model.py 23.6 KB
Newer Older
1 2
from functools import partial
import numpy as np
Y
ying 已提交
3

L
Luo Tao 已提交
4 5
import paddle.fluid as fluid
import paddle.fluid.layers as layers
Y
ying 已提交
6

7
from config import *
Y
ying 已提交
8

9 10

def position_encoding_init(n_position, d_pos_vec):
Y
ying 已提交
11
    """
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
    Generate the initial values for the sinusoid position encoding table.
    """
    position_enc = np.array([[
        pos / np.power(10000, 2 * (j // 2) / d_pos_vec)
        for j in range(d_pos_vec)
    ] if pos != 0 else np.zeros(d_pos_vec) for pos in range(n_position)])
    position_enc[1:, 0::2] = np.sin(position_enc[1:, 0::2])  # dim 2i
    position_enc[1:, 1::2] = np.cos(position_enc[1:, 1::2])  # dim 2i+1
    return position_enc.astype("float32")


def multi_head_attention(queries,
                         keys,
                         values,
                         attn_bias,
                         d_key,
                         d_value,
                         d_model,
G
guosheng 已提交
30
                         n_head=1,
G
guosheng 已提交
31 32
                         dropout_rate=0.,
                         pre_softmax_shape=None,
33 34
                         post_softmax_shape=None,
                         cache=None):
35
    """
Y
ying 已提交
36 37 38
    Multi-Head Attention. Note that attn_bias is added to the logit before
    computing softmax activiation to mask certain selected positions so that
    they will not considered in attention weights.
39 40 41
    """
    if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3):
        raise ValueError(
Y
ying 已提交
42
            "Inputs: quries, keys and values should all be 3-D tensors.")
43

G
guosheng 已提交
44
    def __compute_qkv(queries, keys, values, n_head, d_key, d_value):
Y
ying 已提交
45
        """
46 47 48
        Add linear projection to queries, keys, and values.
        """
        q = layers.fc(input=queries,
G
guosheng 已提交
49 50 51 52 53
                      size=d_key * n_head,
                      param_attr=fluid.initializer.Xavier(
                          uniform=False,
                          fan_in=d_model * d_key,
                          fan_out=n_head * d_key),
54 55 56
                      bias_attr=False,
                      num_flatten_dims=2)
        k = layers.fc(input=keys,
G
guosheng 已提交
57 58 59 60 61
                      size=d_key * n_head,
                      param_attr=fluid.initializer.Xavier(
                          uniform=False,
                          fan_in=d_model * d_key,
                          fan_out=n_head * d_key),
62 63 64
                      bias_attr=False,
                      num_flatten_dims=2)
        v = layers.fc(input=values,
G
guosheng 已提交
65 66 67 68 69
                      size=d_value * n_head,
                      param_attr=fluid.initializer.Xavier(
                          uniform=False,
                          fan_in=d_model * d_value,
                          fan_out=n_head * d_value),
70 71 72 73
                      bias_attr=False,
                      num_flatten_dims=2)
        return q, k, v

G
guosheng 已提交
74
    def __split_heads(x, n_head):
75 76 77
        """
        Reshape the last dimension of inpunt tensor x so that it becomes two
        dimensions and then transpose. Specifically, input a tensor with shape
G
guosheng 已提交
78 79
        [bs, max_sequence_length, n_head * hidden_dim] then output a tensor
        with shape [bs, n_head, max_sequence_length, hidden_dim].
80
        """
G
guosheng 已提交
81
        if n_head == 1:
82 83 84
            return x

        hidden_size = x.shape[-1]
85 86
        # The value 0 in shape attr means copying the corresponding dimension
        # size of the input as the output dimension size.
87
        reshaped = layers.reshape(
88
            x=x, shape=[0, -1, n_head, hidden_size // n_head])
89 90

        # permuate the dimensions into:
G
guosheng 已提交
91
        # [batch_size, n_head, max_sequence_len, hidden_size_per_head]
92 93 94 95 96 97 98 99 100 101 102 103
        return layers.transpose(x=reshaped, perm=[0, 2, 1, 3])

    def __combine_heads(x):
        """
        Transpose and then reshape the last two dimensions of inpunt tensor x
        so that it becomes one dimension, which is reverse to __split_heads.
        """
        if len(x.shape) == 3: return x
        if len(x.shape) != 4:
            raise ValueError("Input(x) should be a 4-D Tensor.")

        trans_x = layers.transpose(x, perm=[0, 2, 1, 3])
104 105
        # The value 0 in shape attr means copying the corresponding dimension
        # size of the input as the output dimension size.
106 107
        return layers.reshape(
            x=trans_x,
108
            shape=map(int, [0, -1, trans_x.shape[2] * trans_x.shape[3]]))
109

G
guosheng 已提交
110
    def scaled_dot_product_attention(q, k, v, attn_bias, d_model, dropout_rate):
111 112 113
        """
        Scaled Dot-Product Attention
        """
G
guosheng 已提交
114
        scaled_q = layers.scale(x=q, scale=d_model**-0.5)
115
        product = layers.matmul(x=scaled_q, y=k, transpose_y=True)
G
guosheng 已提交
116 117 118 119 120 121 122 123
        weights = layers.reshape(
            x=layers.elementwise_add(
                x=product, y=attn_bias) if attn_bias else product,
            shape=[-1, product.shape[-1]],
            actual_shape=pre_softmax_shape,
            act="softmax")
        weights = layers.reshape(
            x=weights, shape=product.shape, actual_shape=post_softmax_shape)
124 125 126 127 128 129
        if dropout_rate:
            weights = layers.dropout(
                weights, dropout_prob=dropout_rate, is_test=False)
        out = layers.matmul(weights, v)
        return out

G
guosheng 已提交
130
    q, k, v = __compute_qkv(queries, keys, values, n_head, d_key, d_value)
131

132 133 134 135 136 137
    if cache is not None:  # use cache and concat time steps
        print cache["k"].shape
        print k.shape
        k = cache["k"] = layers.concat([cache["k"], k], axis=1)
        v = cache["v"] = layers.concat([cache["v"], v], axis=1)

G
guosheng 已提交
138 139 140
    q = __split_heads(q, n_head)
    k = __split_heads(k, n_head)
    v = __split_heads(v, n_head)
141

G
guosheng 已提交
142
    ctx_multiheads = scaled_dot_product_attention(q, k, v, attn_bias, d_model,
143 144 145 146 147 148 149
                                                  dropout_rate)

    out = __combine_heads(ctx_multiheads)

    # Project back to the model size.
    proj_out = layers.fc(input=out,
                         size=d_model,
G
guosheng 已提交
150
                         param_attr=fluid.initializer.Xavier(uniform=False),
151 152 153 154 155 156 157
                         bias_attr=False,
                         num_flatten_dims=2)
    return proj_out


def positionwise_feed_forward(x, d_inner_hid, d_hid):
    """
Y
ying 已提交
158 159 160
    Position-wise Feed-Forward Networks.
    This module consists of two linear transformations with a ReLU activation
    in between, which is applied to each position separately and identically.
161 162 163 164
    """
    hidden = layers.fc(input=x,
                       size=d_inner_hid,
                       num_flatten_dims=2,
G
guosheng 已提交
165 166
                       param_attr=fluid.initializer.Uniform(
                           low=-(d_hid**-0.5), high=(d_hid**-0.5)),
167
                       act="relu")
G
guosheng 已提交
168 169 170 171 172
    out = layers.fc(input=hidden,
                    size=d_hid,
                    num_flatten_dims=2,
                    param_attr=fluid.initializer.Uniform(
                        low=-(d_inner_hid**-0.5), high=(d_inner_hid**-0.5)))
173 174 175
    return out


176
def pre_post_process_layer(prev_out, out, process_cmd, dropout_rate=0.):
177
    """
Y
ying 已提交
178
    Add residual connection, layer normalization and droput to the out tensor
179 180 181 182 183
    optionally according to the value of process_cmd.
    This will be used before or after multi-head attention and position-wise
    feed-forward networks.
    """
    for cmd in process_cmd:
Y
ying 已提交
184
        if cmd == "a":  # add residual connection
185
            out = out + prev_out if prev_out else out
Y
ying 已提交
186
        elif cmd == "n":  # add layer normalization
G
guosheng 已提交
187 188 189 190 191
            out = layers.layer_norm(
                out,
                begin_norm_axis=len(out.shape) - 1,
                param_attr=fluid.initializer.Constant(1.),
                bias_attr=fluid.initializer.Constant(0.))
Y
ying 已提交
192
        elif cmd == "d":  # add dropout
193 194 195
            if dropout_rate:
                out = layers.dropout(
                    out, dropout_prob=dropout_rate, is_test=False)
196 197 198 199 200 201 202 203 204 205 206 207
    return out


pre_process_layer = partial(pre_post_process_layer, None)
post_process_layer = pre_post_process_layer


def prepare_encoder(src_word,
                    src_pos,
                    src_vocab_size,
                    src_emb_dim,
                    src_max_len,
208 209
                    dropout_rate=0.,
                    src_data_shape=None,
210
                    pos_enc_param_name=None):
Y
ying 已提交
211 212
    """Add word embeddings and position encodings.
    The output tensor has a shape of:
213
    [batch_size, max_src_length_in_batch, d_model].
Y
ying 已提交
214
    This module is used at the bottom of the encoder stacks.
215 216
    """
    src_word_emb = layers.embedding(
G
guosheng 已提交
217 218 219
        src_word,
        size=[src_vocab_size, src_emb_dim],
        param_attr=fluid.initializer.Normal(0., 1.))
220 221 222 223 224 225
    src_pos_enc = layers.embedding(
        src_pos,
        size=[src_max_len, src_emb_dim],
        param_attr=fluid.ParamAttr(
            name=pos_enc_param_name, trainable=False))
    enc_input = src_word_emb + src_pos_enc
226 227 228 229
    enc_input = layers.reshape(
        x=enc_input,
        shape=[-1, src_max_len, src_emb_dim],
        actual_shape=src_data_shape)
230
    return layers.dropout(
231 232
        enc_input, dropout_prob=dropout_rate,
        is_test=False) if dropout_rate else enc_input
233 234 235 236 237 238 239 240


prepare_encoder = partial(
    prepare_encoder, pos_enc_param_name=pos_enc_param_names[0])
prepare_decoder = partial(
    prepare_encoder, pos_enc_param_name=pos_enc_param_names[1])


Y
ying 已提交
241 242 243 244 245 246 247
def encoder_layer(enc_input,
                  attn_bias,
                  n_head,
                  d_key,
                  d_value,
                  d_model,
                  d_inner_hid,
G
guosheng 已提交
248 249 250
                  dropout_rate=0.,
                  pre_softmax_shape=None,
                  post_softmax_shape=None):
Y
ying 已提交
251 252 253 254 255
    """The encoder layers that can be stacked to form a deep encoder.
    This module consits of a multi-head (self) attention followed by
    position-wise feed-forward networks and both the two components companied
    with the post_process_layer to add residual connection, layer normalization
    and droput.
256
    """
G
guosheng 已提交
257 258 259
    attn_output = multi_head_attention(
        enc_input, enc_input, enc_input, attn_bias, d_key, d_value, d_model,
        n_head, dropout_rate, pre_softmax_shape, post_softmax_shape)
Y
ying 已提交
260 261
    attn_output = post_process_layer(enc_input, attn_output, "dan",
                                     dropout_rate)
262
    ffd_output = positionwise_feed_forward(attn_output, d_inner_hid, d_model)
Y
ying 已提交
263 264 265 266 267 268 269 270 271 272 273
    return post_process_layer(attn_output, ffd_output, "dan", dropout_rate)


def encoder(enc_input,
            attn_bias,
            n_layer,
            n_head,
            d_key,
            d_value,
            d_model,
            d_inner_hid,
G
guosheng 已提交
274 275 276
            dropout_rate=0.,
            pre_softmax_shape=None,
            post_softmax_shape=None):
277
    """
Y
ying 已提交
278 279
    The encoder is composed of a stack of identical layers returned by calling
    encoder_layer.
280 281
    """
    for i in range(n_layer):
282 283 284 285 286 287 288 289
        enc_output = encoder_layer(
            enc_input,
            attn_bias,
            n_head,
            d_key,
            d_value,
            d_model,
            d_inner_hid,
G
guosheng 已提交
290 291 292
            dropout_rate,
            pre_softmax_shape,
            post_softmax_shape, )
293 294 295 296
        enc_input = enc_output
    return enc_output


Y
ying 已提交
297 298 299 300 301 302 303 304 305
def decoder_layer(dec_input,
                  enc_output,
                  slf_attn_bias,
                  dec_enc_attn_bias,
                  n_head,
                  d_key,
                  d_value,
                  d_model,
                  d_inner_hid,
G
guosheng 已提交
306 307 308 309
                  dropout_rate=0.,
                  slf_attn_pre_softmax_shape=None,
                  slf_attn_post_softmax_shape=None,
                  src_attn_pre_softmax_shape=None,
310 311
                  src_attn_post_softmax_shape=None,
                  cache=None):
Y
ying 已提交
312 313 314
    """ The layer to be stacked in decoder part.
    The structure of this module is similar to that in the encoder part except
    a multi-head attention is added to implement encoder-decoder attention.
315
    """
Y
ying 已提交
316 317 318 319 320 321 322 323 324
    slf_attn_output = multi_head_attention(
        dec_input,
        dec_input,
        dec_input,
        slf_attn_bias,
        d_key,
        d_value,
        d_model,
        n_head,
G
guosheng 已提交
325 326
        dropout_rate,
        slf_attn_pre_softmax_shape,
327 328
        slf_attn_post_softmax_shape,
        cache, )
Y
ying 已提交
329 330 331 332 333 334 335 336 337 338 339 340 341 342
    slf_attn_output = post_process_layer(
        dec_input,
        slf_attn_output,
        "dan",  # residual connection + dropout + layer normalization
        dropout_rate, )
    enc_attn_output = multi_head_attention(
        slf_attn_output,
        enc_output,
        enc_output,
        dec_enc_attn_bias,
        d_key,
        d_value,
        d_model,
        n_head,
G
guosheng 已提交
343 344 345
        dropout_rate,
        src_attn_pre_softmax_shape,
        src_attn_post_softmax_shape, )
Y
ying 已提交
346 347 348 349 350 351 352 353 354 355 356 357 358 359
    enc_attn_output = post_process_layer(
        slf_attn_output,
        enc_attn_output,
        "dan",  # residual connection + dropout + layer normalization
        dropout_rate, )
    ffd_output = positionwise_feed_forward(
        enc_attn_output,
        d_inner_hid,
        d_model, )
    dec_output = post_process_layer(
        enc_attn_output,
        ffd_output,
        "dan",  # residual connection + dropout + layer normalization
        dropout_rate, )
360 361 362
    return dec_output


Y
ying 已提交
363 364 365 366 367 368 369 370 371 372
def decoder(dec_input,
            enc_output,
            dec_slf_attn_bias,
            dec_enc_attn_bias,
            n_layer,
            n_head,
            d_key,
            d_value,
            d_model,
            d_inner_hid,
G
guosheng 已提交
373 374 375 376
            dropout_rate=0.,
            slf_attn_pre_softmax_shape=None,
            slf_attn_post_softmax_shape=None,
            src_attn_pre_softmax_shape=None,
377 378
            src_attn_post_softmax_shape=None,
            caches=None):
379 380 381 382
    """
    The decoder is composed of a stack of identical decoder_layer layers.
    """
    for i in range(n_layer):
Y
ying 已提交
383
        dec_output = decoder_layer(
384 385 386 387 388
            dec_input, enc_output, dec_slf_attn_bias, dec_enc_attn_bias, n_head,
            d_key, d_value, d_model, d_inner_hid, dropout_rate,
            slf_attn_pre_softmax_shape, slf_attn_post_softmax_shape,
            src_attn_pre_softmax_shape, src_attn_post_softmax_shape, None
            if caches is None else caches[i])
389 390 391 392
        dec_input = dec_output
    return dec_output


393
def make_all_inputs(input_fields):
394 395 396
    """
    Define the input data layers for the transformer model.
    """
397 398 399 400 401 402
    inputs = []
    for input_field in input_fields:
        input_var = layers.data(
            name=input_field,
            shape=input_descs[input_field][0],
            dtype=input_descs[input_field][1],
403
            append_batch_size=False)
404 405
        inputs.append(input_var)
    return inputs
406 407


Y
ying 已提交
408 409 410 411 412 413 414 415 416 417
def transformer(
        src_vocab_size,
        trg_vocab_size,
        max_length,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
418 419 420 421
        dropout_rate,
        label_smooth_eps, ):
    enc_inputs = make_all_inputs(encoder_data_input_fields +
                                 encoder_util_input_fields)
422

423 424 425 426 427 428 429 430 431 432
    enc_output = wrap_encoder(
        src_vocab_size,
        max_length,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
        dropout_rate,
433
        enc_inputs, )
434

435 436
    dec_inputs = make_all_inputs(decoder_data_input_fields[:-1] +
                                 decoder_util_input_fields)
437 438 439 440 441 442 443 444 445 446 447

    predict = wrap_decoder(
        trg_vocab_size,
        max_length,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
        dropout_rate,
448
        dec_inputs,
449 450 451 452
        enc_output, )

    # Padding index do not contribute to the total loss. The weights is used to
    # cancel padding index in calculating the loss.
453 454 455 456 457 458 459 460 461 462 463
    label, weights = make_all_inputs(label_data_input_fields)
    if label_smooth_eps:
        label = layers.label_smooth(
            label=layers.one_hot(
                input=label, depth=trg_vocab_size),
            epsilon=label_smooth_eps)
    cost = layers.softmax_with_cross_entropy(
        logits=predict,
        label=label,
        soft_label=True if label_smooth_eps else False)
    # cost = layers.softmax_with_cross_entropy(logits=predict, label=gold)
464
    weighted_cost = cost * weights
G
guosheng 已提交
465 466 467
    sum_cost = layers.reduce_sum(weighted_cost)
    token_num = layers.reduce_sum(weights)
    avg_cost = sum_cost / token_num
G
guosheng 已提交
468
    return sum_cost, avg_cost, predict, token_num
469 470 471 472 473 474 475 476 477 478 479


def wrap_encoder(src_vocab_size,
                 max_length,
                 n_layer,
                 n_head,
                 d_key,
                 d_value,
                 d_model,
                 d_inner_hid,
                 dropout_rate,
480
                 enc_inputs=None):
481 482 483
    """
    The wrapper assembles together all needed layers for the encoder.
    """
484
    if enc_inputs is None:
485
        # This is used to implement independent encoder program in inference.
486 487
        src_word, src_pos, src_slf_attn_bias, src_data_shape, \
            slf_attn_pre_softmax_shape, slf_attn_post_softmax_shape = \
488 489
            make_all_inputs(encoder_data_input_fields +
                                 encoder_util_input_fields)
490
    else:
491 492 493
        src_word, src_pos, src_slf_attn_bias, src_data_shape, \
            slf_attn_pre_softmax_shape, slf_attn_post_softmax_shape = \
            enc_inputs
Y
ying 已提交
494 495 496 497 498 499
    enc_input = prepare_encoder(
        src_word,
        src_pos,
        src_vocab_size,
        d_model,
        max_length,
500 501
        dropout_rate,
        src_data_shape, )
Y
ying 已提交
502 503 504 505 506 507 508 509 510
    enc_output = encoder(
        enc_input,
        src_slf_attn_bias,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
G
guosheng 已提交
511 512 513
        dropout_rate,
        slf_attn_pre_softmax_shape,
        slf_attn_post_softmax_shape, )
514 515 516 517 518 519 520 521 522 523 524 525
    return enc_output


def wrap_decoder(trg_vocab_size,
                 max_length,
                 n_layer,
                 n_head,
                 d_key,
                 d_value,
                 d_model,
                 d_inner_hid,
                 dropout_rate,
526
                 dec_inputs=None,
527 528
                 enc_output=None,
                 caches=None):
529 530 531
    """
    The wrapper assembles together all needed layers for the decoder.
    """
532
    if dec_inputs is None:
533
        # This is used to implement independent decoder program in inference.
G
guosheng 已提交
534
        trg_word, trg_pos, trg_slf_attn_bias, trg_src_attn_bias, \
535
            enc_output, trg_data_shape, slf_attn_pre_softmax_shape, \
536
            slf_attn_post_softmax_shape, src_attn_pre_softmax_shape, \
537 538
            src_attn_post_softmax_shape = make_all_inputs(
            decoder_data_input_fields + decoder_util_input_fields)
539
    else:
G
guosheng 已提交
540
        trg_word, trg_pos, trg_slf_attn_bias, trg_src_attn_bias, \
541 542 543
            trg_data_shape, slf_attn_pre_softmax_shape, \
            slf_attn_post_softmax_shape, src_attn_pre_softmax_shape, \
            src_attn_post_softmax_shape = dec_inputs
Y
ying 已提交
544 545 546 547 548 549 550

    dec_input = prepare_decoder(
        trg_word,
        trg_pos,
        trg_vocab_size,
        d_model,
        max_length,
551 552
        dropout_rate,
        trg_data_shape, )
Y
ying 已提交
553 554 555 556 557 558 559 560 561 562 563
    dec_output = decoder(
        dec_input,
        enc_output,
        trg_slf_attn_bias,
        trg_src_attn_bias,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
G
guosheng 已提交
564 565 566 567
        dropout_rate,
        slf_attn_pre_softmax_shape,
        slf_attn_post_softmax_shape,
        src_attn_pre_softmax_shape,
568 569
        src_attn_post_softmax_shape,
        caches, )
570
    # Return logits for training and probs for inference.
571
    predict = layers.reshape(
G
guosheng 已提交
572 573 574 575 576
        x=layers.fc(input=dec_output,
                    size=trg_vocab_size,
                    bias_attr=False,
                    num_flatten_dims=2),
        shape=[-1, trg_vocab_size],
577
        act="softmax" if dec_inputs is None else None)
578
    return predict
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687


def fast_decode(
        src_vocab_size,
        trg_vocab_size,
        max_in_len,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
        dropout_rate,
        beam_size,
        max_out_len,
        eos_idx, ):
    enc_output = wrap_encoder(src_vocab_size, max_in_len, n_layer, n_head,
                              d_key, d_value, d_model, d_inner_hid,
                              dropout_rate)
    start_tokens, trg_src_attn_bias, trg_data_shape, \
        slf_attn_pre_softmax_shape, slf_attn_post_softmax_shape, \
        src_attn_pre_softmax_shape, src_attn_post_softmax_shape = \
        make_all_inputs(fast_decoder_data_fields + decoder_util_input_fields)

    def beam_search():
        cond = layers.create_tensor(dtype='bool')
        while_op = layers.While(cond)
        max_len = layers.fill_constant(
            shape=[1], dtype='int32', value=max_out_len)
        step_idx = layers.fill_constant(shape=[1], dtype='int32', value=0)
        init_scores = layers.fill_constant_batch_size_like(
            input=start_tokens, shape=[-1, 1], dtype="float32", value=0)
        # array states
        ids = layers.array_write(start_tokens, step_idx)
        scores = layers.array_write(init_scores, step_idx)
        # cell states (can be overwrited)
        caches = [{
            "k": layers.fill_constant_batch_size_like(
                input=start_tokens,
                shape=[-1, 0, d_model],
                dtype="float32",
                value=0),
            "v": layers.fill_constant_batch_size_like(
                input=start_tokens,
                shape=[-1, 0, d_model],
                dtype="float32",
                value=0)
        } for i in range(n_layer)]

        with while_op.block():
            pre_ids = layers.array_read(array=ids, i=step_idx)
            pre_scores = layers.array_read(array=scores, i=step_idx)
            pre_pos = layers.elementwise_mul(
                x=layers.fill_constant_batch_size_like(
                    input=pre_ids, value=1, shape=[-1, 1], dtype='int32'),
                y=layers.increment(
                    x=step_idx, value=1.0, in_place=False))
            pre_src_attn_bias = layers.sequence_expand(
                x=trg_src_attn_bias, y=pre_ids)
            pre_enc_output = layers.sequence_expand(x=enc_output, y=pre_ids)
            print caches[0]["k"].shape
            pre_caches = [{
                "k": layers.sequence_expand(
                    x=cache["k"], y=pre_ids),
                "v": layers.sequence_expand(
                    x=cache["v"], y=pre_ids),
            } for cache in caches]
            print pre_caches[0]["k"].shape
            logits = wrap_decoder(
                trg_vocab_size,
                max_in_len,
                n_layer,
                n_head,
                d_key,
                d_value,
                d_model,
                d_inner_hid,
                dropout_rate,
                dec_inputs=(
                    pre_ids, pre_pos, None, pre_src_attn_bias, trg_data_shape,
                    slf_attn_pre_softmax_shape, slf_attn_post_softmax_shape,
                    src_attn_pre_softmax_shape, src_attn_post_softmax_shape),
                enc_output=pre_enc_output,
                caches=pre_caches)
            topk_scores, topk_indices = layers.topk(logits, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=pre_scores, y=layers.log(x=layers.softmax(topk_scores)))
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=eos_idx)

            layers.increment(x=step_idx, value=1.0, in_place=True)
            # update states
            layers.array_write(selected_ids, i=step_idx)
            layers.array_write(selected_scores, i=step_idx)
            layers.assign(pre_src_attn_bias, trg_src_attn_bias)
            layers.assign(pre_enc_output, enc_output)
            for i in range(n_layer):
                layers.assign(pre_caches[i]["k"], caches[i]["k"])
                layers.assign(pre_caches[i]["v"], caches[i]["v"])

            max_len_cond = layers.less_than(x=step_idx, y=max_len)
            all_finish_cond = layers.less_than(x=step_idx, y=max_len)
            layers.logical_or(x=max_len_cond, y=all_finish_cond, out=cond)

    beam_search()