Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
baa01f6f
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
baa01f6f
编写于
4月 08, 2018
作者:
G
guosheng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Refine the validation in Transformer.
上级
afe55c9e
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
17 addition
and
18 deletion
+17
-18
fluid/neural_machine_translation/transformer/model.py
fluid/neural_machine_translation/transformer/model.py
+1
-1
fluid/neural_machine_translation/transformer/train.py
fluid/neural_machine_translation/transformer/train.py
+16
-17
未找到文件。
fluid/neural_machine_translation/transformer/model.py
浏览文件 @
baa01f6f
...
...
@@ -594,7 +594,7 @@ def transformer(
sum_cost
=
layers
.
reduce_sum
(
weighted_cost
)
token_num
=
layers
.
reduce_sum
(
weights
)
avg_cost
=
sum_cost
/
token_num
return
sum_cost
,
avg_cost
,
predict
return
sum_cost
,
avg_cost
,
predict
,
token_num
def
wrap_encoder
(
src_vocab_size
,
...
...
fluid/neural_machine_translation/transformer/train.py
浏览文件 @
baa01f6f
...
...
@@ -104,7 +104,7 @@ def main():
place
=
fluid
.
CUDAPlace
(
0
)
if
TrainTaskConfig
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
sum_cost
,
avg_cost
,
predict
=
transformer
(
sum_cost
,
avg_cost
,
predict
,
token_num
=
transformer
(
ModelHyperParams
.
src_vocab_size
+
1
,
ModelHyperParams
.
trg_vocab_size
+
1
,
ModelHyperParams
.
max_length
+
1
,
ModelHyperParams
.
n_layer
,
ModelHyperParams
.
n_head
,
...
...
@@ -140,23 +140,24 @@ def main():
batch_size
=
TrainTaskConfig
.
batch_size
)
def
test
(
exe
):
test_
sum_costs
=
[]
test_
avg_costs
=
[]
test_
total_cost
=
0
test_
total_token
=
0
for
batch_id
,
data
in
enumerate
(
val_data
()):
if
len
(
data
)
!=
TrainTaskConfig
.
batch_size
:
# Fix the batch size to keep comparable cost among all
# mini-batches and compute the mean.
continue
data_input
=
prepare_batch_input
(
data
,
encoder_input_data_names
+
decoder_input_data_names
[:
-
1
]
+
label_data_names
,
ModelHyperParams
.
src_pad_idx
,
ModelHyperParams
.
trg_pad_idx
,
ModelHyperParams
.
n_head
,
ModelHyperParams
.
d_model
)
test_sum_cost
,
test_avg_cost
=
exe
.
run
(
test_program
,
feed
=
data_input
,
fetch_list
=
[
sum_cost
,
avg_cost
])
test_sum_costs
.
append
(
test_sum_cost
)
test_avg_costs
.
append
(
test_avg_cost
)
return
np
.
mean
(
test_sum_costs
),
np
.
mean
(
test_avg_costs
)
test_sum_cost
,
test_token_num
=
exe
.
run
(
test_program
,
feed
=
data_input
,
fetch_list
=
[
sum_cost
,
token_num
],
use_program_cache
=
True
)
test_total_cost
+=
test_sum_cost
test_total_token
+=
test_token_num
test_avg_cost
=
test_total_cost
/
test_total_token
test_ppl
=
np
.
exp
([
min
(
test_avg_cost
,
100
)])
return
test_avg_cost
,
test_ppl
# Initialize the parameters.
exe
.
run
(
fluid
.
framework
.
default_startup_program
())
...
...
@@ -185,13 +186,11 @@ def main():
(
pass_id
,
batch_id
,
sum_cost_val
,
avg_cost_val
,
np
.
exp
([
min
(
avg_cost_val
[
0
],
100
)])))
# Validate and save the model for inference.
val_
sum_cost
,
val_avg_cost
=
test
(
exe
)
val_
avg_cost
,
val_ppl
=
test
(
exe
)
pass_end_time
=
time
.
time
()
time_consumed
=
pass_end_time
-
pass_start_time
print
(
"epoch: %d, val sum loss: %f, val avg loss: %f, val ppl: %f, "
"consumed %fs"
%
(
pass_id
,
val_sum_cost
,
val_avg_cost
,
np
.
exp
([
min
(
val_avg_cost
,
100
)]),
time_consumed
))
print
(
"epoch: %d, val avg loss: %f, val ppl: %f, "
"consumed %fs"
%
(
pass_id
,
val_avg_cost
,
val_ppl
,
time_consumed
))
fluid
.
io
.
save_inference_model
(
os
.
path
.
join
(
TrainTaskConfig
.
model_dir
,
"pass_"
+
str
(
pass_id
)
+
".infer.model"
),
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录