network.py 15.7 KB
Newer Older
1
import sys
2
import os
3
import math
4 5 6 7
import numpy as np


def import_fluid():
8
    import paddle.fluid as fluid
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
    return fluid


def layer(op):
    '''Decorator for composable network layers.'''

    def layer_decorated(self, *args, **kwargs):
        # Automatically set a name if not provided.
        name = kwargs.setdefault('name', self.get_unique_name(op.__name__))
        # Figure out the layer inputs.
        if len(self.terminals) == 0:
            raise RuntimeError('No input variables found for layer %s.' % name)
        elif len(self.terminals) == 1:
            layer_input = self.terminals[0]
        else:
            layer_input = list(self.terminals)
25

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
        # Perform the operation and get the output.
        layer_output = op(self, layer_input, *args, **kwargs)
        # Add to layer LUT.
        self.layers[name] = layer_output
        # This output is now the input for the next layer.
        self.feed(layer_output)
        # Return self for chained calls.
        return self

    return layer_decorated


class Network(object):
    def __init__(self, inputs, trainable=True):
        # The input nodes for this network
        self.inputs = inputs
        # The current list of terminal nodes
        self.terminals = []
        # Mapping from layer names to layers
        self.layers = dict(inputs)
        # If true, the resulting variables are set as trainable
        self.trainable = trainable
        # Switch variable for dropout
        self.paddle_env = None
50 51
        self.output_names = []
        self.name_trace = None
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
        self.setup()

    def setup(self):
        '''Construct the network. '''
        raise NotImplementedError('Must be implemented by the subclass.')

    def load(self, data_path, exe=None, place=None, ignore_missing=False):
        '''Load network weights.
        data_path: The path to the numpy-serialized network weights
        ignore_missing: If true, serialized weights for missing layers are ignored.
        '''
        fluid = import_fluid()
        #load fluid mode directly
        if os.path.isdir(data_path):
            assert (exe is not None), \
                'must provide a executor to load fluid model'
68
            fluid.io.load_persistables(executor=exe, dirname=data_path)
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
            return True

        #load model from a npy file
        if exe is None or place is None:
            if self.paddle_env is None:
                place = fluid.CPUPlace()
                exe = fluid.Executor(place)
                self.paddle_env = {'place': place, 'exe': exe}
                exe = exe.run(fluid.default_startup_program())
            else:
                place = self.paddle_env['place']
                exe = self.paddle_env['exe']

        data_dict = np.load(data_path).item()
        for op_name in data_dict:
84 85 86 87
            if op_name == 'caffe2fluid_name_trace':
                self.name_trace = data_dict[op_name]
                continue

88 89 90 91 92 93
            layer = self.layers[op_name]
            for param_name, data in data_dict[op_name].iteritems():
                try:
                    name = '%s_%s' % (op_name, param_name)
                    v = fluid.global_scope().find_var(name)
                    w = v.get_tensor()
94
                    w.set(data.reshape(w.shape()), place)
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
                except ValueError:
                    if not ignore_missing:
                        raise
        return True

    def feed(self, *args):
        '''Set the input(s) for the next operation by replacing the terminal nodes.
        The arguments can be either layer names or the actual layers.
        '''
        assert len(args) != 0
        self.terminals = []
        for fed_layer in args:
            if isinstance(fed_layer, basestring):
                try:
                    fed_layer = self.layers[fed_layer]
                except KeyError:
                    raise KeyError('Unknown layer name fed: %s' % fed_layer)
            self.terminals.append(fed_layer)
        return self

    def get_output(self):
        '''Returns the current network output.'''
        return self.terminals[-1]

    def get_unique_name(self, prefix):
        '''Returns an index-suffixed unique name for the given prefix.
        This is used for auto-generating layer names based on the type-prefix.
        '''
        ident = sum(t.startswith(prefix) for t, _ in self.layers.items()) + 1
        return '%s_%d' % (prefix, ident)

126 127 128 129 130 131 132 133 134
    def get_unique_output_name(self, prefix, layertype):
        '''Returns an index-suffixed unique name for the given prefix.
            This is used for auto-generating layer names based on the type-prefix.
        '''
        ident = sum(t.startswith(prefix) for t in self.output_names) + 1
        unique_name = '%s.%s.output.%d' % (prefix, layertype, ident)
        self.output_names.append(unique_name)
        return unique_name

135 136 137 138 139 140 141 142 143 144
    @layer
    def conv(self,
             input,
             k_h,
             k_w,
             c_o,
             s_h,
             s_w,
             name,
             relu=True,
145
             relu_negative_slope=0.0,
146
             padding=None,
147
             dilation=1,
148 149 150 151 152 153 154 155 156 157 158 159 160 161
             group=1,
             biased=True):
        if padding is None:
            padding = [0, 0]

        # Get the number of channels in the input
        c_i, h_i, w_i = input.shape[1:]

        # Verify that the grouping parameter is valid
        assert c_i % group == 0
        assert c_o % group == 0

        fluid = import_fluid()
        prefix = name + '_'
162 163 164 165 166 167 168 169
        leaky_relu = False
        act = 'relu'
        if relu is False:
            act = None
        elif relu_negative_slope != 0.0:
            leaky_relu = True
            act = None

170
        output = fluid.layers.conv2d(
171
            name=self.get_unique_output_name(name, 'conv2d'),
172 173 174 175 176
            input=input,
            filter_size=[k_h, k_w],
            num_filters=c_o,
            stride=[s_h, s_w],
            padding=padding,
177
            dilation=dilation,
178 179 180
            groups=group,
            param_attr=fluid.ParamAttr(name=prefix + "weights"),
            bias_attr=fluid.ParamAttr(name=prefix + "biases"),
181 182 183 184 185
            act=act)

        if leaky_relu:
            output = fluid.layers.leaky_relu(output, alpha=relu_negative_slope)

186 187
        return output

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
    @layer
    def deconv(self,
               input,
               k_h,
               k_w,
               c_o,
               s_h,
               s_w,
               name,
               relu=True,
               relu_negative_slope=0.0,
               padding=None,
               dilation=1,
               biased=True):
        if padding is None:
            padding = [0, 0]

        # Get the number of channels in the input
        c_i, h_i, w_i = input.shape[1:]

        fluid = import_fluid()
        prefix = name + '_'
        leaky_relu = False
        act = 'relu'
        if relu is False:
            act = None
        elif relu_negative_slope != 0.0:
            leaky_relu = True
            act = None

        p_h = padding[0]
        p_w = padding[1]
        h_o = (h_i - 1) * s_h - 2 * p_h + dilation * (k_h - 1) + 1
        w_o = (w_i - 1) * s_w - 2 * p_w + dilation * (k_w - 1) + 1
        output = fluid.layers.conv2d_transpose(
            name=self.get_unique_output_name(name, 'conv2d_transpose'),
            input=input,
            num_filters=c_o,
            output_size=[h_o, w_o],
            filter_size=[k_h, k_w],
            padding=padding,
            stride=[s_h, s_w],
            dilation=dilation,
            param_attr=fluid.ParamAttr(name=prefix + "weights"),
            bias_attr=fluid.ParamAttr(name=prefix + "biases"),
            act=act)

        if leaky_relu:
            output = fluid.layers.leaky_relu(output, alpha=relu_negative_slope)

        return output

240 241 242
    @layer
    def relu(self, input, name):
        fluid = import_fluid()
243
        output = fluid.layers.relu(input)
244 245
        return output

246 247
    @layer
    def prelu(self, input, channel_shared, name):
248 249 250 251 252 253 254 255 256 257 258 259
        fluid = import_fluid()
        if channel_shared:
            mode = 'all'
        else:
            mode = 'channel'

        prefix = name + '_'
        output = fluid.layers.prelu(
            input,
            mode=mode,
            param_attr=fluid.ParamAttr(name=prefix + 'negslope'))
        return output
260

261 262
    def pool(self, pool_type, input, k_h, k_w, s_h, s_w, ceil_mode, padding,
             name):
263
        # Get the number of channels in the input
W
wanglong03 已提交
264 265 266
        in_hw = input.shape[2:]
        k_hw = [k_h, k_w]
        s_hw = [s_h, s_w]
267 268 269

        fluid = import_fluid()
        output = fluid.layers.pool2d(
270
            name=name,
271
            input=input,
W
wanglong03 已提交
272 273
            pool_size=k_hw,
            pool_stride=s_hw,
274
            pool_padding=padding,
275
            ceil_mode=ceil_mode,
W
wanglong03 已提交
276
            pool_type=pool_type)
277 278
        return output

W
wanglong03 已提交
279
    @layer
280 281 282 283 284 285 286 287 288
    def max_pool(self,
                 input,
                 k_h,
                 k_w,
                 s_h,
                 s_w,
                 ceil_mode,
                 padding=[0, 0],
                 name=None):
289 290 291 292 293 294 295 296 297 298
        return self.pool(
            'max',
            input,
            k_h,
            k_w,
            s_h,
            s_w,
            ceil_mode,
            padding,
            name=self.get_unique_output_name(name, 'max_pool'))
W
wanglong03 已提交
299 300

    @layer
301 302 303 304 305 306 307 308 309
    def avg_pool(self,
                 input,
                 k_h,
                 k_w,
                 s_h,
                 s_w,
                 ceil_mode,
                 padding=[0, 0],
                 name=None):
310 311 312 313 314 315 316 317 318 319
        return self.pool(
            'avg',
            input,
            k_h,
            k_w,
            s_h,
            s_w,
            ceil_mode,
            padding,
            name=self.get_unique_output_name(name, 'avg_pool'))
320 321 322 323

    @layer
    def sigmoid(self, input, name):
        fluid = import_fluid()
324 325
        return fluid.layers.sigmoid(
            input, name=self.get_unique_output_name(name, 'sigmoid'))
W
wanglong03 已提交
326

327 328 329 330 331 332
    @layer
    def tanh(self, input, name):
        fluid = import_fluid()
        return fluid.layers.tanh(
            input, name=self.get_unique_output_name(name, 'tanh'))

333 334
    @layer
    def lrn(self, input, radius, alpha, beta, name, bias=1.0):
W
wanglong03 已提交
335
        fluid = import_fluid()
336 337 338 339 340 341
        output = fluid.layers.lrn(input=input,
                                  n=radius,
                                  k=bias,
                                  alpha=alpha,
                                  beta=beta,
                                  name=self.get_unique_output_name(name, 'lrn'))
W
wanglong03 已提交
342
        return output
343 344 345 346

    @layer
    def concat(self, inputs, axis, name):
        fluid = import_fluid()
347 348 349 350
        output = fluid.layers.concat(
            input=inputs,
            axis=axis,
            name=self.get_unique_output_name(name, 'concat'))
351 352 353 354 355 356 357
        return output

    @layer
    def add(self, inputs, name):
        fluid = import_fluid()
        output = inputs[0]
        for i in inputs[1:]:
358 359
            output = fluid.layers.elementwise_add(
                x=output, y=i, name=self.get_unique_output_name(name, 'add'))
360 361
        return output

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
    @layer
    def max(self, inputs, name):
        fluid = import_fluid()
        output = inputs[0]
        for i in inputs[1:]:
            output = fluid.layers.elementwise_max(
                x=output, y=i, name=self.get_unique_output_name(name, 'max'))
        return output

    @layer
    def multiply(self, inputs, name):
        fluid = import_fluid()
        output = inputs[0]
        for i in inputs[1:]:
            output = fluid.layers.elementwise_mul(
                x=output, y=i, name=self.get_unique_output_name(name, 'mul'))
        return output

380 381 382 383 384 385 386 387 388
    @layer
    def fc(self, input, num_out, name, relu=True, act=None):
        fluid = import_fluid()

        if act is None:
            act = 'relu' if relu is True else None

        prefix = name + '_'
        output = fluid.layers.fc(
389
            name=self.get_unique_output_name(name, 'fc'),
390 391 392 393 394 395 396 397 398 399
            input=input,
            size=num_out,
            act=act,
            param_attr=fluid.ParamAttr(name=prefix + 'weights'),
            bias_attr=fluid.ParamAttr(name=prefix + 'biases'))
        return output

    @layer
    def softmax(self, input, name):
        fluid = import_fluid()
400 401 402 403 404 405 406
        shape = input.shape
        if len(shape) > 2:
            for sz in shape[2:]:
                assert sz == 1, "invalid input shape[%s] for softmax" % (
                    str(shape))
            input = fluid.layers.reshape(input, shape[0:2])

407 408
        output = fluid.layers.softmax(
            input, name=self.get_unique_output_name(name, 'softmax'))
409 410 411
        return output

    @layer
412 413 414 415 416
    def batch_normalization(self,
                            input,
                            name,
                            scale_offset=True,
                            eps=1e-5,
417 418
                            relu=False,
                            relu_negative_slope=0.0):
419 420 421 422 423 424 425 426 427
        # NOTE: Currently, only inference is supported
        fluid = import_fluid()
        prefix = name + '_'
        param_attr = None if scale_offset is False else fluid.ParamAttr(
            name=prefix + 'scale')
        bias_attr = None if scale_offset is False else fluid.ParamAttr(
            name=prefix + 'offset')
        mean_name = prefix + 'mean'
        variance_name = prefix + 'variance'
428 429 430 431 432 433 434 435 436

        leaky_relu = False
        act = 'relu'
        if relu is False:
            act = None
        elif relu_negative_slope != 0.0:
            leaky_relu = True
            act = None

437
        output = fluid.layers.batch_norm(
438
            name=self.get_unique_output_name(name, 'batch_norm'),
439 440 441 442 443 444
            input=input,
            is_test=True,
            param_attr=param_attr,
            bias_attr=bias_attr,
            moving_mean_name=mean_name,
            moving_variance_name=variance_name,
445
            epsilon=eps,
446 447 448 449
            act=act)

        if leaky_relu:
            output = fluid.layers.leaky_relu(output, alpha=relu_negative_slope)
450 451 452 453

        return output

    @layer
W
wanglong03 已提交
454 455
    def dropout(self, input, drop_prob, name, is_test=True):
        fluid = import_fluid()
456 457 458 459
        if is_test:
            output = input
        else:
            output = fluid.layers.dropout(
460 461 462 463
                input,
                dropout_prob=drop_prob,
                is_test=is_test,
                name=self.get_unique_output_name(name, 'dropout'))
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
        return output

    @layer
    def scale(self, input, axis=1, num_axes=1, name=None):
        fluid = import_fluid()

        assert num_axes == 1, "layer scale not support this num_axes[%d] now" % (
            num_axes)

        prefix = name + '_'
        scale_shape = input.shape[axis:axis + num_axes]
        param_attr = fluid.ParamAttr(name=prefix + 'scale')
        scale_param = fluid.layers.create_parameter(
            shape=scale_shape, dtype=input.dtype, name=name, attr=param_attr)

        offset_attr = fluid.ParamAttr(name=prefix + 'offset')
        offset_param = fluid.layers.create_parameter(
            shape=scale_shape, dtype=input.dtype, name=name, attr=offset_attr)

483 484 485 486 487 488 489 490 491 492
        output = fluid.layers.elementwise_mul(
            input,
            scale_param,
            axis=axis,
            name=self.get_unique_output_name(name, 'scale_mul'))
        output = fluid.layers.elementwise_add(
            output,
            offset_param,
            axis=axis,
            name=self.get_unique_output_name(name, 'scale_add'))
W
wanglong03 已提交
493
        return output
494

495 496 497 498 499 500
    def custom_layer_factory(self):
        """ get a custom layer maker provided by subclass
        """
        raise NotImplementedError(
            '[custom_layer_factory] must be implemented by the subclass.')

501 502
    @layer
    def custom_layer(self, inputs, kind, name, *args, **kwargs):
503
        """ make custom layer
504
        """
505
        name = self.get_unique_output_name(name, kind)
506 507
        layer_factory = self.custom_layer_factory()
        return layer_factory(kind, inputs, name, *args, **kwargs)