......
......@@ -17,3 +17,8 @@ from .shufflenet_v2_swish import ShuffleNetV2, ShuffleNetV2_x0_5_swish, ShuffleN
from .shufflenet_v2 import ShuffleNetV2_x0_25, ShuffleNetV2_x0_33, ShuffleNetV2_x0_5, ShuffleNetV2_x1_0, ShuffleNetV2_x1_5, ShuffleNetV2_x2_0
from .fast_imagenet import FastImageNet
from .xception import Xception_41, Xception_65, Xception_71
from .densenet import DenseNet121, DenseNet161, DenseNet169, DenseNet201, DenseNet264
from .squeezenet import SqueezeNet1_0, SqueezeNet1_1
from .darknet import DarkNet53
from .resnext101_wsl import ResNeXt101_32x8d_wsl, ResNeXt101_32x16d_wsl, ResNeXt101_32x32d_wsl, ResNeXt101_32x48d_wsl, Fix_ResNeXt101_32x48d_wsl
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
import math
__all__ = ["DarkNet53"]
train_parameters = {
"input_size": [3, 224, 224],
"input_mean": [0.485, 0.456, 0.406],
"input_std": [0.229, 0.224, 0.225],
"learning_strategy": {
"name": "piecewise_decay",
"batch_size": 256,
"epochs": [30, 60, 90],
"steps": [0.1, 0.01, 0.001, 0.0001]
}
}
class DarkNet53():
def __init__(self):
self.params = train_parameters
def net(self, input, class_dim=1000):
DarkNet_cfg = {53: ([1, 2, 8, 8, 4], self.basicblock)}
stages, block_func = DarkNet_cfg[53]
stages = stages[0:5]
conv1 = self.conv_bn_layer(
input,
ch_out=32,
filter_size=3,
stride=1,
padding=1,
name="yolo_input")
conv = self.downsample(
conv1,
ch_out=conv1.shape[1] * 2,
name="yolo_input.downsample")
for i, stage in enumerate(stages):
conv = self.layer_warp(
block_func,
conv,
32 * (2**i),
stage,
name="stage.{}".format(i))
if i < len(stages) - 1: # do not downsaple in the last stage
conv = self.downsample(
conv,
ch_out=conv.shape[1] * 2,
name="stage.{}.downsample".format(i))
pool = fluid.layers.pool2d(
input=conv, pool_type='avg', global_pooling=True)
stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
out = fluid.layers.fc(input=pool,
size=class_dim,
param_attr=ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv),name='fc_weights'),
bias_attr=ParamAttr(name='fc_offset'))
return out
def conv_bn_layer(self, input, ch_out, filter_size, stride, padding, name=None):
conv = fluid.layers.conv2d(
input=input,
num_filters=ch_out,
filter_size=filter_size,
stride=stride,
padding=padding,
act=None,
param_attr=ParamAttr(name=name + ".conv.weights"),
bias_attr=False)
bn_name = name + ".bn"
out = fluid.layers.batch_norm(
input=conv,
act='relu',
param_attr=ParamAttr(name=bn_name + '.scale'),
bias_attr=ParamAttr(name=bn_name + '.offset'),
moving_mean_name=bn_name + '.mean',
moving_variance_name=bn_name + '.var')
return out
def downsample(self, input, ch_out, filter_size=3, stride=2, padding=1, name=None):
return self.conv_bn_layer(
input,
ch_out=ch_out,
filter_size=filter_size,
stride=stride,
padding=padding,
name=name)
def basicblock(self, input, ch_out, name=None):
conv1 = self.conv_bn_layer(
input, ch_out, 1, 1, 0, name=name + ".0")
conv2 = self.conv_bn_layer(
conv1, ch_out * 2, 3, 1, 1, name=name + ".1")
out = fluid.layers.elementwise_add(x=input, y=conv2, act=None)
return out
def layer_warp(self, block_func, input, ch_out, count, name=None):
res_out = block_func(
input, ch_out, name='{}.0'.format(name))
for j in range(1, count):
res_out = block_func(
res_out, ch_out, name='{}.{}'.format(name, j))
return res_out
import paddle
import paddle.fluid as fluid
import math
from paddle.fluid.param_attr import ParamAttr
__all__ = ["DenseNet", "DenseNet121", "DenseNet161", "DenseNet169", "DenseNet201", "DenseNet264"]
train_parameters = {
"input_size": [3, 224, 224],
"input_mean": [0.485, 0.456, 0.406],
"input_std": [0.229, 0.224, 0.225],
"learning_strategy": {
"name": "piecewise_decay",
"batch_size": 256,
"epochs": [30, 60, 90],
"steps": [0.1, 0.01, 0.001, 0.0001]
}
}
class DenseNet():
def __init__(self, layers=121):
self.params = train_parameters
self.layers = layers
def net(self, input, bn_size=4, dropout=0, class_dim=1000):
layers = self.layers
supported_layers = [121, 161, 169, 201, 264]
assert layers in supported_layers, \
"supported layers are {} but input layer is {}".format(supported_layers, layers)
densenet_spec = {121: (64, 32, [6, 12, 24, 16]),
161: (96, 48, [6, 12, 36, 24]),
169: (64, 32, [6, 12, 32, 32]),
201: (64, 32, [6, 12, 48, 32]),
264: (64, 32, [6, 12, 64, 48])}
num_init_features, growth_rate, block_config = densenet_spec[layers]
conv = fluid.layers.conv2d(
input=input,
num_filters=num_init_features,
filter_size=7,
stride=2,
padding=3,
act=None,
param_attr=ParamAttr(name="conv1_weights"),
bias_attr=False)
conv = fluid.layers.batch_norm(input=conv,
act='relu',
param_attr=ParamAttr(name='conv1_bn_scale'),
bias_attr=ParamAttr(name='conv1_bn_offset'),
moving_mean_name='conv1_bn_mean',
moving_variance_name='conv1_bn_variance')
conv = fluid.layers.pool2d(input=conv, pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')
num_features = num_init_features
for i, num_layers in enumerate(block_config):
conv = self.make_dense_block(conv, num_layers, bn_size, growth_rate, dropout, name='conv'+str(i+2))
num_features = num_features + num_layers * growth_rate
if i != len(block_config) - 1:
conv = self.make_transition(conv, num_features // 2, name='conv'+str(i+2)+'_blk')
num_features = num_features // 2
conv = fluid.layers.batch_norm(input=conv,
act='relu',
param_attr=ParamAttr(name='conv5_blk_bn_scale'),
bias_attr=ParamAttr(name='conv5_blk_bn_offset'),
moving_mean_name='conv5_blk_bn_mean',
moving_variance_name='conv5_blk_bn_variance')
conv = fluid.layers.pool2d(input=conv, pool_type='avg', global_pooling=True)
stdv = 1.0 / math.sqrt(conv.shape[1] * 1.0)
out = fluid.layers.fc(input=conv,
size=class_dim,
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv), name="fc_weights"),
bias_attr=ParamAttr(name='fc_offset'))
return out
def make_transition(self, input, num_output_features, name=None):
bn_ac = fluid.layers.batch_norm(input,
act='relu',
param_attr=ParamAttr(name=name + '_bn_scale'),
bias_attr=ParamAttr(name + '_bn_offset'),
moving_mean_name=name + '_bn_mean',
moving_variance_name=name + '_bn_variance'
)
bn_ac_conv = fluid.layers.conv2d(
input=bn_ac,
num_filters=num_output_features,
filter_size=1,
stride=1,
act=None,
bias_attr=False,
param_attr=ParamAttr(name=name + "_weights")
)
pool = fluid.layers.pool2d(input=bn_ac_conv, pool_size=2, pool_stride=2, pool_type='avg')
return pool
def make_dense_block(self, input, num_layers, bn_size, growth_rate, dropout, name=None):
conv = input
for layer in range(num_layers):
conv = self.make_dense_layer(conv, growth_rate, bn_size, dropout, name=name + '_' + str(layer+1))
return conv
def make_dense_layer(self, input, growth_rate, bn_size, dropout, name=None):
bn_ac = fluid.layers.batch_norm(input,
act='relu',
param_attr=ParamAttr(name=name + '_x1_bn_scale'),
bias_attr=ParamAttr(name + '_x1_bn_offset'),
moving_mean_name=name + '_x1_bn_mean',
moving_variance_name=name + '_x1_bn_variance')
bn_ac_conv = fluid.layers.conv2d(
input=bn_ac,
num_filters=bn_size * growth_rate,
filter_size=1,
stride=1,
act=None,
bias_attr=False,
param_attr=ParamAttr(name=name + "_x1_weights"))
bn_ac = fluid.layers.batch_norm(bn_ac_conv,
act='relu',
param_attr=ParamAttr(name=name + '_x2_bn_scale'),
bias_attr=ParamAttr(name + '_x2_bn_offset'),
moving_mean_name=name + '_x2_bn_mean',
moving_variance_name=name + '_x2_bn_variance')
bn_ac_conv = fluid.layers.conv2d(
input=bn_ac,
num_filters=growth_rate,
filter_size=3,
stride=1,
padding=1,
act=None,
bias_attr=False,
param_attr=ParamAttr(name=name + "_x2_weights"))
if dropout:
bn_ac_conv = fluid.layers.dropout(x=bn_ac_conv, dropout_prob=dropout)
bn_ac_conv = fluid.layers.concat([input, bn_ac_conv], axis=1)
return bn_ac_conv
def DenseNet121():
model=DenseNet(layers=121)
return model
def DenseNet161():
model=DenseNet(layers=161)
return model
def DenseNet169():
model=DenseNet(layers=169)
return model
def DenseNet201():
model=DenseNet(layers=201)
return model
def DenseNet264():
model=DenseNet(layers=264)
return model
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import paddle.fluid as fluid
import math
from paddle.fluid.param_attr import ParamAttr
__all__ = ["ResNeXt101_32x8d_wsl", "ResNeXt101_32x16d_wsl", "ResNeXt101_32x32d_wsl", "ResNeXt101_32x48d_wsl", "Fix_ResNeXt101_32x48d_wsl"]
train_parameters = {
"input_size": [3, 224, 224],
"input_mean": [0.485, 0.456, 0.406],
"input_std": [0.229, 0.224, 0.225],
"learning_strategy": {
"name": "piecewise_decay",
"batch_size": 256,
"epochs": [30, 60, 90],
"steps": [0.1, 0.01, 0.001, 0.0001]
}
}
class ResNeXt101_wsl():
def __init__(self, layers=101, cardinality=32, width=48):
self.params = train_parameters
self.layers = layers
self.cardinality = cardinality
self.width = width
def net(self, input, class_dim=1000):
layers = self.layers
cardinality = self.cardinality
width = self.width
depth = [3, 4, 23, 3]
base_width = cardinality * width
num_filters = [base_width * i for i in [1, 2, 4, 8]]
conv = self.conv_bn_layer(
input=input,
num_filters=64,
filter_size=7,
stride=2,
act='relu',
name="conv1") #debug
conv = fluid.layers.pool2d(
input=conv,
pool_size=3,
pool_stride=2,
pool_padding=1,
pool_type='max')
for block in range(len(depth)):
for i in range(depth[block]):
conv_name = 'layer' + str(block+1) + "." + str(i)
conv = self.bottleneck_block(
input=conv,
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
cardinality=cardinality,
name=conv_name)
pool = fluid.layers.pool2d(
input=conv, pool_size=7, pool_type='avg', global_pooling=True)
stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
out = fluid.layers.fc(input=pool,
size=class_dim,
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv),name='fc.weight'),
bias_attr=fluid.param_attr.ParamAttr(name='fc.bias'))
return out
def conv_bn_layer(self,
input,
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
name=None):
if "downsample" in name:
conv_name = name + '.0'
else:
conv_name = name
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
param_attr=ParamAttr(name=conv_name + ".weight"),
bias_attr=False)
if "downsample" in name:
bn_name = name[:9] + 'downsample' + '.1'
else:
if "conv1" == name:
bn_name = 'bn' + name[-1]
else:
bn_name = (name[:10] if name[7:9].isdigit() else name[:9]) + 'bn' + name[-1]
return fluid.layers.batch_norm(
input=conv,
act=act,
param_attr=ParamAttr(name=bn_name + '.weight'),
bias_attr=ParamAttr(bn_name + '.bias'),
moving_mean_name=bn_name + '.running_mean',
moving_variance_name=bn_name + '.running_var', )
def shortcut(self, input, ch_out, stride, name):
ch_in = input.shape[1]
if ch_in != ch_out or stride != 1:
return self.conv_bn_layer(input, ch_out, 1, stride, name=name)
else:
return input
def bottleneck_block(self, input, num_filters, stride, cardinality, name):
cardinality = self.cardinality
width = self.width
conv0 = self.conv_bn_layer(
input=input,
num_filters=num_filters,
filter_size=1,
act='relu',
name=name + ".conv1")
conv1 = self.conv_bn_layer(
input=conv0,
num_filters=num_filters,
filter_size=3,
stride=stride,
groups=cardinality,
act='relu',
name=name + ".conv2")
conv2 = self.conv_bn_layer(
input=conv1,
num_filters=num_filters//(width//8),
filter_size=1,
act=None,
name=name + ".conv3")
short = self.shortcut(
input, num_filters//(width//8), stride, name=name + ".downsample")
return fluid.layers.elementwise_add(
x=short, y=conv2, act='relu')
def ResNeXt101_32x8d_wsl():
model = ResNeXt101_wsl(cardinality=32, width=8)
return model
def ResNeXt101_32x16d_wsl():
model = ResNeXt101_wsl(cardinality=32, width=16)
return model
def ResNeXt101_32x32d_wsl():
model = ResNeXt101_wsl(cardinality=32, width=32)
return model
def ResNeXt101_32x48d_wsl():
model = ResNeXt101_wsl(cardinality=32, width=48)
return model
def Fix_ResNeXt101_32x48d_wsl():
model = ResNeXt101_wsl(cardinality=32, width=48)
return model
......@@ -198,7 +198,7 @@ def ResNeXt101_vd_64x4d():
return model
def ResNeXt101_vd_32x4d():
model = ResNeXt(layers=50, cardinality=32, is_3x3 = True)
model = ResNeXt(layers=101, cardinality=32, is_3x3 = True)
return model
def ResNeXt152_vd_64x4d():
......@@ -206,6 +206,6 @@ def ResNeXt152_vd_64x4d():
return model
def ResNeXt152_vd_32x4d():
model = ResNeXt(layers=50, cardinality=32, is_3x3 = True)
model = ResNeXt(layers=152, cardinality=32, is_3x3 = True)
return model
......@@ -46,7 +46,7 @@ class ShuffleNetV2():
scale = self.scale
stage_repeats = [4, 8, 4]
if scale == 0.25:
if scale == 0.25:
stage_out_channels = [-1, 24, 24, 48, 96, 512]
elif scale == 0.33:
stage_out_channels = [-1, 24, 32, 64, 128, 512]
......
import paddle
import paddle.fluid as fluid
import math
from paddle.fluid.param_attr import ParamAttr
__all__ = ["SqueezeNet", "SqueezeNet1_0", "SqueezeNet1_1"]
train_parameters = {
"input_size": [3, 224, 224],
"input_mean": [0.485, 0.456, 0.406],
"input_std": [0.229, 0.224, 0.225],
"learning_strategy": {
"name": "piecewise_decay",
"batch_size": 256,
"epochs": [30, 60, 90],
"steps": [0.1, 0.01, 0.001, 0.0001]
}
}
class SqueezeNet():
def __init__(self, version='1.0'):
self.params = train_parameters
self.version = version
def net(self, input, class_dim=1000):
version = self.version
assert version in ['1.0', '1.1'], \
"supported version are {} but input version is {}".format(['1.0', '1.1'], version)
if version == '1.0':
conv = fluid.layers.conv2d(input,
num_filters=96,
filter_size=7,
stride=2,
act='relu',
param_attr=fluid.param_attr.ParamAttr(name="conv1_weights"),
bias_attr=ParamAttr(name='conv1_offset'))
conv = fluid.layers.pool2d(conv, pool_size=3, pool_stride=2,pool_type='max')
conv = self.make_fire(conv, 16, 64, 64, name='fire2')
conv = self.make_fire(conv, 16, 64, 64, name='fire3')
conv = self.make_fire(conv, 32, 128, 128, name='fire4')
conv = fluid.layers.pool2d(conv, pool_size=3, pool_stride=2, pool_type='max')
conv = self.make_fire(conv, 32, 128, 128, name='fire5')
conv = self.make_fire(conv, 48, 192, 192, name='fire6')
conv = self.make_fire(conv, 48, 192, 192, name='fire7')
conv = self.make_fire(conv, 64, 256, 256, name='fire8')
conv = fluid.layers.pool2d(conv, pool_size=3, pool_stride=2, pool_type='max')
conv = self.make_fire(conv, 64, 256, 256, name='fire9')
else:
conv = fluid.layers.conv2d(input,
num_filters=64,
filter_size=3,
stride=2,
padding=1,
act='relu',
param_attr=fluid.param_attr.ParamAttr(name="conv1_weights"),
bias_attr=ParamAttr(name='conv1_offset'))
conv = fluid.layers.pool2d(conv, pool_size=3, pool_stride=2, pool_type='max')
conv = self.make_fire(conv, 16, 64, 64, name='fire2')
conv = self.make_fire(conv, 16, 64, 64, name='fire3')
conv = fluid.layers.pool2d(conv, pool_size=3, pool_stride=2, pool_type='max')
conv = self.make_fire(conv, 32, 128, 128, name='fire4')
conv = self.make_fire(conv, 32, 128, 128, name='fire5')
conv = fluid.layers.pool2d(conv, pool_size=3, pool_stride=2, pool_type='max')
conv = self.make_fire(conv, 48, 192, 192, name='fire6')
conv = self.make_fire(conv, 48, 192, 192, name='fire7')
conv = self.make_fire(conv, 64, 256, 256, name='fire8')
conv = self.make_fire(conv, 64, 256, 256, name='fire9')
conv = fluid.layers.dropout(conv, dropout_prob=0.5)
conv = fluid.layers.conv2d(conv,
num_filters=class_dim,
filter_size=1,
act='relu',
param_attr=fluid.param_attr.ParamAttr(name="conv10_weights"),
bias_attr=ParamAttr(name='conv10_offset'))
conv = fluid.layers.pool2d(conv, pool_type='avg', global_pooling=True)
out = fluid.layers.flatten(conv)
return out
def make_fire_conv(self, input, num_filters, filter_size, padding=0, name=None):
conv = fluid.layers.conv2d(input,
num_filters=num_filters,
filter_size=filter_size,
padding=padding,
act='relu',
param_attr=fluid.param_attr.ParamAttr(name=name + "_weights"),
bias_attr=ParamAttr(name=name + '_offset'))
return conv
def make_fire(self, input, squeeze_channels, expand1x1_channels, expand3x3_channels, name=None):
conv = self.make_fire_conv(input, squeeze_channels, 1, name=name+'_squeeze1x1')
conv_path1 = self.make_fire_conv(conv, expand1x1_channels, 1, name=name+'_expand1x1')
conv_path2 = self.make_fire_conv(conv, expand3x3_channels, 3, 1, name=name+'_expand3x3')
out = fluid.layers.concat([conv_path1, conv_path2], axis=1)
return out
def SqueezeNet1_0():
model = SqueezeNet(version='1.0')
return model
def SqueezeNet1_1():
model = SqueezeNet(version='1.1')
return model
......@@ -227,7 +227,7 @@ class Xception(object):
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) / 2,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
param_attr=ParamAttr(name=name + "_weights"),
......
......@@ -192,7 +192,6 @@ def process_image(sample,
if crop_size > 0:
target_size = settings.resize_short_size
img = resize_short(img, target_size)
img = crop_image(img, target_size=crop_size, center=True)
img = img[:, :, ::-1].astype('float32').transpose((2, 0, 1)) / 255
......@@ -209,10 +208,11 @@ def process_image(sample,
def process_batch_data(input_data, settings, mode, color_jitter, rotate):
batch_data = []
crop_size = int(settings.image_shape.split(',')[-1])
for sample in input_data:
if os.path.isfile(sample[0]):
batch_data.append(
process_image(sample, settings, mode, color_jitter, rotate))
process_image(sample, settings, mode, color_jitter, rotate, crop_size))
else:
print("File not exist : %s" % sample[0])
return batch_data
......
......@@ -28,6 +28,34 @@ python train.py \
# --lr=0.01 \
# --l2_decay=1e-4
#SqueezeNet1_0
#python train.py \
# --model=SqueezeNet1_0 \
# --batch_size=256 \
# --total_images=1281167 \
# --image_shape=3,224,224 \
# --lr_strategy=cosine_decay \
# --class_dim=1000 \
# --model_save_dir=output/ \
# --lr=0.02 \
# --num_epochs=120 \
# --with_mem_opt=True \
# --l2_decay=1e-4
#SqueezeNet1_1
#python train.py \
# --model=SqueezeNet1_1 \
# --batch_size=256 \
# --total_images=1281167 \
# --image_shape=3,224,224 \
# --lr_strategy=cosine_decay \
# --class_dim=1000 \
# --model_save_dir=output/ \
# --lr=0.02 \
# --num_epochs=120 \
# --with_mem_opt=True \
# --l2_decay=1e-4
#VGG11:
#python train.py \
# --model=VGG11 \
......@@ -448,6 +476,22 @@ python train.py \
# --model_save_dir=output/ \
# --l2_decay=1e-4
#ResNeXt50_vd_32x4d
#python train.py \
# --model=ResNeXt50_vd_32x4d \
# --batch_size=256 \
# --total_images=1281167 \
# --image_shape=3,224,224 \
# --class_dim=1000 \
# --lr_strategy=cosine_decay \
# --lr=0.1 \
# --num_epochs=200 \
# --with_mem_opt=True \
# --model_save_dir=output/ \
# --l2_decay=1e-4 \
# --use_mixup=True \
# --use_label_smoothing=True \
# --label_smoothing_epsilon=0.1 \
#ResNeXt50_64x4d
#python train.py \
......@@ -539,6 +583,90 @@ python train.py \
# --model_save_dir=output/ \
# --l2_decay=1e-4
#ResNeXt152_64x4d
#python train.py \
# --model=ResNeXt152_64x4d \
# --batch_size=256 \
# --total_images=1281167 \
# --image_shape=3,224,224 \
# --class_dim=1000 \
# --lr_strategy=piecewise_decay \
# --lr=0.1 \
# --num_epochs=120 \
# --with_mem_opt=True \
# --model_save_dir=output/ \
# --l2_decay=18e-5
# DenseNet121
# python train.py \
# --model=DenseNet121 \
# --batch_size=256 \
# --total_images=1281167 \
# --image_shape=3,224,224 \
# --class_dim=1000 \
# --lr_strategy=piecewise_decay \
# --lr=0.1 \
# --num_epochs=120 \
# --with_mem_opt=True \
# --model_save_dir=output/ \
# --l2_decay=1e-4
# DenseNet161
# python train.py \
# --model=DenseNet161 \
# --batch_size=256 \
# --total_images=1281167 \
# --image_shape=3,224,224 \
# --class_dim=1000 \
# --lr_strategy=piecewise_decay \
# --lr=0.1 \
# --num_epochs=120 \
# --with_mem_opt=True \
# --model_save_dir=output/ \
# --l2_decay=1e-4
# DenseNet169
# python train.py \
# --model=DenseNet169 \
# --batch_size=256 \
# --total_images=1281167 \
# --image_shape=3,224,224 \
# --class_dim=1000 \
# --lr_strategy=piecewise_decay \
# --lr=0.1 \
# --num_epochs=120 \
# --with_mem_opt=True \
# --model_save_dir=output/ \
# --l2_decay=1e-4
# DenseNet201
# python train.py \
# --model=DenseNet201 \
# --batch_size=256 \
# --total_images=1281167 \
# --image_shape=3,224,224 \
# --class_dim=1000 \
# --lr_strategy=piecewise_decay \
# --lr=0.1 \
# --num_epochs=120 \
# --with_mem_opt=True \
# --model_save_dir=output/ \
# --l2_decay=1e-4
# DenseNet264
# python train.py \
# --model=DenseNet264 \
# --batch_size=256 \
# --total_images=1281167 \
# --image_shape=3,224,224 \
# --class_dim=1000 \
# --lr_strategy=piecewise_decay \
# --lr=0.1 \
# --num_epochs=120 \
# --with_mem_opt=True \
# --model_save_dir=output/ \
# --l2_decay=1e-4
#SE_ResNeXt50_32x4d:
#python train.py \
# --model=SE_ResNeXt50_32x4d \
......@@ -631,6 +759,24 @@ python train.py \
# --use_label_smoothing=True \
# --label_smoothing_epsilon=0.1 \
#DarkNet53
python train.py
# --model=DarkNet53 \
# --batch_size=256 \
# --total_images=1281167 \
# --image_shape=3,256,256 \
# --class_dim=1000 \
# --lr_strategy=cosine_decay \
# --lr=0.1 \
# --num_epochs=200 \
# --with_mem_opt=True \
# --model_save_dir=output/ \
# --l2_decay=1e-4 \
# --use_mixup=True \
# --resize_short_size=256 \
# --use_label_smoothing=True \
# --label_smoothing_epsilon=0.1 \
#ResNet50 nGraph:
# Training:
#OMP_NUM_THREADS=`nproc` FLAGS_use_ngraph=true python train.py \
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册