README.md 22.5 KB
Newer Older
1 2 3 4 5
# Image Classification and Model Zoo

---
## Table of Contents

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
- [Introduction](#introduction)
- [Quick Start](#quick-start)
    - [Installation](#installation)
    - [Data preparation](#data-preparation)
    - [Training](#training)
    - [Finetuning](#finetuning)
    - [Evaluation](#evaluation)
    - [Inference](#inference)
- [Advanced Usage](#advanced-usage)
    - [Using Mixed-Precision Training](#using-mixed-precision-training)
    - [CE](#ce)
- [Supported Models and Performances](#supported-models-and-performances)
- [Reference](#reference)
- [Update](#update)
- [Contribute](#contribute)

## Introduction

Image classification, which is an important field of computer vision, is to classify an image into pre-defined labels. Recently, many researchers developed different kinds of neural networks and highly improve the classification performance. This page introduces how to do image classification with PaddlePaddle Fluid.

## Quick Start
27

28
### Installation
29

30
Running sample code in this directory requires Python 2.7 and later, PaddelPaddle Fluid v1.5 and later, the latest release version is recommended, If the PaddlePaddle on your device is lower than v1.5, please follow the instructions in [installation document](http://paddlepaddle.org/documentation/docs/zh/1.4/beginners_guide/install/index_cn.html) and make an update.
R
ruri 已提交
31

32
### Data preparation
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

An example for ImageNet classification is as follows. First of all, preparation of imagenet data can be done as:
```
cd data/ILSVRC2012/
sh download_imagenet2012.sh
```

In the shell script ```download_imagenet2012.sh```,  there are three steps to prepare data:

**step-1:** Register at ```image-net.org``` first in order to get a pair of ```Username``` and ```AccessKey```, which are used to download ImageNet data.

**step-2:** Download ImageNet-2012 dataset from website. The training and validation data will be downloaded into folder "train" and "val" respectively. Please note that the size of data is more than 40 GB, it will take much time to download. Users who have downloaded the ImageNet data can organize it into ```data/ILSVRC2012``` directly.

**step-3:** Download training and validation label files. There are two label files which contain train and validation image labels respectively:

48
* train_list.txt: label file of imagenet-2012 training set, with each line seperated by ```SPACE```, like:
49 50 51
```
train/n02483708/n02483708_2436.jpeg 369
```
52
* val_list.txt: label file of imagenet-2012 validation set, with each line seperated by ```SPACE```, like.
53 54 55 56 57 58
```
val/ILSVRC2012_val_00000001.jpeg 65
```

You may need to modify the path in reader.py to load data correctly.

59
### Training
60 61 62 63 64 65 66 67 68 69 70

After data preparation, one can start the training step by:

```
python train.py \
       --model=SE_ResNeXt50_32x4d \
       --batch_size=32 \
       --total_images=1281167 \
       --class_dim=1000 \
       --image_shape=3,224,224 \
       --model_save_dir=output/ \
71
       --with_mem_opt=False \
72
       --with_inplace=True \
73 74 75 76
       --lr_strategy=piecewise_decay \
       --lr=0.1
```
**parameter introduction:**
77

78 79 80 81 82 83 84 85
* **model**: name model to use. Default: "SE_ResNeXt50_32x4d".
* **num_epochs**: the number of epochs. Default: 120.
* **batch_size**: the size of each mini-batch. Default: 256.
* **use_gpu**: whether to use GPU or not. Default: True.
* **total_images**: total number of images in the training set. Default: 1281167.
* **class_dim**: the class number of the classification task. Default: 1000.
* **image_shape**: input size of the network. Default: "3,224,224".
* **model_save_dir**: the directory to save trained model. Default: "output".
86
* **with_mem_opt**: whether to use memory optimization or not. Default: False.
87
* **with_inplace**: whether to use inplace memory optimization or not. Default: True.
88 89 90 91 92 93 94 95 96
* **lr_strategy**: learning rate changing strategy. Default: "piecewise_decay".
* **lr**: initialized learning rate. Default: 0.1.
* **pretrained_model**: model path for pretraining. Default: None.
* **checkpoint**: the checkpoint path to resume. Default: None.
* **data_dir**: the data path. Default: "./data/ILSVRC2012".
* **fp16**: whether to enable half precision training with fp16. Default: False.
* **scale_loss**: scale loss for fp16. Default: 1.0.
* **l2_decay**: L2_decay parameter. Default: 1e-4.
* **momentum_rate**: momentum_rate. Default: 0.9.
97 98 99 100 101 102 103 104 105
* **use_label_smoothing**: whether to use label_smoothing or not. Default:False.
* **label_smoothing_epsilon**: the label_smoothing_epsilon. Default:0.2.
* **lower_scale**: the lower scale in random crop data processing, upper is 1.0. Default:0.08.
* **lower_ratio**: the lower ratio in ramdom crop. Default:3./4. .
* **upper_ration**: the upper ratio in ramdom crop. Default:4./3. .
* **resize_short_size**: the resize_short_size. Default: 256.
* **use_mixup**: whether to use mixup data processing or not. Default:False.
* **mixup_alpha**: the mixup_alpha parameter. Default: 0.2.
* **is_distill**: whether to use distill or not. Default: False.
106 107 108

Or can start the training step by running the ```run.sh```.

109 110
**data reader introduction:** Data reader is defined in PIL: ```reader.py```and opencv: ```reader_cv2.py```, default reader is implemented by opencv. In [Training](#training), random crop and flipping are used, while center crop is used in [Evaluation](#evaluation) and [Inference](#inference) stages. Supported data augmentation includes:

111
* rotation
112
* color jitter (haven't implemented in cv2_reader)
113 114 115 116 117
* random crop
* center crop
* resize
* flipping

118
### Finetuning
119

120
Finetuning is to finetune model weights in a specific task by loading pretrained weights. One can download [pretrained models](#supported-models-and-performances) and set its path to ```path_to_pretrain_model```, one can finetune a model by running following command:
121 122

```
123 124
python train.py \
       --pretrained_model=${path_to_pretrain_model}
125 126
```

127 128 129 130
Note: Add and adjust other parameters accroding to specific models and tasks.

### Evaluation

131
Evaluation is to evaluate the performance of a trained model. One can download [pretrained models](#supported-models-and-performances) and set its path to ```path_to_pretrain_model```. Then top1/top5 accuracy can be obtained by running the following command:
132

133 134 135 136 137
```
python eval.py \
       --pretrained_model=${path_to_pretrain_model}
```

138 139 140 141 142 143
Note: Add and adjust other parameters accroding to specific models and tasks.

### Inference

Inference is used to get prediction score or image features based on trained models. One can download [pretrained models](#supported-models-and-performances) and set its path to ```path_to_pretrain_model```. Run following command then obtain prediction score.

144 145 146 147 148
```
python infer.py \
       --pretrained_model=${path_to_pretrain_model}
```

149 150 151 152 153 154 155 156
Note: Add and adjust other parameters accroding to specific models and tasks.

## Advanced Usage

### Using Mixed-Precision Training

You may add `--fp16=1` to start train using mixed precisioin training, which the training process will use float16 and the output model ("master" parameters) is saved as float32. You also may need to pass `--scale_loss` to overcome accuracy issues, usually `--scale_loss=8.0` will do.

157 158
Note that currently `--fp16` can not use together with `--with_mem_opt`, so pass `--with_mem_opt=0` to disable memory optimization pass.

159 160 161 162 163 164 165
### CE

CE is only for internal testing, don't have to set it.

## Supported Models and Performances

The image classification models currently supported by PaddlePaddle are listed in the table. It shows the top-1/top-5 accuracy on the ImageNet-2012 validation set of these models, the inference time of Paddle Fluid and Paddle TensorRT based on dynamic link library(test GPU model: Tesla P4). 
166
As the activation function ```swish``` and ```relu6``` which separately used in ShuffleNetV2_swish and MobileNetV2 net are not supported by Paddle TensorRT, inference acceleration performance of them doesn't significient improve. Pretrained models can be downloaded by clicking related model names.
167

168
- Note1: ResNet50_vd_v2 is the distilled version of ResNet50_vd. 
C
cuicheng01 已提交
169
- Note2: The image resolution feeded in InceptionV4 and Xception net is ```299x299```, Fix_ResNeXt101_32x48d_wsl is ```320x320```, DarkNet is ```256x256```, others are ```224x224```.In test time, the resize_short_size of the DarkNet53 and Fix_ResNeXt101_32x48d_wsl series networks is the same as the width or height of the input image resolution, the InceptionV4 and Xception network resize_short_size is 320, and the other networks resize_short_size are 256.
170 171 172
- Note3: It's necessary to convert the train model to a binary model when appling dynamic link library to infer, One can do it by running following command:

    ```python infer.py --save_inference=True```
C
cuicheng01 已提交
173
- Note4: The pretrained model of the ResNeXt101_wsl series network is converted from the pytorch model. Please go to [RESNEXT WSL](https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/) for details.
C
cuicheng01 已提交
174 175
    
### AlexNet
176 177 178
|model | top-1/top-5 accuracy(CV2) | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |
|[AlexNet](http://paddle-imagenet-models-name.bj.bcebos.com/AlexNet_pretrained.tar) | 56.72%/79.17% | 3.083 | 2.728 |
C
cuicheng01 已提交
179

C
cuicheng01 已提交
180 181 182 183 184 185
### SqueezeNet
|model | top-1/top-5 accuracy(CV2) | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |
|[SqueezeNet1_0](https://paddle-imagenet-models-name.bj.bcebos.com/SqueezeNet1_0_pretrained.tar) | 59.60%/81.66% | 2.740 | 1.688 |
|[SqueezeNet1_1](https://paddle-imagenet-models-name.bj.bcebos.com/SqueezeNet1_1_pretrained.tar) | 60.08%/81.85% | 2.751 | 1.270 |

C
cuicheng01 已提交
186 187 188
### VGG
|model | top-1/top-5 accuracy(CV2) | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |
189 190 191 192
|[VGG11](https://paddle-imagenet-models-name.bj.bcebos.com/VGG11_pretrained.tar) | 69.28%/89.09% | 8.223 | 6.821 |
|[VGG13](https://paddle-imagenet-models-name.bj.bcebos.com/VGG13_pretrained.tar) | 70.02%/89.42% | 9.512 | 7.783 |
|[VGG16](https://paddle-imagenet-models-name.bj.bcebos.com/VGG16_pretrained.tar) | 72.00%/90.69% | 11.315 | 9.067 |
|[VGG19](https://paddle-imagenet-models-name.bj.bcebos.com/VGG19_pretrained.tar) | 72.56%/90.93% | 13.096 | 10.388 |
C
cuicheng01 已提交
193 194 195 196 197

### MobileNet
|model | top-1/top-5 accuracy(CV2) | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |
|[MobileNetV1](http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar) | 70.99%/89.68% | 2.609 |1.615 |
198
|[MobileNetV2_x0_25](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_25_pretrained.tar) | 53.21%/76.52% | 4.267 | 3.777 |
C
cuicheng01 已提交
199 200
|[MobileNetV2_x0_5](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_5_pretrained.tar) | 65.03%/85.72% | 4.514 | 4.150 |
|[MobileNetV2_x1_0](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar) | 72.15%/90.65% | 4.546 | 5.278 |
201 202
|[MobileNetV2_x1_5](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x1_5_pretrained.tar) | 74.12%/91.67% | 5.235 | 6.909 |
|[MobileNetV2_x2_0](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x2_0_pretrained.tar) | 75.23%/92.58% | 6.680 | 7.658 |
C
cuicheng01 已提交
203 204 205 206

### ShuffleNet
|model | top-1/top-5 accuracy(CV2) | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |
207 208 209 210 211 212 213
|[ShuffleNetV2_x0_25](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_25_pretrained.tar) | 49.90%/73.79% | 5.956 | 2.961 |
|[ShuffleNetV2_x0_33](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_33_pretrained.tar) | 53.73%/77.05% | 5.896 | 2.941 |
|[ShuffleNetV2_x0_5](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_5_pretrained.tar) | 60.32%/82.26% | 6.048 | 3.088 |
|[ShuffleNetV2_x1_0](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x1_0_pretrained.tar) | 68.80%/88.45% | 6.101 | 3.616 |
|[ShuffleNetV2_x1_5](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x1_5_pretrained.tar) | 71.63%/90.15% | 6.113 | 3.699 |
|[ShuffleNetV2_x2_0](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x2_0_pretrained.tar) | 73.15%/91.20% | 6.430 | 4.553 |
|[ShuffleNetV2_x1_0_swish](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_pretrained.tar) | 70.03%/89.17% | 6.078 | 6.282 |
C
cuicheng01 已提交
214 215 216 217

### ResNet
|model | top-1/top-5 accuracy(CV2) | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |
218 219 220 221 222 223 224
|[ResNet18](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_pretrained.tar) | 70.98%/89.92% | 3.456 | 2.484 |
|[ResNet34](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_pretrained.tar) | 74.57%/92.14% | 5.668 | 3.767 |
|[ResNet50](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar) | 76.50%/93.00% | 8.787 | 5.434 |
|[ResNet50_vc](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vc_pretrained.tar) |78.35%/94.03% | 9.013 | 5.463 |
|[ResNet50_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar) | 79.12%/94.44% | 9.058 | 5.510 |
|[ResNet50_vd_v2](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_v2_pretrained.tar) | 79.84%/94.93% | 9.058 | 5.510 |
|[ResNet101](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar) | 77.56%/93.64% | 15.447 | 8.779 |
C
cuicheng01 已提交
225
|[ResNet101_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar) | 80.17%/94.97% | 15.685 | 8.878 |
226 227 228
|[ResNet152](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_pretrained.tar) | 78.26%/93.96% | 21.816 | 12.148 |
|[ResNet152_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_vd_pretrained.tar) | 80.59%/95.30% | 22.041 | 12.259 |
|[ResNet200_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet200_vd_pretrained.tar) | 80.93%/95.33% | 28.015 | 15.278 |
C
cuicheng01 已提交
229 230 231 232 233

### ResNeXt
|model | top-1/top-5 accuracy(CV2) | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |
|[ResNeXt50_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_32x4d_pretrained.tar) | 77.75%/93.82% | 12.863 | 9.837 |
C
cuicheng01 已提交
234
|[ResNeXt50_vd_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_vd_32x4d_pretrained.tar) | 79.56%/94.62% | 13.673 | 9.991 |
C
cuicheng01 已提交
235
|[ResNeXt50_64x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_64x4d_pretrained.tar) | 78.43%/94.13% | 28.162 | 18.271 |
236 237
|[ResNeXt50_vd_64x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_vd_64x4d_pretrained.tar) | 80.12%/94.86% | 20.888 | 17.687 |
|[ResNeXt101_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x4d_pretrained.tar) | 78.65%/94.19% | 24.154 | 21.387 |
C
cuicheng01 已提交
238
|[ResNeXt101_64x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_64x4d_pretrained.tar) | 78.43%/94.13% | 41.073 | 38.736 |
239
|[ResNeXt101_vd_64x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_64x4d_pretrained.tar) | 80.78%/95.20% | 42.277 | 40.929 |
240
|[ResNeXt152_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_32x4d_pretrained.tar) | 78.98%/94.33% | 37.007 | 31.301 |
C
cuicheng01 已提交
241 242 243 244 245 246 247 248 249 250
|[ResNeXt152_64x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_64x4d_pretrained.tar) | 79.51%/94.71% | 58.966 | 57.267 |

### DenseNet
|model | top-1/top-5 accuracy(CV2) | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |
|[DenseNet121](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet121_pretrained.tar) | 75.66%/92.58% | 12.437 | 5.813 |
|[DenseNet161](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet161_pretrained.tar) | 78.57%/94.14% | 27.717 | 12.861 |
|[DenseNet169](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet169_pretrained.tar) | 76.81%/93.31% | 18.941 | 8.146 |
|[DenseNet201](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet201_pretrained.tar) | 77.63%/93.66% | 26.583 | 10.549 |
|[DenseNet264](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet264_pretrained.tar) | 77.96%/93.85% | 41.495 | 15.574 |
C
cuicheng01 已提交
251 252 253 254

### SENet
|model | top-1/top-5 accuracy(CV2) | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |
255 256
|[SE_ResNeXt50_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt50_32x4d_pretrained.tar) | 78.44%/93.96% | 14.916 | 12.126 |
|[SE_ResNeXt101_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt101_32x4d_pretrained.tar) | 79.12%/94.20% | 30.085 | 24.110 |
R
ruri 已提交
257
|[SENet154_vd](https://paddle-imagenet-models-name.bj.bcebos.com/SENet154_vd_pretrained.tar) | 81.40%/95.48% | 71.892 | 64.855 |
C
cuicheng01 已提交
258 259 260 261

### Inception
|model | top-1/top-5 accuracy(CV2) | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |
262
|[GoogLeNet](https://paddle-imagenet-models-name.bj.bcebos.com/GoogleNet_pretrained.tar) | 70.70%/89.66% | 6.528 | 3.076 |
C
cuicheng01 已提交
263
|[Xception_41](https://paddle-imagenet-models-name.bj.bcebos.com/Xception41_pretrained.tar) | 79.30%/94.53% | 13.757 | 10.831 |
264
|[InceptionV4](https://paddle-imagenet-models-name.bj.bcebos.com/InceptionV4_pretrained.tar) | 80.77%/95.26% | 32.413 | 18.154 |
265

C
cuicheng01 已提交
266 267 268 269
### DarkNet
|model | top-1/top-5 accuracy(CV2) | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |
|[DarkNet53](https://paddle-imagenet-models-name.bj.bcebos.com/DarkNet53_ImageNet1k_pretrained.tar) | 78.04%/94.05% | 11.969 | 7.153 |
C
cuicheng01 已提交
270

C
cuicheng01 已提交
271 272 273 274 275 276 277 278
### ResNeXt101_wsl
|model | top-1/top-5 accuracy(CV2) | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |
|[ResNeXt101_32x8d_wsl](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x8d_wsl_pretrained.tar) | 82.55%/96.74% | 33.310 | 27.648 |
|[ResNeXt101_32x16d_wsl](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x16d_wsl_pretrained.tar) | 84.24%/97.26% | 54.320 | 46.064 |
|[ResNeXt101_32x32d_wsl](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x32d_wsl_pretrained.tar) | 84.97%/97.59% | 97.734 | 87.961 |
|[ResNeXt101_32x48d_wsl](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x48d_wsl_pretrained.tar) | 85.37%/97.69% | 161.722 |  |
|[Fix_ResNeXt101_32x48d_wsl](https://paddle-imagenet-models-name.bj.bcebos.com/Fix_ResNeXt101_32x48d_wsl_pretrained.tar) | 86.26%/97.97% | 236.091 |  |
C
cuicheng01 已提交
279

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
## FAQ

**Q:** How to solve this problem when I try to train a 6-classes dataset with indicating pretrained_model parameter ?
``` 
Enforce failed. Expected x_dims[1] == labels_dims[1], but received x_dims[1]:1000 != labels_dims[1]:6.
```

**A:** It may be caused by dismatch dimensions. Please remove fc parameter in pretrained models, It usually named with a prefix ```fc_```

## Reference


- AlexNet: [imagenet-classification-with-deep-convolutional-neural-networks](https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf), Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton
- ResNet: [Deep Residual Learning for Image Recognitio](https://arxiv.org/abs/1512.03385), Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
- ResNeXt: [Aggregated Residual Transformations for Deep Neural Networks](https://arxiv.org/abs/1611.05431), Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, Kaiming He
- SeResNeXt: [Squeeze-and-Excitation Networks](https://arxiv.org/pdf/1709.01507.pdf)Jie Hu, Li Shen, Samuel Albanie
- ShuffleNetV1: [ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices](https://arxiv.org/abs/1707.01083), Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, Jian Sun
- ShuffleNetV2: [ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design](https://arxiv.org/abs/1807.11164), Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, Jian Sun
- MobileNetV1: [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861), Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam
- MobileNetV2: [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/pdf/1801.04381v4.pdf), Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen
- VGG: [Very Deep Convolutional Networks for Large-scale Image Recognition](https://arxiv.org/pdf/1409.1556), Karen Simonyan, Andrew Zisserman
- GoogLeNet: [Going Deeper with Convolutions](https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf), Christian Szegedy1, Wei Liu2, Yangqing Jia
C
cuicheng01 已提交
302
- Xception: [Xception: Deep Learning with Depthwise Separable Convolutions](https://arxiv.org/abs/1610.02357), Franc ̧ois Chollet
303
- InceptionV4: [Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning](https://arxiv.org/abs/1602.07261), Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi
C
cuicheng01 已提交
304 305 306 307 308
- DarkNet: [YOLOv3: An Incremental Improvement](https://pjreddie.com/media/files/papers/YOLOv3.pdf), Joseph Redmon, Ali Farhadi
- DenseNet: [Densely Connected Convolutional Networks](https://arxiv.org/abs/1608.06993), Gao Huang, Zhuang Liu, Laurens van der Maaten
- SqueezeNet: [SQUEEZENET: ALEXNET-LEVEL ACCURACY WITH 50X FEWER PARAMETERS AND <0.5MB MODEL SIZE](https://arxiv.org/abs/1602.07360), Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, Kurt Keutzer
- ResNeXt101_wsl: [Exploring the Limits of Weakly Supervised Pretraining](https://arxiv.org/abs/1805.00932), Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan, Kaiming He, Manohar Paluri, Yixuan Li, Ashwin Bharambe, Laurens van der Maaten
- Fix_ResNeXt101_wsl: [Fixing the train-test resolution discrepancy](https://arxiv.org/abs/1906.06423), Hugo Touvron, Andrea Vedaldi, Matthijs Douze, Herve ́ Je ́gou
309 310 311 312 313

## Update

- 2018/12/03 **Stage1**: Update AlexNet, ResNet50, ResNet101, MobileNetV1
- 2018/12/23 **Stage2**: Update VGG Series, SeResNeXt50_32x4d, SeResNeXt101_32x4d, ResNet152
C
cuicheng01 已提交
314
- 2019/01/31 Update MobileNetV2_x1_0
315 316 317
- 2019/04/01 **Stage3**: Update ResNet18, ResNet34, GoogLeNet, ShuffleNetV2
- 2019/06/12 **Stage4**:Update ResNet50_vc, ResNet50_vd, ResNet101_vd, ResNet152_vd, ResNet200_vd, SE154_vd InceptionV4, ResNeXt101_64x4d, ResNeXt101_vd_64x4d
- 2019/06/22 Update ResNet50_vd_v2
318 319
- 2019/07/02 **Stage5**: Update MobileNetV2_x0_5, ResNeXt50_32x4d, ResNeXt50_64x4d, Xception_41, ResNet101_vd
- 2019/07/19 **Stage6**: Update ShuffleNetV2_x0_25, ShuffleNetV2_x0_33, ShuffleNetV2_x0_5, ShuffleNetV2_x1_0, ShuffleNetV2_x1_5, ShuffleNetV2_x2_0, MobileNetV2_x0_25, MobileNetV2_x1_5, MobileNetV2_x2_0, ResNeXt50_vd_64x4d, ResNeXt101_32x4d, ResNeXt152_32x4d
C
cuicheng01 已提交
320
- 2019/08/01 **Stage7**: Update DarkNet53, DenseNet121. Densenet161, DenseNet169, DenseNet201, DenseNet264, SqueezeNet1_0, SqueezeNet1_1, ResNeXt50_vd_32x4d, ResNeXt152_64x4d, ResNeXt101_32x8d_wsl, ResNeXt101_32x16d_wsl, ResNeXt101_32x32d_wsl, ResNeXt101_32x48d_wsl, Fix_ResNeXt101_32x48d_wsl
321 322 323

## Contribute

324
If you can fix an issue or add a new feature, please open a PR to us. If your PR is accepted, you can get scores according to the quality and difficulty of your PR(0~5), while you got 10 scores, you can contact us for interview or recommendation letter.