Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
cc992072
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
cc992072
编写于
4月 24, 2018
作者:
W
walloollaw
提交者:
qingqing01
4月 24, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add more help info in argmax when axis is not set (#874)
上级
ac7a2931
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
222 addition
and
111 deletion
+222
-111
fluid/image_classification/caffe2fluid/README.md
fluid/image_classification/caffe2fluid/README.md
+2
-1
fluid/image_classification/caffe2fluid/examples/imagenet/infer.py
...age_classification/caffe2fluid/examples/imagenet/infer.py
+2
-3
fluid/image_classification/caffe2fluid/examples/imagenet/run.sh
...image_classification/caffe2fluid/examples/imagenet/run.sh
+1
-1
fluid/image_classification/caffe2fluid/kaffe/custom_layers/__init__.py
...lassification/caffe2fluid/kaffe/custom_layers/__init__.py
+2
-1
fluid/image_classification/caffe2fluid/kaffe/custom_layers/argmax.py
..._classification/caffe2fluid/kaffe/custom_layers/argmax.py
+7
-6
fluid/image_classification/caffe2fluid/kaffe/graph.py
fluid/image_classification/caffe2fluid/kaffe/graph.py
+12
-4
fluid/image_classification/caffe2fluid/kaffe/net_template.py
fluid/image_classification/caffe2fluid/kaffe/net_template.py
+151
-0
fluid/image_classification/caffe2fluid/kaffe/paddle/network.py
.../image_classification/caffe2fluid/kaffe/paddle/network.py
+9
-14
fluid/image_classification/caffe2fluid/kaffe/paddle/transformer.py
...ge_classification/caffe2fluid/kaffe/paddle/transformer.py
+14
-76
fluid/image_classification/caffe2fluid/kaffe/transformers.py
fluid/image_classification/caffe2fluid/kaffe/transformers.py
+22
-5
未找到文件。
fluid/image_classification/caffe2fluid/README.md
浏览文件 @
cc992072
...
...
@@ -24,7 +24,8 @@ This tool is used to convert a Caffe model to a Fluid model
- Save weights as fluid model file
```
python alexnet.py alexnet.npy ./fluid
python alexnet.py alexnet.npy ./fluid #only infer the last layer's result
python alexnet.py alexnet.npy ./fluid fc8,prob #infer these 2 layer's result
```
3. Use the converted model to infer
...
...
fluid/image_classification/caffe2fluid/examples/imagenet/infer.py
浏览文件 @
cc992072
...
...
@@ -43,7 +43,7 @@ def build_model(net_file, net_name):
(
net_file
,
net_name
))
net_path
=
os
.
path
.
dirname
(
net_file
)
module_name
=
os
.
path
.
basename
(
net_file
).
rstrip
(
'.py'
)
module_name
=
os
.
path
.
splitext
(
os
.
path
.
basename
(
net_file
))[
0
]
if
net_path
not
in
sys
.
path
:
sys
.
path
.
insert
(
0
,
net_path
)
...
...
@@ -51,7 +51,7 @@ def build_model(net_file, net_name):
m
=
__import__
(
module_name
,
fromlist
=
[
net_name
])
MyNet
=
getattr
(
m
,
net_name
)
except
Exception
as
e
:
print
(
'failed to load module[%s
]'
%
(
module
_name
))
print
(
'failed to load module[%s
.%s]'
%
(
module_name
,
net
_name
))
print
(
e
)
return
None
...
...
@@ -153,7 +153,6 @@ def load_inference_model(dirname, exe):
def
infer
(
model_path
,
imgfile
,
net_file
=
None
,
net_name
=
None
,
debug
=
True
):
""" do inference using a model which consist 'xxx.py' and 'xxx.npy'
"""
fluid
=
import_fluid
()
place
=
fluid
.
CPUPlace
()
...
...
fluid/image_classification/caffe2fluid/examples/imagenet/run.sh
浏览文件 @
cc992072
...
...
@@ -67,7 +67,7 @@ if [[ -z $only_convert ]];then
imgfile
=
"data/65.jpeg"
#FIX ME:
# only look the first line in prototxt file for the name of this network, maybe not correct
net_name
=
`
grep
"name"
$proto_file
|
head
-n1
| perl
-ne
'if(/^
\s*
name\s*:\s*\"([^\"]+)\"/){ print $1."\n";}'
`
net_name
=
`
grep
"name"
$proto_file
|
head
-n1
| perl
-ne
'if(/^name\s*:\s*\"([^\"]+)\"/){ print $1."\n";}'
`
if
[[
-z
$net_name
]]
;
then
net_name
=
"MyNet"
fi
...
...
fluid/image_classification/caffe2fluid/kaffe/custom_layers/__init__.py
浏览文件 @
cc992072
...
...
@@ -30,8 +30,9 @@ def set_args(f, params):
kwargs
=
{}
for
arg_name
in
arg_list
:
try
:
v
=
getattr
(
node
.
layer
.
parameter
s
,
arg_name
,
None
)
v
=
getattr
(
param
s
,
arg_name
,
None
)
except
Exception
as
e
:
#maybe failed to extract caffe's parameters
v
=
None
if
v
is
not
None
:
...
...
fluid/image_classification/caffe2fluid/kaffe/custom_layers/argmax.py
浏览文件 @
cc992072
...
...
@@ -27,7 +27,9 @@ def argmax_shape(input_shape, out_max_val=False, top_k=1, axis=-1):
axis
+=
len
(
input_shape
)
assert
(
axis
+
1
==
len
(
input_shape
)
),
'only can be applied on the last dimension now'
),
'only can be applied on the last dimension[axis:%d, %s] now,'
\
'make sure you have set axis param in xxx.prototxt file'
\
%
(
axis
,
str
(
input_shape
))
output_shape
=
input_shape
output_shape
[
-
1
]
=
top_k
...
...
@@ -56,14 +58,13 @@ def argmax_layer(input, name, out_max_val=False, top_k=1, axis=-1):
if
axis
<
0
:
axis
+=
len
(
input
.
shape
)
assert
(
axis
+
1
==
len
(
input_shape
)
),
'only can be applied on the last dimension now'
topk_var
,
index_var
=
fluid
.
layers
.
topk
(
input
=
input
,
k
=
top_k
)
if
out_max_val
is
True
:
output
=
fluid
.
layers
.
concate
([
topk_var
,
index_var
],
axis
=
axis
)
index_var
=
fluid
.
layers
.
cast
(
index_var
,
dtype
=
topk_var
.
dtype
)
output
=
fluid
.
layers
.
concat
([
index_var
,
topk_var
],
axis
=
axis
)
else
:
output
=
topk_var
output
=
index_var
return
output
...
...
fluid/image_classification/caffe2fluid/kaffe/graph.py
浏览文件 @
cc992072
...
...
@@ -124,10 +124,18 @@ class Graph(object):
for
node
in
self
.
topologically_sorted
():
# If the node has learned parameters, display the first one's shape.
# In case of convolutions, this corresponds to the weights.
data_shape
=
node
.
data
[
0
].
shape
if
node
.
data
else
'--'
out_shape
=
node
.
output_shape
or
'--'
s
.
append
(
'{:<20} {:<30} {:>20} {:>20}'
.
format
(
node
.
kind
,
node
.
name
,
data_shape
,
tuple
(
out_shape
)))
if
node
.
data
is
None
:
data_shape
=
'--'
out_shape
=
node
.
output_shape
or
'--'
s
.
append
(
'{:<20} {:<30} {:>20} {:>20}'
.
format
(
node
.
kind
,
node
.
name
,
data_shape
,
tuple
(
out_shape
)))
else
:
for
d
in
node
.
data
:
#data_shape = node.data[0].shape if node.data else '--'
data_shape
=
d
.
shape
out_shape
=
node
.
output_shape
or
'--'
s
.
append
(
'{:<20} {:<30} {:>20} {:>20}'
.
format
(
node
.
kind
,
node
.
name
,
data_shape
,
tuple
(
out_shape
)))
return
'
\n
'
.
join
(
s
)
...
...
fluid/image_classification/caffe2fluid/kaffe/net_template.py
0 → 100644
浏览文件 @
cc992072
""" this module is used as a template for generating sub class of Network
"""
class
MyNet
(
object
):
### automatically generated by caffe2fluid ###
inputs_info
=
"INPUTS_INFO"
custom_layers_path
=
"CAFFE2FLUID_CUSTOM_LAYERS"
def
custom_layer_factory
(
self
):
import
os
pk_paths
=
[]
default
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
location
=
os
.
environ
.
get
(
'CAFFE2FLUID_CUSTOM_LAYERS'
,
default
)
pk_name
=
'custom_layers'
pk_dir
=
os
.
path
.
join
(
location
,
pk_name
)
pk_paths
.
append
((
location
,
pk_dir
))
location
=
MyNet
.
custom_layers_path
pk_dir
=
os
.
path
.
join
(
MyNet
.
custom_layers_path
,
pk_name
)
pk_paths
.
append
((
location
,
pk_dir
))
for
loc
,
pk_dir
in
pk_paths
:
if
os
.
path
.
exists
(
pk_dir
):
if
loc
not
in
sys
.
path
:
sys
.
path
.
insert
(
0
,
loc
)
break
try
:
from
custom_layers
import
make_custom_layer
return
make_custom_layer
except
Exception
as
e
:
print
(
'maybe you should set $CAFFE2FLUID_CUSTOM_LAYERS first'
)
raise
e
@
classmethod
def
input_shapes
(
cls
):
return
cls
.
inputs_info
@
classmethod
def
convert
(
cls
,
npy_model
,
fluid_path
,
outputs
=
None
):
fluid
=
import_fluid
()
shapes
=
cls
.
input_shapes
()
input_name
=
shapes
.
keys
()[
0
]
feed_data
=
{}
for
name
,
shape
in
shapes
.
items
():
data_layer
=
fluid
.
layers
.
data
(
name
=
name
,
shape
=
shape
,
dtype
=
"float32"
)
feed_data
[
name
]
=
data_layer
net
=
cls
(
feed_data
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
net
.
load
(
data_path
=
npy_model
,
exe
=
exe
,
place
=
place
)
output_vars
=
[]
if
outputs
is
None
:
output_vars
.
append
(
net
.
get_output
())
else
:
if
type
(
outputs
)
is
list
:
for
n
in
outputs
:
assert
n
in
net
.
layers
,
'not found layer with this name[%s]'
%
(
n
)
output_vars
.
append
(
net
.
layers
[
n
])
fluid
.
io
.
save_inference_model
(
fluid_path
,
[
input_name
],
output_vars
,
exe
,
main_program
=
None
,
model_filename
=
'model'
,
params_filename
=
'params'
)
return
0
def
main
():
""" a tool used to convert caffe model to fluid
"""
import
sys
import
os
filename
=
os
.
path
.
splitext
(
os
.
path
.
basename
(
sys
.
argv
[
0
]))[
0
]
if
len
(
sys
.
argv
)
<
3
:
print
(
'usage:'
)
print
(
' python %s %s.npy [save_dir] [layer names seperated by comma]'
\
%
(
sys
.
argv
[
0
],
filename
))
print
(
' eg: python %s %s.npy ./fluid'
%
(
sys
.
argv
[
0
],
filename
))
print
(
' eg: python %s %s.npy ./fluid layer_name1,layer_name2'
\
%
(
sys
.
argv
[
0
],
filename
))
return
1
npy_weight
=
sys
.
argv
[
1
]
fluid_model
=
sys
.
argv
[
2
]
outputs
=
None
if
len
(
sys
.
argv
)
>=
4
:
outputs
=
sys
.
argv
[
3
].
split
(
','
)
ret
=
MyNet
.
convert
(
npy_weight
,
fluid_model
,
outputs
)
if
ret
==
0
:
outputs
=
'last output layer'
if
outputs
is
None
else
outputs
print
(
'succeed to convert to fluid format with output layers[%s]'
' in directory[%s]'
%
(
outputs
,
fluid_model
))
else
:
print
(
'failed to convert model to fluid format'
)
return
ret
def
generate_net_code
(
net_name
,
inputs_info
):
""" generate framework of a custom net code which represent a subclass of Network
Args:
@net_name (str): class name for this net
@inputs_info (str): a str which represents a dict, eg: '{"data": [3, 32, 32]}'
Returns:
net_codes (str): codes for this subclass
"""
import
os
import
inspect
net_codes
=
str
(
inspect
.
getsource
(
MyNet
))
net_codes
=
net_codes
.
replace
(
'MyNet(object)'
,
'%s(Network)'
%
net_name
)
net_codes
=
net_codes
.
replace
(
'"INPUTS_INFO"'
,
inputs_info
)
custom_layer_dir
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
net_codes
=
net_codes
.
replace
(
'CAFFE2FLUID_CUSTOM_LAYERS'
,
custom_layer_dir
)
return
net_codes
def
generate_main_code
(
net_name
):
""" generate a piece of code for 'main' function
Args:
@net_name (str): class name for this net
Returns:
main_codes (str): codes for this main function
"""
import
inspect
main_codes
=
str
(
inspect
.
getsource
(
main
))
main_codes
=
main_codes
.
replace
(
'MyNet'
,
net_name
)
return
main_codes
if
__name__
==
"__main__"
:
""" just for testing
"""
print
generate_net_code
(
'Attribute'
,
"{'data': [3, 277, 277]}"
)
print
generate_main_code
(
'Attribute'
)
fluid/image_classification/caffe2fluid/kaffe/paddle/network.py
浏览文件 @
cc992072
...
...
@@ -290,20 +290,15 @@ class Network(object):
input
,
dropout_prob
=
drop_prob
,
is_test
=
is_test
,
name
=
name
)
return
output
def
custom_layer_factory
(
self
):
""" get a custom layer maker provided by subclass
"""
raise
NotImplementedError
(
'[custom_layer_factory] must be implemented by the subclass.'
)
@
layer
def
custom_layer
(
self
,
inputs
,
kind
,
name
,
*
args
,
**
kwargs
):
""" make custom layer
from the package specified by '$CAFFE2FLUID_CUSTOM_LAYERS'
""" make custom layer
"""
#fluid = import_fluid()
#import custom package
default
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
p
=
os
.
environ
.
get
(
'CAFFE2FLUID_CUSTOM_LAYERS'
,
default
)
pk
=
os
.
path
.
join
(
p
,
'custom_layers'
)
assert
os
.
path
.
exists
(
pk
)
is
True
,
"not found custom_layer package [%s],"
\
"you need to set $CAFFE2FLUID_CUSTOM_LAYERS"
%
(
pk
)
if
p
not
in
sys
.
path
:
sys
.
path
.
insert
(
0
,
p
)
from
custom_layers
import
make_custom_layer
return
make_custom_layer
(
kind
,
inputs
,
name
,
*
args
,
**
kwargs
)
layer_factory
=
self
.
custom_layer_factory
()
return
layer_factory
(
kind
,
inputs
,
name
,
*
args
,
**
kwargs
)
fluid/image_classification/caffe2fluid/kaffe/paddle/transformer.py
浏览文件 @
cc992072
...
...
@@ -198,18 +198,10 @@ class TensorFlowEmitter(object):
codes
.
append
(
network_source
+
'
\n
'
)
return
self
.
statement
(
'
\n
'
.
join
(
codes
))
def
emit_class_def
(
self
,
name
):
return
self
.
statement
(
'class %s(Network):'
%
(
name
))
def
emit_setup_def
(
self
):
return
self
.
statement
(
'def setup(self):'
)
def
emit_shape_def
(
self
,
input_nodes
):
self
.
outdent
()
func_def
=
self
.
statement
(
'@classmethod'
)
func_def
+=
self
.
statement
(
'def input_shapes(cls):'
)
self
.
indent
()
def
get_inputs_info
(
self
,
input_nodes
):
input_shapes
=
{}
for
n
in
input_nodes
:
name
=
n
.
name
...
...
@@ -218,51 +210,7 @@ class TensorFlowEmitter(object):
input_shapes
[
name
]
=
', '
.
join
(
shape
)
input_shapes
=
[
'"%s": [%s]'
%
(
n
,
l
)
for
n
,
l
in
input_shapes
.
items
()]
shape_str
=
','
.
join
(
input_shapes
)
func_def
+=
self
.
statement
(
'return {%s}'
%
(
shape_str
))
return
'
\n\n
'
+
func_def
def
emit_convert_def
(
self
,
input_nodes
):
codes
=
[]
inputs
=
{}
#codes.append('shapes = cls.input_shapes()')
codes
.
append
(
'shapes = cls.input_shapes()'
)
codes
.
append
(
'input_name = shapes.keys()[0]'
)
codes
.
append
(
'input_shape = shapes[input_name]'
)
for
n
in
input_nodes
:
name
=
n
.
name
layer_var
=
name
+
'_layer'
layer_def
=
'%s = fluid.layers.data(name="%s", shape=shapes["%s"],'
\
' dtype="float32")'
%
(
layer_var
,
name
,
name
)
#layer_var, layer_def = data_layer_def(n.name, n.output_shape)
codes
.
append
(
layer_def
)
inputs
[
name
]
=
layer_var
input_dict
=
','
.
join
([
'"%s": %s'
%
(
n
,
l
)
for
n
,
l
in
inputs
.
items
()])
codes
.
append
(
'feed_data = {'
+
input_dict
+
'}'
)
codes
.
append
(
'net = cls(feed_data)'
)
codes
.
append
(
"place = fluid.CPUPlace()"
)
codes
.
append
(
"exe = fluid.Executor(place)"
)
codes
.
append
(
"exe.run(fluid.default_startup_program())"
)
codes
.
append
(
"net.load(data_path=npy_model, exe=exe, place=place)"
)
codes
.
append
(
"output_vars = [net.get_output()]"
)
codes
.
append
(
"fluid.io.save_inference_model("
\
"fluid_path, [input_name],output_vars,"
\
"exe, main_program=None, model_filename='model',"
\
"params_filename='params')"
)
codes
.
append
(
"print('save fluid model as [model] and [params] in directory [%s]' % (fluid_path))"
)
self
.
outdent
()
func_def
=
self
.
statement
(
'@classmethod'
)
func_def
+=
self
.
statement
(
'def convert(cls, npy_model, fluid_path):'
)
self
.
indent
()
func_def
+=
self
.
statement
(
'fluid = import_fluid()'
)
for
l
in
codes
:
func_def
+=
self
.
statement
(
l
)
return
'
\n
'
+
func_def
return
'{%s}'
%
(
shape_str
)
def
emit_main_def
(
self
,
name
):
if
name
is
None
:
...
...
@@ -271,22 +219,7 @@ class TensorFlowEmitter(object):
self
.
prefix
=
''
main_def
=
self
.
statement
(
'if __name__ == "__main__":'
)
self
.
indent
()
main_def
+=
self
.
statement
(
"#usage: save as an inference model for online service
\n
"
)
main_def
+=
self
.
statement
(
"import sys"
)
main_def
+=
self
.
statement
(
"if len(sys.argv) != 3:"
)
self
.
indent
()
main_def
+=
self
.
statement
(
"print('usage:')"
)
main_def
+=
self
.
statement
(
"print('
\t
python %s [xxxnet.npy] [save_dir]' % (sys.argv[0]))"
)
main_def
+=
self
.
statement
(
"exit(1)"
)
self
.
outdent
()
main_def
+=
self
.
statement
(
"npy_weight = sys.argv[1]"
)
main_def
+=
self
.
statement
(
"fluid_model = sys.argv[2]"
)
main_def
+=
self
.
statement
(
"%s.convert(npy_weight, fluid_model)"
%
(
name
))
main_def
+=
self
.
statement
(
"exit(0)"
)
main_def
+=
self
.
statement
(
'exit(main())'
)
return
'
\n\n
'
+
main_def
def
emit_parents
(
self
,
chain
):
...
...
@@ -301,10 +234,17 @@ class TensorFlowEmitter(object):
return
self
.
statement
(
'self.'
+
node
.
emit
())
def
emit
(
self
,
name
,
chains
,
input_nodes
=
None
):
from
..net_template
import
generate_net_code
from
..net_template
import
generate_main_code
self
.
net_name
=
name
inputs_info
=
self
.
get_inputs_info
(
input_nodes
)
s
=
self
.
emit_imports
()
s
+=
self
.
emit_class_def
(
name
)
s
+=
generate_net_code
(
name
,
inputs_info
)
+
'
\n
'
self
.
indent
()
# define the net using api
s
+=
self
.
emit_setup_def
()
self
.
indent
()
blocks
=
[]
...
...
@@ -315,8 +255,9 @@ class TensorFlowEmitter(object):
b
+=
self
.
emit_node
(
node
)
blocks
.
append
(
b
[:
-
1
])
s
=
s
+
'
\n\n
'
.
join
(
blocks
)
s
+=
self
.
emit_shape_def
(
input_nodes
)
s
+=
self
.
emit_convert_def
(
input_nodes
)
# define the main function
s
+=
'
\n\n\n
'
+
generate_main_code
(
name
)
s
+=
self
.
emit_main_def
(
name
)
return
s
...
...
@@ -367,9 +308,6 @@ class Transformer(object):
transformers
=
[
# Reshape the parameters to TensorFlow's ordering
DataReshaper
({
# (c_o, c_i, h, w) -> (h, w, c_i, c_o) for TF
NodeKind
.
Convolution
:
(
0
,
1
,
2
,
3
),
# (c_o, c_i) -> (c_i, c_o)
NodeKind
.
InnerProduct
:
(
1
,
0
)
}),
...
...
fluid/image_classification/caffe2fluid/kaffe/transformers.py
浏览文件 @
cc992072
...
...
@@ -66,12 +66,14 @@ class DataInjector(object):
def
adjust_parameters
(
self
,
node
,
data
):
if
not
self
.
did_use_pb
:
return
data
# When using the protobuf-backend, each parameter initially has four dimensions.
# In certain cases (like FC layers), we want to eliminate the singleton dimensions.
# This implementation takes care of the common cases. However, it does leave the
# potential for future issues.
# The Caffe-backend does not suffer from this problem.
data
=
list
(
data
)
squeeze_indices
=
[
1
]
# Squeeze biases.
if
node
.
kind
==
NodeKind
.
InnerProduct
:
squeeze_indices
.
append
(
0
)
# Squeeze FC.
...
...
@@ -80,8 +82,22 @@ class DataInjector(object):
if
idx
>=
len
(
data
):
continue
shape_old
=
data
[
idx
].
shape
data
[
idx
]
=
np
.
squeeze
(
data
[
idx
])
d
=
data
[
idx
]
assert
len
(
d
.
shape
)
==
4
,
'invalid shape[%s] from caffe when adjust_parameters'
%
(
str
(
d
.
shape
))
shape_old
=
d
.
shape
sq_axis
=
None
if
idx
==
0
:
sq_axis
=
(
0
,
1
)
elif
idx
==
1
:
sq_axis
=
(
0
,
1
,
2
)
else
:
continue
data
[
idx
]
=
np
.
squeeze
(
d
,
axis
=
sq_axis
)
shape_new
=
data
[
idx
].
shape
if
len
(
shape_old
)
!=
shape_new
:
debug
(
'squeeze idx:%d, with kind:%s,name:%s'
%
\
...
...
@@ -131,18 +147,19 @@ class DataReshaper(object):
for
node
in
graph
.
nodes
:
if
node
.
data
is
None
:
continue
if
node
.
kind
not
in
self
.
reshaped_node_types
:
# Check for 2+ dimensional data
if
any
(
len
(
tensor
.
shape
)
>
1
for
tensor
in
node
.
data
):
notice
(
'parmaters not reshaped for node: {}'
.
format
(
node
))
continue
transpose_order
=
self
.
map
(
node
.
kind
)
weights
=
node
.
data
[
0
]
if
(
node
.
kind
==
NodeKind
.
InnerProduct
)
and
self
.
has_spatial_parent
(
node
):
if
node
.
kind
==
NodeKind
.
InnerProduct
:
# The FC layer connected to the spatial layer needs to be
# re-wired to match the new spatial ordering.
in_shape
=
node
.
get_only_parent
().
output_shape
#
in_shape = node.get_only_parent().output_shape
fc_shape
=
weights
.
shape
output_channels
=
fc_shape
[
0
]
weights
=
weights
.
reshape
((
output_channels
,
-
1
))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录