Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
e7684f07
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e7684f07
编写于
4月 19, 2018
作者:
W
walloollaw
提交者:
qingqing01
4月 19, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
caffe2fluid:upgrade argmax implementtion (#866)
上级
237fe2f3
变更
15
隐藏空白更改
内联
并排
Showing
15 changed file
with
507 addition
and
52 deletion
+507
-52
fluid/image_classification/caffe2fluid/README.md
fluid/image_classification/caffe2fluid/README.md
+48
-20
fluid/image_classification/caffe2fluid/convert.py
fluid/image_classification/caffe2fluid/convert.py
+7
-1
fluid/image_classification/caffe2fluid/examples/imagenet/infer.py
...age_classification/caffe2fluid/examples/imagenet/infer.py
+0
-1
fluid/image_classification/caffe2fluid/examples/mnist/evaluate.py
...age_classification/caffe2fluid/examples/mnist/evaluate.py
+2
-5
fluid/image_classification/caffe2fluid/kaffe/custom_layers/__init__.py
...lassification/caffe2fluid/kaffe/custom_layers/__init__.py
+104
-0
fluid/image_classification/caffe2fluid/kaffe/custom_layers/argmax.py
..._classification/caffe2fluid/kaffe/custom_layers/argmax.py
+70
-0
fluid/image_classification/caffe2fluid/kaffe/custom_layers/axpy.py
...ge_classification/caffe2fluid/kaffe/custom_layers/axpy.py
+51
-0
fluid/image_classification/caffe2fluid/kaffe/custom_layers/flatten.py
...classification/caffe2fluid/kaffe/custom_layers/flatten.py
+73
-0
fluid/image_classification/caffe2fluid/kaffe/custom_layers/register.py
...lassification/caffe2fluid/kaffe/custom_layers/register.py
+37
-0
fluid/image_classification/caffe2fluid/kaffe/graph.py
fluid/image_classification/caffe2fluid/kaffe/graph.py
+4
-2
fluid/image_classification/caffe2fluid/kaffe/layers.py
fluid/image_classification/caffe2fluid/kaffe/layers.py
+14
-3
fluid/image_classification/caffe2fluid/kaffe/paddle/network.py
.../image_classification/caffe2fluid/kaffe/paddle/network.py
+50
-7
fluid/image_classification/caffe2fluid/kaffe/paddle/transformer.py
...ge_classification/caffe2fluid/kaffe/paddle/transformer.py
+10
-1
fluid/image_classification/caffe2fluid/kaffe/shapes.py
fluid/image_classification/caffe2fluid/kaffe/shapes.py
+29
-8
fluid/image_classification/caffe2fluid/kaffe/transformers.py
fluid/image_classification/caffe2fluid/kaffe/transformers.py
+8
-4
未找到文件。
fluid/image_classification/caffe2fluid/README.md
浏览文件 @
e7684f07
### Caffe2Fluid
This tool is used to convert a Caffe model to Fluid model
This tool is used to convert a Caffe model to
a
Fluid model
### How
t
o
### How
T
o
1.
Prepare caffepb.py in ./proto if your python has no 'pycaffe' module, two options provided here:
-
Generate pycaffe from caffe.proto
<pre><code>
bash ./proto/compile.sh
</code></pre>
-
Generate pycaffe from caffe.proto
```
bash ./proto/compile.sh
```
-
download one from github directly
<pre><code>
cd proto/ && wget https://github.com/ethereon/caffe-tensorflow/blob/master/kaffe/caffe/caffepb.py
</code></pre>
- Download one from github directly
```
cd proto/ && wget https://github.com/ethereon/caffe-tensorflow/blob/master/kaffe/caffe/caffepb.py
```
2.
Convert the Caffe model to Fluid model
-
generate fluid code and weight file
<pre><code>
python convert.py alexnet.prototxt
\
--caffemodel alexnet.caffemodel
\
--data-output-path alexnet.npy
\
--code-output-path alexnet.py
</code></pre>
-
Generate fluid code and weight file
```
python convert.py alexnet.prototxt \
--caffemodel alexnet.caffemodel \
--data-output-path alexnet.npy \
--code-output-path alexnet.py
```
-
save weights as fluid model file
<pre><code>
python alexnet.py alexnet.npy ./fluid_model
</code></pre>
- Save weights as fluid model file
```
python alexnet.py alexnet.npy ./fluid
```
3. Use the converted model to infer
-
s
ee more details in '
*examples/imagenet/run.sh*
'
- S
ee more details in '*examples/imagenet/run.sh*'
4.
compare the inference results with caffe
-
see more details in '
*examples/imagenet/diff.sh*
'
4. Compare the inference results with caffe
- See more details in '*examples/imagenet/diff.sh*'
### How to convert custom layer
1. Implement your custom layer in a file under '*kaffe/custom_layers*', eg: mylayer.py
- Implement ```shape_func(input_shape, [other_caffe_params])``` to calculate the output shape
- Implement ```layer_func(inputs, name, [other_caffe_params])``` to construct a fluid layer
- Register these two functions ```register(kind='MyType', shape=shape_func, layer=layer_func)```
- Notes: more examples can be found in '*kaffe/custom_layers*'
2. Add ```import mylayer``` to '*kaffe/custom_layers/\_\_init__.py*'
3. Prepare your pycaffe as your customized version(same as previous env prepare)
- (option1) replace 'proto/caffe.proto' with your own caffe.proto and compile it
- (option2) change your pycaffe to the customized version
4. Convert the Caffe model to Fluid model
5. Set env $CAFFE2FLUID_CUSTOM_LAYERS to the parent directory of 'custom_layers'
```
export CAFFE2FLUID_CUSTOM_LAYERS=/path/to/caffe2fluid/kaffe
```
6. Use the converted model when loading model in 'xxxnet.py' and 'xxxnet.npy'(no need if model is already in 'fluid/model' and 'fluid/params')
### Tested models
-
Lenet
- Lenet:
[model addr](https://github.com/ethereon/caffe-tensorflow/blob/master/examples/mnist)
- ResNets:(ResNet-50, ResNet-101, ResNet-152)
[model addr](https://onedrive.live.com/?authkey=%21AAFW2-FVoxeVRck&id=4006CBB8476FF777%2117887&cid=4006CBB8476FF777)
...
...
fluid/image_classification/caffe2fluid/convert.py
浏览文件 @
e7684f07
...
...
@@ -43,11 +43,17 @@ def convert(def_path, caffemodel_path, data_output_path, code_output_path,
print_stderr
(
'Saving source...'
)
with
open
(
code_output_path
,
'wb'
)
as
src_out
:
src_out
.
write
(
transformer
.
transform_source
())
print_stderr
(
'set env variable before using converted model '
\
'if used custom_layers:'
)
custom_pk_path
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
custom_pk_path
=
os
.
path
.
join
(
custom_pk_path
,
'kaffe'
)
print_stderr
(
'export CAFFE2FLUID_CUSTOM_LAYERS=%s'
%
(
custom_pk_path
))
print_stderr
(
'Done.'
)
return
0
except
KaffeError
as
err
:
fatal_error
(
'Error encountered: {}'
.
format
(
err
))
return
0
return
1
def
main
():
...
...
fluid/image_classification/caffe2fluid/examples/imagenet/infer.py
浏览文件 @
e7684f07
...
...
@@ -164,7 +164,6 @@ def infer(model_path, imgfile, net_file=None, net_name=None, debug=True):
debug
=
False
print
(
'found a inference model for fluid'
)
except
ValueError
as
e
:
pass
print
(
'try to load model using net file and weight file'
)
net_weight
=
model_path
ret
=
load_model
(
exe
,
place
,
net_file
,
net_name
,
net_weight
,
debug
)
...
...
fluid/image_classification/caffe2fluid/examples/mnist/evaluate.py
浏览文件 @
e7684f07
...
...
@@ -7,8 +7,8 @@
import
sys
import
os
import
numpy
as
np
import
paddle.fluid
as
fluid
import
paddle.v2
as
paddle
import
paddle.v2.fluid
as
fluid
def
test_model
(
exe
,
test_program
,
fetch_list
,
test_reader
,
feeder
):
...
...
@@ -34,9 +34,6 @@ def evaluate(net_file, model_file):
from
lenet
import
LeNet
as
MyNet
with_gpu
=
False
paddle
.
init
(
use_gpu
=
with_gpu
)
#1, define network topology
images
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
[
1
,
28
,
28
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
...
...
@@ -45,7 +42,7 @@ def evaluate(net_file, model_file):
prediction
=
net
.
layers
[
'prob'
]
acc
=
fluid
.
layers
.
accuracy
(
input
=
prediction
,
label
=
label
)
place
=
fluid
.
C
UDAPlace
(
0
)
if
with_gpu
is
True
else
fluid
.
C
PUPlace
()
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
...
...
fluid/image_classification/caffe2fluid/kaffe/custom_layers/__init__.py
0 → 100644
浏览文件 @
e7684f07
"""
"""
from
.register
import
get_registered_layers
#custom layer import begins
import
axpy
import
flatten
import
argmax
#custom layer import ends
custom_layers
=
get_registered_layers
()
def
set_args
(
f
,
params
):
""" set args for function 'f' using the parameters in node.layer.parameters
Args:
f (function): a python function object
params (object): a object contains attributes needed by f's arguments
Returns:
arg_names (list): a list of argument names
kwargs (dict): a dict contains needed arguments
"""
argc
=
f
.
__code__
.
co_argcount
arg_list
=
f
.
__code__
.
co_varnames
[
0
:
argc
]
kwargs
=
{}
for
arg_name
in
arg_list
:
try
:
v
=
getattr
(
node
.
layer
.
parameters
,
arg_name
,
None
)
except
Exception
as
e
:
v
=
None
if
v
is
not
None
:
kwargs
[
arg_name
]
=
v
return
arg_list
,
kwargs
def
has_layer
(
kind
):
""" test whether this layer exists in custom layer
"""
return
kind
in
custom_layers
def
compute_output_shape
(
kind
,
node
):
assert
kind
in
custom_layers
,
"layer[%s] not exist in custom layers"
%
(
kind
)
shape_func
=
custom_layers
[
kind
][
'shape'
]
parents
=
node
.
parents
inputs
=
[
list
(
p
.
output_shape
)
for
p
in
parents
]
arg_names
,
kwargs
=
set_args
(
shape_func
,
node
.
layer
.
parameters
)
if
len
(
inputs
)
==
1
:
inputs
=
inputs
[
0
]
return
shape_func
(
inputs
,
**
kwargs
)
def
make_node
(
template
,
kind
,
node
):
""" make a TensorFlowNode for custom layer which means construct
a piece of code to define a layer implemented in 'custom_layers'
Args:
@template (TensorFlowNode): a factory to new a instance of TensorFLowNode
@kind (str): type of custom layer
@node (graph.Node): a layer in the net
Returns:
instance of TensorFlowNode
"""
assert
kind
in
custom_layers
,
"layer[%s] not exist in custom layers"
%
(
kind
)
layer_func
=
custom_layers
[
kind
][
'layer'
]
#construct arguments needed by custom layer function from node's parameters
arg_names
,
kwargs
=
set_args
(
layer_func
,
node
.
layer
.
parameters
)
return
template
(
'custom_layer'
,
kind
,
**
kwargs
)
def
make_custom_layer
(
kind
,
inputs
,
name
,
*
args
,
**
kwargs
):
""" execute a custom layer which is implemented by users
Args:
@kind (str): type name of this layer
@inputs (vars): variable list created by fluid
@namme (str): name for this layer
@args (tuple): other positional arguments
@kwargs (dict): other kv arguments
Returns:
output (var): output variable for this layer
"""
assert
kind
in
custom_layers
,
"layer[%s] not exist in custom layers"
%
(
kind
)
layer_func
=
custom_layers
[
kind
][
'layer'
]
return
layer_func
(
inputs
,
name
,
*
args
,
**
kwargs
)
fluid/image_classification/caffe2fluid/kaffe/custom_layers/argmax.py
0 → 100644
浏览文件 @
e7684f07
""" a custom layer for 'argmax', maybe we should implement this in standard way.
more info can be found here: http://caffe.berkeleyvision.org/tutorial/layers/argmax.html
"""
from
.register
import
register
def
import_fluid
():
import
paddle.fluid
as
fluid
return
fluid
def
argmax_shape
(
input_shape
,
out_max_val
=
False
,
top_k
=
1
,
axis
=-
1
):
""" calculate the output shape of this layer using input shape
Args:
@input_shape (list of num): a list of number which represents the input shape
@out_max_val (bool): parameter from caffe's ArgMax layer
@top_k (int): parameter from caffe's ArgMax layer
@axis (int): parameter from caffe's ArgMax layer
Returns:
@output_shape (list of num): a list of numbers represent the output shape
"""
input_shape
=
list
(
input_shape
)
if
axis
<
0
:
axis
+=
len
(
input_shape
)
assert
(
axis
+
1
==
len
(
input_shape
)
),
'only can be applied on the last dimension now'
output_shape
=
input_shape
output_shape
[
-
1
]
=
top_k
if
out_max_val
is
True
:
output_shape
[
-
1
]
*=
2
return
output_shape
def
argmax_layer
(
input
,
name
,
out_max_val
=
False
,
top_k
=
1
,
axis
=-
1
):
""" build a layer of type 'ArgMax' using fluid
Args:
@input (variable): input fluid variable for this layer
@name (str): name for this layer
@out_max_val (bool): parameter from caffe's ArgMax layer
@top_k (int): parameter from caffe's ArgMax layer
@axis (int): parameter from caffe's ArgMax layer
Returns:
output (variable): output variable for this layer
"""
fluid
=
import_fluid
()
if
axis
<
0
:
axis
+=
len
(
input
.
shape
)
assert
(
axis
+
1
==
len
(
input_shape
)
),
'only can be applied on the last dimension now'
topk_var
,
index_var
=
fluid
.
layers
.
topk
(
input
=
input
,
k
=
top_k
)
if
out_max_val
is
True
:
output
=
fluid
.
layers
.
concate
([
topk_var
,
index_var
],
axis
=
axis
)
else
:
output
=
topk_var
return
output
register
(
kind
=
'ArgMax'
,
shape
=
argmax_shape
,
layer
=
argmax_layer
)
fluid/image_classification/caffe2fluid/kaffe/custom_layers/axpy.py
0 → 100644
浏览文件 @
e7684f07
""" A custom layer for 'axpy' which receives 3 tensors and output 1 tensor.
the function performed is:(the mupltiplication and add are elementewise)
output = inputs[0] * inputs[1] + inputs[2]
"""
from
.register
import
register
def
axpy_shape
(
input_shapes
):
""" calculate the output shape of this layer using input shapes
Args:
@input_shapes (list of tuples): a list of input shapes
Returns:
@output_shape (list of num): a list of numbers represent the output shape
"""
assert
len
(
input_shapes
)
==
3
,
"not valid input shape for axpy layer"
assert
len
(
input_shapes
[
0
])
==
len
(
input_shapes
[
1
]),
'should have same dims'
output_shape
=
input_shapes
[
1
]
assert
(
input_shapes
[
2
]
==
output_shape
),
\
"shape not consistent for axpy[%s <--> %s]"
\
%
(
str
(
output_shape
),
str
(
input_shapes
[
2
]))
return
output_shape
def
axpy_layer
(
inputs
,
name
):
""" build a layer of type 'Axpy' using fluid
Args:
@inputs (list of variables): input fluid variables for this layer
@name (str): name for this layer
Returns:
output (variable): output variable for this layer
"""
import
paddle.fluid
as
fluid
assert
len
(
inputs
)
==
3
,
"invalid inputs for axpy[%s]"
%
(
name
)
alpha
=
inputs
[
0
]
x
=
inputs
[
1
]
y
=
inputs
[
2
]
output
=
fluid
.
layers
.
elementwise_mul
(
x
,
alpha
,
axis
=
0
)
output
=
fluid
.
layers
.
elementwise_add
(
output
,
y
)
return
output
register
(
kind
=
'Axpy'
,
shape
=
axpy_shape
,
layer
=
axpy_layer
)
fluid/image_classification/caffe2fluid/kaffe/custom_layers/flatten.py
0 → 100644
浏览文件 @
e7684f07
""" a custom layer for 'flatten', maybe we should implement this in standard way.
more info can be found here: http://caffe.berkeleyvision.org/tutorial/layers/flatten.html
"""
from
.register
import
register
def
import_fluid
():
import
paddle.fluid
as
fluid
return
fluid
def
flatten_shape
(
input_shape
,
axis
=
1
,
end_axis
=-
1
):
""" calculate the output shape of this layer using input shape
Args:
@input_shape (list of num): a list of number which represents the input shape
@axis (int): parameter from caffe's Flatten layer
@end_axis (int): parameter from caffe's Flatten layer
Returns:
@output_shape (list of num): a list of numbers represent the output shape
"""
start_axis
=
axis
end_axis
=
end_axis
input_shape
=
list
(
input_shape
)
if
start_axis
<
0
:
start_axis
+=
len
(
input_shape
)
if
end_axis
<
0
:
end_axis
+=
len
(
input_shape
)
assert
start_axis
<=
end_axis
,
'invalid axis[%d] or end_axis[%d] params'
\
%
(
start_axis
,
end_axis
)
output_shape
=
input_shape
[
0
:
start_axis
]
flat_sz
=
reduce
(
lambda
a
,
b
:
a
*
b
,
input_shape
[
start_axis
:
end_axis
])
output_shape
+=
[
flat_sz
]
output_shape
+=
input_shape
[
end_axis
:
-
1
]
return
output_shape
def
flatten_layer
(
input
,
name
,
axis
=
1
,
end_axis
=-
1
):
""" build a layer of type 'Flatten' using fluid
Args:
@input (variable): input fluid variable for this layer
@name (str): name for this layer
@axis (int): parameter from caffe's Flatten layer
@end_axis (int): parameter from caffe's Flatten layer
Returns:
output (variable): output variable for this layer
"""
fluid
=
import_fluid
()
input_shape
=
list
(
input
.
shape
)
dims
=
len
(
input_shape
)
start_axis
=
axis
if
axis
>=
0
else
axis
+
dims
end_axis
=
end_axis
if
end_axis
>=
0
else
end_axis
+
dims
assert
start_axis
<=
end_axis
,
'invalid axis or end_axis params'
output_shape
=
input_shape
[
0
:
start_axis
]
flat_sz
=
reduce
(
lambda
a
,
b
:
a
*
b
,
input_shape
[
start_axis
:
end_axis
])
output_shape
+=
[
flat_sz
]
output_shape
+=
input_shape
[
end_axis
:
-
1
]
output
=
fluid
.
layers
.
reshape
(
input
,
shape
=
output_shape
,
name
=
name
)
return
output
register
(
kind
=
'Flatten'
,
shape
=
flatten_shape
,
layer
=
flatten_layer
)
fluid/image_classification/caffe2fluid/kaffe/custom_layers/register.py
0 → 100644
浏览文件 @
e7684f07
""" this module provides 'register' for registering customized layers
"""
g_custom_layers
=
{}
def
register
(
kind
,
shape
,
layer
):
""" register a custom layer or a list of custom layers
Args:
@kind (str or list): type name of the layer
@shape (function): a function to generate the shape of layer's output
@layer (function): a function to generate the shape of layer's output
Returns:
None
"""
assert
type
(
shape
).
__name__
==
'function'
,
'shape should be a function'
assert
type
(
layer
).
__name__
==
'function'
,
'layer should be a function'
if
type
(
kind
)
is
str
:
kind
=
[
kind
]
else
:
assert
type
(
kind
)
is
list
,
'invalid param "kind" for register, not a list or str'
for
k
in
kind
:
assert
type
(
k
)
is
str
,
'invalid param "kind" for register, not a list of str'
assert
k
not
in
g_custom_layers
,
'this type[%s] has already been registered'
%
(
k
)
print
(
'register layer[%s]'
%
(
k
))
g_custom_layers
[
k
]
=
{
'shape'
:
shape
,
'layer'
:
layer
}
def
get_registered_layers
():
return
g_custom_layers
fluid/image_classification/caffe2fluid/kaffe/graph.py
浏览文件 @
e7684f07
...
...
@@ -3,7 +3,7 @@ from google.protobuf import text_format
from
.caffe
import
get_caffe_resolver
from
.errors
import
KaffeError
,
print_stderr
from
.layers
import
LayerAdapter
,
LayerType
,
NodeKind
,
NodeDispatch
from
.shapes
import
TensorShape
from
.shapes
import
make_tensor
class
Node
(
object
):
...
...
@@ -98,7 +98,7 @@ class Graph(object):
def
compute_output_shapes
(
self
):
sorted_nodes
=
self
.
topologically_sorted
()
for
node
in
sorted_nodes
:
node
.
output_shape
=
TensorShape
(
node
.
output_shape
=
make_tensor
(
*
NodeKind
.
compute_output_shape
(
node
))
def
replaced
(
self
,
new_nodes
):
...
...
@@ -111,6 +111,7 @@ class Graph(object):
if
graph
is
None
:
raise
KaffeError
(
'Transformer failed: {}'
.
format
(
transformer
))
assert
isinstance
(
graph
,
Graph
)
return
graph
def
__contains__
(
self
,
key
):
...
...
@@ -237,6 +238,7 @@ class GraphBuilder(object):
if
(
parent_node
is
None
)
or
(
parent_node
==
node
):
parent_node
=
graph
.
get_node
(
input_name
)
node
.
add_parent
(
parent_node
)
if
len
(
layer
.
top
)
>
1
:
raise
KaffeError
(
'Multiple top nodes are not supported.'
)
...
...
fluid/image_classification/caffe2fluid/kaffe/layers.py
浏览文件 @
e7684f07
...
...
@@ -2,6 +2,7 @@ import re
import
numbers
from
collections
import
namedtuple
import
custom_layers
from
.shapes
import
*
LAYER_DESCRIPTORS
=
{
...
...
@@ -116,6 +117,9 @@ def get_v1_layer_map():
class
NodeKind
(
LayerType
):
@
staticmethod
def
map_raw_kind
(
kind
):
if
custom_layers
.
has_layer
(
kind
):
return
kind
if
kind
in
LAYER_TYPES
:
return
kind
...
...
@@ -127,6 +131,9 @@ class NodeKind(LayerType):
@
staticmethod
def
compute_output_shape
(
node
):
if
custom_layers
.
has_layer
(
node
.
kind
):
return
custom_layers
.
compute_output_shape
(
node
.
kind
,
node
)
try
:
val
=
LAYER_DESCRIPTORS
[
node
.
kind
](
node
)
return
val
...
...
@@ -137,14 +144,13 @@ class NodeKind(LayerType):
class
NodeDispatchError
(
KaffeError
):
pass
class
NodeDispatch
(
object
):
@
staticmethod
def
get_handler_name
(
node_kind
):
if
len
(
node_kind
)
<=
4
:
if
len
(
node_kind
)
<=
6
:
# A catch-all for things like ReLU and tanh
return
node_kind
.
lower
()
# Convert from CamelCase to under_scored
...
...
@@ -152,6 +158,9 @@ class NodeDispatch(object):
return
re
.
sub
(
'([a-z0-9])([A-Z])'
,
r
'\1_\2'
,
name
).
lower
()
def
get_handler
(
self
,
node_kind
,
prefix
):
if
custom_layers
.
has_layer
(
node_kind
):
return
getattr
(
self
,
'map_custom'
)
name
=
self
.
get_handler_name
(
node_kind
)
name
=
'_'
.
join
((
prefix
,
name
))
try
:
...
...
@@ -174,8 +183,10 @@ class LayerAdapter(object):
try
:
return
getattr
(
self
.
layer
,
name
)
except
AttributeError
:
print
(
dir
(
self
.
layer
))
raise
NodeDispatchError
(
'Caffe parameters not found for layer kind: %s'
%
(
self
.
kind
))
'Caffe parameters not found attr[%s] for layer kind[%s]'
%
(
name
,
self
.
kind
))
@
staticmethod
def
get_kernel_value
(
scalar
,
repeated
,
idx
,
default
=
None
):
...
...
fluid/image_classification/caffe2fluid/kaffe/paddle/network.py
浏览文件 @
e7684f07
import
math
import
sys
import
os
import
math
import
numpy
as
np
...
...
@@ -161,7 +162,8 @@ class Network(object):
output
=
fluid
.
layers
.
relu
(
x
=
input
)
return
output
def
pool
(
self
,
pool_type
,
input
,
k_h
,
k_w
,
s_h
,
s_w
,
name
,
padding
):
def
pool
(
self
,
pool_type
,
input
,
k_h
,
k_w
,
s_h
,
s_w
,
ceil_mode
,
padding
,
name
):
# Get the number of channels in the input
in_hw
=
input
.
shape
[
2
:]
k_hw
=
[
k_h
,
k_w
]
...
...
@@ -173,17 +175,40 @@ class Network(object):
pool_size
=
k_hw
,
pool_stride
=
s_hw
,
pool_padding
=
padding
,
ceil_mode
=
Tru
e
,
ceil_mode
=
ceil_mod
e
,
pool_type
=
pool_type
)
return
output
@
layer
def
max_pool
(
self
,
input
,
k_h
,
k_w
,
s_h
,
s_w
,
name
,
padding
=
[
0
,
0
]):
return
self
.
pool
(
'max'
,
input
,
k_h
,
k_w
,
s_h
,
s_w
,
name
,
padding
)
def
max_pool
(
self
,
input
,
k_h
,
k_w
,
s_h
,
s_w
,
ceil_mode
,
padding
=
[
0
,
0
],
name
=
None
):
return
self
.
pool
(
'max'
,
input
,
k_h
,
k_w
,
s_h
,
s_w
,
ceil_mode
,
padding
,
name
)
@
layer
def
avg_pool
(
self
,
input
,
k_h
,
k_w
,
s_h
,
s_w
,
name
,
padding
=
[
0
,
0
]):
return
self
.
pool
(
'avg'
,
input
,
k_h
,
k_w
,
s_h
,
s_w
,
name
,
padding
)
def
avg_pool
(
self
,
input
,
k_h
,
k_w
,
s_h
,
s_w
,
ceil_mode
,
padding
=
[
0
,
0
],
name
=
None
):
return
self
.
pool
(
'avg'
,
input
,
k_h
,
k_w
,
s_h
,
s_w
,
ceil_mode
,
padding
,
name
)
@
layer
def
sigmoid
(
self
,
input
,
name
):
fluid
=
import_fluid
()
return
fluid
.
layers
.
sigmoid
(
input
)
@
layer
def
lrn
(
self
,
input
,
radius
,
alpha
,
beta
,
name
,
bias
=
1.0
):
...
...
@@ -264,3 +289,21 @@ class Network(object):
output
=
fluid
.
layers
.
dropout
(
input
,
dropout_prob
=
drop_prob
,
is_test
=
is_test
,
name
=
name
)
return
output
@
layer
def
custom_layer
(
self
,
inputs
,
kind
,
name
,
*
args
,
**
kwargs
):
""" make custom layer from the package specified by '$CAFFE2FLUID_CUSTOM_LAYERS'
"""
#fluid = import_fluid()
#import custom package
default
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
p
=
os
.
environ
.
get
(
'CAFFE2FLUID_CUSTOM_LAYERS'
,
default
)
pk
=
os
.
path
.
join
(
p
,
'custom_layers'
)
assert
os
.
path
.
exists
(
pk
)
is
True
,
"not found custom_layer package [%s],"
\
"you need to set $CAFFE2FLUID_CUSTOM_LAYERS"
%
(
pk
)
if
p
not
in
sys
.
path
:
sys
.
path
.
insert
(
0
,
p
)
from
custom_layers
import
make_custom_layer
return
make_custom_layer
(
kind
,
inputs
,
name
,
*
args
,
**
kwargs
)
fluid/image_classification/caffe2fluid/kaffe/paddle/transformer.py
浏览文件 @
e7684f07
...
...
@@ -109,9 +109,17 @@ class TensorFlowMapper(NodeMapper):
# Stochastic pooling, for instance.
raise
KaffeError
(
'Unsupported pooling type.'
)
(
kernel_params
,
padding
)
=
self
.
get_kernel_params
(
node
)
ceil_mode
=
getattr
(
node
.
layer
.
parameters
,
'ceil_mode'
,
True
)
return
TensorFlowNode
(
pool_op
,
kernel_params
.
kernel_h
,
kernel_params
.
kernel_w
,
kernel_params
.
stride_h
,
kernel_params
.
stride_w
,
**
padding
)
kernel_params
.
stride_w
,
ceil_mode
,
**
padding
)
def
map_sigmoid
(
self
,
node
):
return
TensorFlowNode
(
'sigmoid'
)
def
map_custom
(
self
,
node
):
from
..
import
custom_layers
return
custom_layers
.
make_node
(
TensorFlowNode
,
node
.
kind
,
node
)
def
map_inner_product
(
self
,
node
):
#TODO: Axis
...
...
@@ -347,6 +355,7 @@ class Transformer(object):
# (Caffe's GoogLeNet implementation uses slashes)
NodeRenamer
(
lambda
node
:
node
.
name
.
replace
(
'/'
,
'_'
))
]
self
.
graph
=
graph
.
transformed
(
transformers
)
# Display the graph
...
...
fluid/image_classification/caffe2fluid/kaffe/shapes.py
浏览文件 @
e7684f07
...
...
@@ -3,8 +3,24 @@ from collections import namedtuple
from
.errors
import
KaffeError
TensorShape
=
namedtuple
(
'TensorShape'
,
[
'batch_size'
,
'channels'
,
'height'
,
'width'
])
Tensor4DShape
=
namedtuple
(
'Tensor4DShape'
,
[
'batch_size'
,
'channels'
,
'height'
,
'width'
])
Tensor2DShape
=
namedtuple
(
'Tensor2DShape'
,
[
'batch_size'
,
'data'
])
ScalarShape
=
namedtuple
(
'ScalarShape'
,
[
'batch_size'
])
def
make_tensor
(
batch_size
,
d1
=
None
,
d2
=
None
,
d3
=
None
):
if
d3
is
not
None
:
return
Tensor4DShape
(
batch_size
,
d1
,
d2
,
d3
)
elif
d1
is
not
None
and
d2
is
None
:
return
Tensor2DShape
(
batch_size
,
d1
)
elif
d1
is
None
and
d2
is
None
and
d3
is
None
:
return
ScalarShape
(
batch_size
)
else
:
raise
NotImplementedError
(
'invalid params for make_tensor %s'
\
%
(
str
((
batch_size
,
d1
,
d2
,
d3
))))
def
get_filter_output_shape
(
i_h
,
i_w
,
params
,
round_func
):
...
...
@@ -23,7 +39,7 @@ def get_strided_kernel_output_shape(node, round_func):
params
=
node
.
layer
.
parameters
has_c_o
=
hasattr
(
params
,
'num_output'
)
c
=
params
.
num_output
if
has_c_o
else
input_shape
.
channels
return
TensorShape
(
input_shape
.
batch_size
,
c
,
o_h
,
o_w
)
return
make_tensor
(
input_shape
.
batch_size
,
c
,
o_h
,
o_w
)
def
shape_not_implemented
(
node
):
...
...
@@ -36,7 +52,7 @@ def shape_identity(node):
def
shape_scalar
(
node
):
return
TensorShape
(
1
,
1
,
1
,
1
)
return
make_tensor
(
1
,
1
,
1
,
1
)
def
shape_data
(
node
):
...
...
@@ -59,7 +75,7 @@ def shape_data(node):
def
shape_mem_data
(
node
):
params
=
node
.
parameters
return
TensorShape
(
params
.
batch_size
,
params
.
channels
,
params
.
height
,
return
make_tensor
(
params
.
batch_size
,
params
.
channels
,
params
.
height
,
params
.
width
)
...
...
@@ -79,10 +95,15 @@ def shape_convolution(node):
def
shape_pool
(
node
):
return
get_strided_kernel_output_shape
(
node
,
math
.
ceil
)
ceil_mode
=
getattr
(
node
.
layer
.
parameters
,
'ceil_mode'
,
True
)
if
ceil_mode
is
True
:
method
=
math
.
ceil
else
:
method
=
math
.
floor
return
get_strided_kernel_output_shape
(
node
,
method
)
def
shape_inner_product
(
node
):
input_shape
=
node
.
get_only_parent
().
output_shape
return
TensorShape
(
input_shape
.
batch_size
,
node
.
layer
.
parameters
.
num_output
,
1
,
1
)
return
make_tensor
(
input_shape
.
batch_size
,
node
.
layer
.
parameters
.
num_output
)
fluid/image_classification/caffe2fluid/kaffe/transformers.py
浏览文件 @
e7684f07
...
...
@@ -113,7 +113,10 @@ class DataReshaper(object):
try
:
parent
=
node
.
get_only_parent
()
s
=
parent
.
output_shape
return
s
.
height
>
1
or
s
.
width
>
1
if
len
(
s
)
==
4
:
return
s
.
height
>
1
or
s
.
width
>
1
else
:
return
False
except
KaffeError
:
return
False
...
...
@@ -121,8 +124,8 @@ class DataReshaper(object):
try
:
return
self
.
mapping
[
node_kind
]
except
KeyError
:
raise
#raise KaffeError('Ordering not found for node kind: {}'.format(
node_kind))
raise
KaffeError
(
'Ordering not found for node kind: {}'
.
format
(
node_kind
))
def
__call__
(
self
,
graph
):
for
node
in
graph
.
nodes
:
...
...
@@ -178,7 +181,8 @@ class SubNodeFuser(object):
continue
# Rewrite the fused node's children to its parent.
for
child
in
node
.
children
:
child
.
parents
.
remove
(
node
)
pos
=
child
.
parents
.
index
(
node
)
child
.
parents
[
pos
]
=
parent
parent
.
add_child
(
child
)
# Disconnect the fused node from the graph.
parent
.
children
.
remove
(
node
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录