提交 797182b4 编写于 作者: L liuyang11

simplify caffe2fluid's dependencies and support resnet convertion

上级 124afdb7
### caffe2fluid
this tool is used to convert a caffe-model to paddle-model(fluid api)
### howto
0, prepare caffepb.py in ./proto
option 1: generate it from caffe.proto using protoc
bash ./proto/compile.sh
option2: download one from github directly
cd proto/ && wget https://github.com/ethereon/caffe-tensorflow/blob/master/kaffe/caffe/caffepb.py
1, convert you caffe model using convert.py which will generate a python code and weight(in .npy)
2, use the converted model to predict
(see more detail info in 'tests/lenet/README.md')
### supported models
lenet on mnist dataset
resnets:(resnet50, resnet101, resnet152)
model addrs:(https://onedrive.live.com/?authkey=%21AAFW2-FVoxeVRck&id=4006CBB8476FF777%2117887&cid=4006CBB8476FF777)
### notes
some of this code come from here: https://github.com/ethereon/caffe-tensorflow
#!/usr/bin/env python
import os
import sys
import numpy as np
import argparse
from kaffe import KaffeError, print_stderr
from kaffe.paddle import Transformer
def fatal_error(msg):
""" fatal error encounted
"""
print_stderr(msg)
exit(-1)
def validate_arguments(args):
""" validate args
"""
if (args.data_output_path is not None) and (args.caffemodel is None):
fatal_error('No input data path provided.')
if (args.caffemodel is not None) and (args.data_output_path is None):
fatal_error('No output data path provided.')
if (args.code_output_path is None) and (args.data_output_path is None):
fatal_error('No output path specified.')
def convert(def_path, caffemodel_path, data_output_path, code_output_path,
phase):
""" convert caffe model to tf/paddle models
"""
try:
transformer = Transformer(def_path, caffemodel_path, phase=phase)
print_stderr('Converting data...')
if caffemodel_path is not None:
data = transformer.transform_data()
print_stderr('Saving data...')
with open(data_output_path, 'wb') as data_out:
np.save(data_out, data)
if code_output_path:
print_stderr('Saving source...')
with open(code_output_path, 'wb') as src_out:
src_out.write(transformer.transform_source())
print_stderr('Done.')
except KaffeError as err:
fatal_error('Error encountered: {}'.format(err))
def main():
""" main
"""
parser = argparse.ArgumentParser()
parser.add_argument('def_path', help='Model definition (.prototxt) path')
parser.add_argument('--caffemodel', help='Model data (.caffemodel) path')
parser.add_argument('--data-output-path', help='Converted data output path')
parser.add_argument(
'--code-output-path', help='Save generated source to this path')
parser.add_argument(
'-p',
'--phase',
default='test',
help='The phase to convert: test (default) or train')
args = parser.parse_args()
validate_arguments(args)
convert(args.def_path, args.caffemodel, args.data_output_path,
args.code_output_path, args.phase)
if __name__ == '__main__':
main()
from .graph import GraphBuilder, NodeMapper
from .errors import KaffeError, print_stderr
import os
from . import paddle
from .resolver import get_caffe_resolver, has_pycaffe
../../proto/caffepb.py
\ No newline at end of file
import sys
SHARED_CAFFE_RESOLVER = None
class CaffeResolver(object):
def __init__(self):
self.import_caffe()
def import_caffe(self):
self.caffe = None
try:
# Try to import PyCaffe first
import caffe
self.caffe = caffe
except ImportError:
# Fall back to the protobuf implementation
from . import caffepb
self.caffepb = caffepb
show_fallback_warning()
if self.caffe:
# Use the protobuf code from the imported distribution.
# This way, Caffe variants with custom layers will work.
self.caffepb = self.caffe.proto.caffe_pb2
self.NetParameter = self.caffepb.NetParameter
def has_pycaffe(self):
return self.caffe is not None
def get_caffe_resolver():
global SHARED_CAFFE_RESOLVER
if SHARED_CAFFE_RESOLVER is None:
SHARED_CAFFE_RESOLVER = CaffeResolver()
return SHARED_CAFFE_RESOLVER
def has_pycaffe():
return get_caffe_resolver().has_pycaffe()
def show_fallback_warning():
msg = '''
------------------------------------------------------------
WARNING: PyCaffe not found!
Falling back to a pure protocol buffer implementation.
* Conversions will be drastically slower.
* This backend is UNTESTED!
------------------------------------------------------------
'''
sys.stderr.write(msg)
import sys
#debug level, can be 'warn', 'verbose'
log_level = 'warn'
class KaffeError(Exception):
pass
def print_stderr(msg):
sys.stderr.write('%s\n' % msg)
def debug(msg):
if log_level == 'verbose':
print_stderr('[DEBUG]' + msg)
def notice(msg):
print_stderr('[NOTICE]' + msg)
def warn(msg):
print_stderr('[WARNING]' + msg)
def set_loglevel(level):
global log_level
if 'warn' != level and 'verbose' != level:
raise Exception('not supported log level[%s]' % (level))
log_level = level
from google.protobuf import text_format
from .caffe import get_caffe_resolver
from .errors import KaffeError, print_stderr
from .layers import LayerAdapter, LayerType, NodeKind, NodeDispatch
from .shapes import TensorShape
class Node(object):
def __init__(self, name, kind, layer=None):
self.name = name
self.kind = kind
self.layer = LayerAdapter(layer, kind) if layer else None
self.parents = []
self.children = []
self.data = None
self.output_shape = None
self.metadata = {}
def add_parent(self, parent_node):
assert parent_node not in self.parents
self.parents.append(parent_node)
if self not in parent_node.children:
parent_node.children.append(self)
def add_child(self, child_node):
assert child_node not in self.children
self.children.append(child_node)
if self not in child_node.parents:
child_node.parents.append(self)
def get_only_parent(self):
if len(self.parents) != 1:
raise KaffeError('Node (%s) expected to have 1 parent. Found %s.' %
(self, len(self.parents)))
return self.parents[0]
@property
def parameters(self):
if self.layer is not None:
return self.layer.parameters
return None
def __str__(self):
return '[%s] %s' % (self.kind, self.name)
def __repr__(self):
return '%s (0x%x)' % (self.name, id(self))
class Graph(object):
def __init__(self, nodes=None, name=None):
self.nodes = nodes or []
self.node_lut = {node.name: node for node in self.nodes}
self.name = name
def add_node(self, node):
self.nodes.append(node)
self.node_lut[node.name] = node
def get_node(self, name):
try:
return self.node_lut[name]
except KeyError:
raise KaffeError('Layer not found: %s' % name)
def get_input_nodes(self):
return [node for node in self.nodes if len(node.parents) == 0]
def get_output_nodes(self):
return [node for node in self.nodes if len(node.children) == 0]
def topologically_sorted(self):
sorted_nodes = []
unsorted_nodes = list(self.nodes)
temp_marked = set()
perm_marked = set()
def visit(node):
if node in temp_marked:
raise KaffeError('Graph is not a DAG.')
if node in perm_marked:
return
temp_marked.add(node)
for child in node.children:
visit(child)
perm_marked.add(node)
temp_marked.remove(node)
sorted_nodes.insert(0, node)
while len(unsorted_nodes):
visit(unsorted_nodes.pop())
return sorted_nodes
def compute_output_shapes(self):
sorted_nodes = self.topologically_sorted()
for node in sorted_nodes:
node.output_shape = TensorShape(
*NodeKind.compute_output_shape(node))
def replaced(self, new_nodes):
return Graph(nodes=new_nodes, name=self.name)
def transformed(self, transformers):
graph = self
for transformer in transformers:
graph = transformer(graph)
if graph is None:
raise KaffeError('Transformer failed: {}'.format(transformer))
assert isinstance(graph, Graph)
return graph
def __contains__(self, key):
return key in self.node_lut
def __str__(self):
hdr = '{:<20} {:<30} {:>20} {:>20}'.format('Type', 'Name', 'Param',
'Output')
s = [hdr, '-' * 94]
for node in self.topologically_sorted():
# If the node has learned parameters, display the first one's shape.
# In case of convolutions, this corresponds to the weights.
data_shape = node.data[0].shape if node.data else '--'
out_shape = node.output_shape or '--'
s.append('{:<20} {:<30} {:>20} {:>20}'.format(
node.kind, node.name, data_shape, tuple(out_shape)))
return '\n'.join(s)
class GraphBuilder(object):
'''Constructs a model graph from a Caffe protocol buffer definition.'''
def __init__(self, def_path, phase='test'):
'''
def_path: Path to the model definition (.prototxt)
data_path: Path to the model data (.caffemodel)
phase: Either 'test' or 'train'. Used for filtering phase-specific nodes.
'''
self.def_path = def_path
self.phase = phase
self.load()
def load(self):
'''Load the layer definitions from the prototxt.'''
self.params = get_caffe_resolver().NetParameter()
with open(self.def_path, 'rb') as def_file:
text_format.Merge(def_file.read(), self.params)
def filter_layers(self, layers):
'''Filter out layers based on the current phase.'''
phase_map = {0: 'train', 1: 'test'}
filtered_layer_names = set()
filtered_layers = []
for layer in layers:
phase = self.phase
if len(layer.include):
phase = phase_map[layer.include[0].phase]
if len(layer.exclude):
phase = phase_map[1 - layer.include[0].phase]
exclude = (phase != self.phase)
# Dropout layers appear in a fair number of Caffe
# test-time networks. These are just ignored. We'll
# filter them out here.
if (not exclude) and (phase == 'test'):
exclude = (layer.type == LayerType.Dropout)
if not exclude:
filtered_layers.append(layer)
# Guard against dupes.
assert layer.name not in filtered_layer_names
filtered_layer_names.add(layer.name)
return filtered_layers
def make_node(self, layer):
'''Create a graph node for the given layer.'''
kind = NodeKind.map_raw_kind(layer.type)
if kind is None:
raise KaffeError('Unknown layer type encountered: %s' % layer.type)
# We want to use the layer's top names (the "output" names), rather than the
# name attribute, which is more of readability thing than a functional one.
# Other layers will refer to a node by its "top name".
return Node(layer.name, kind, layer=layer)
def make_input_nodes(self):
'''
Create data input nodes.
This method is for old-style inputs, where the input specification
was not treated as a first-class layer in the prototext.
Newer models use the "Input layer" type.
'''
nodes = [Node(name, NodeKind.Data) for name in self.params.input]
if len(nodes):
input_dim = map(int, self.params.input_dim)
if not input_dim:
if len(self.params.input_shape) > 0:
input_dim = map(int, self.params.input_shape[0].dim)
else:
raise KaffeError('Dimensions for input not specified.')
for node in nodes:
node.output_shape = tuple(input_dim)
return nodes
def build(self):
'''
Builds the graph from the Caffe layer definitions.
'''
# Get the layers
layers = self.params.layers or self.params.layer
# Filter out phase-excluded layers
layers = self.filter_layers(layers)
# Get any separately-specified input layers
nodes = self.make_input_nodes()
nodes += [self.make_node(layer) for layer in layers]
# Initialize the graph
graph = Graph(nodes=nodes, name=self.params.name)
# Connect the nodes
#
# A note on layers and outputs:
# In Caffe, each layer can produce multiple outputs ("tops") from a set of inputs
# ("bottoms"). The bottoms refer to other layers' tops. The top can rewrite a bottom
# (in case of in-place operations). Note that the layer's name is not used for establishing
# any connectivity. It's only used for data association. By convention, a layer with a
# single top will often use the same name (although this is not required).
#
# The current implementation only supports single-output nodes (note that a node can still
# have multiple children, since multiple child nodes can refer to the single top's name).
node_outputs = {}
for layer in layers:
node = graph.get_node(layer.name)
for input_name in layer.bottom:
assert input_name != layer.name
parent_node = node_outputs.get(input_name)
if (parent_node is None) or (parent_node == node):
parent_node = graph.get_node(input_name)
node.add_parent(parent_node)
if len(layer.top) > 1:
raise KaffeError('Multiple top nodes are not supported.')
for output_name in layer.top:
if output_name == layer.name:
# Output is named the same as the node. No further action required.
continue
# There are two possibilities here:
#
# Case 1: output_name refers to another node in the graph.
# This is an "in-place operation" that overwrites an existing node.
# This would create a cycle in the graph. We'll undo the in-placing
# by substituting this node wherever the overwritten node is referenced.
#
# Case 2: output_name violates the convention layer.name == output_name.
# Since we are working in the single-output regime, we will can rename it to
# match the layer name.
#
# For both cases, future references to this top re-routes to this node.
node_outputs[output_name] = node
graph.compute_output_shapes()
return graph
class NodeMapper(NodeDispatch):
def __init__(self, graph):
self.graph = graph
def map(self):
nodes = self.graph.topologically_sorted()
# Remove input nodes - we'll handle them separately.
input_nodes = self.graph.get_input_nodes()
nodes = [t for t in nodes if t not in input_nodes]
# Decompose DAG into chains.
chains = []
for node in nodes:
attach_to_chain = None
if len(node.parents) == 1:
parent = node.get_only_parent()
for chain in chains:
if chain[-1] == parent:
# Node is part of an existing chain.
attach_to_chain = chain
break
if attach_to_chain is None:
# Start a new chain for this node.
attach_to_chain = []
chains.append(attach_to_chain)
attach_to_chain.append(node)
# Map each chain.
mapped_chains = []
for chain in chains:
mapped_chains.append(self.map_chain(chain))
return self.commit(mapped_chains)
def map_chain(self, chain):
return [self.map_node(node) for node in chain]
def map_node(self, node):
map_func = self.get_handler(node.kind, 'map')
mapped_node = map_func(node)
assert mapped_node is not None
mapped_node.node = node
return mapped_node
def commit(self, mapped_chains):
raise NotImplementedError('Must be implemented by subclass.')
import re
import numbers
from collections import namedtuple
from .shapes import *
LAYER_DESCRIPTORS = {
# Caffe Types
'AbsVal': shape_identity,
'Accuracy': shape_scalar,
'ArgMax': shape_not_implemented,
'BatchNorm': shape_identity,
'BNLL': shape_not_implemented,
'Concat': shape_concat,
'ContrastiveLoss': shape_scalar,
'Convolution': shape_convolution,
'Deconvolution': shape_not_implemented,
'Data': shape_data,
'Dropout': shape_identity,
'DummyData': shape_data,
'EuclideanLoss': shape_scalar,
'Eltwise': shape_identity,
'Exp': shape_identity,
'Flatten': shape_not_implemented,
'HDF5Data': shape_data,
'HDF5Output': shape_identity,
'HingeLoss': shape_scalar,
'Im2col': shape_not_implemented,
'ImageData': shape_data,
'InfogainLoss': shape_scalar,
'InnerProduct': shape_inner_product,
'Input': shape_data,
'LRN': shape_identity,
'MemoryData': shape_mem_data,
'MultinomialLogisticLoss': shape_scalar,
'MVN': shape_not_implemented,
'Pooling': shape_pool,
'Power': shape_identity,
'ReLU': shape_identity,
'Scale': shape_identity,
'Sigmoid': shape_identity,
'SigmoidCrossEntropyLoss': shape_scalar,
'Silence': shape_not_implemented,
'Softmax': shape_identity,
'SoftmaxWithLoss': shape_scalar,
'Split': shape_not_implemented,
'Slice': shape_not_implemented,
'TanH': shape_identity,
'WindowData': shape_not_implemented,
'Threshold': shape_identity,
}
LAYER_TYPES = LAYER_DESCRIPTORS.keys()
LayerType = type('LayerType', (), {t: t for t in LAYER_TYPES})
class NodeKind(LayerType):
@staticmethod
def map_raw_kind(kind):
if kind in LAYER_TYPES:
return kind
return None
@staticmethod
def compute_output_shape(node):
try:
val = LAYER_DESCRIPTORS[node.kind](node)
return val
except NotImplementedError:
raise KaffeError(
'Output shape computation not implemented for type: %s' %
node.kind)
class NodeDispatchError(KaffeError):
pass
class NodeDispatch(object):
@staticmethod
def get_handler_name(node_kind):
if len(node_kind) <= 4:
# A catch-all for things like ReLU and tanh
return node_kind.lower()
# Convert from CamelCase to under_scored
name = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', node_kind)
return re.sub('([a-z0-9])([A-Z])', r'\1_\2', name).lower()
def get_handler(self, node_kind, prefix):
name = self.get_handler_name(node_kind)
name = '_'.join((prefix, name))
try:
return getattr(self, name)
except AttributeError:
raise NodeDispatchError(
'No handler found for node kind: %s (expected: %s)' %
(node_kind, name))
class LayerAdapter(object):
def __init__(self, layer, kind):
self.layer = layer
self.kind = kind
@property
def parameters(self):
name = NodeDispatch.get_handler_name(self.kind)
name = '_'.join((name, 'param'))
try:
return getattr(self.layer, name)
except AttributeError:
raise NodeDispatchError(
'Caffe parameters not found for layer kind: %s' % (self.kind))
@staticmethod
def get_kernel_value(scalar, repeated, idx, default=None):
if scalar:
return scalar
if repeated:
if isinstance(repeated, numbers.Number):
return repeated
if len(repeated) == 1:
# Same value applies to all spatial dimensions
return int(repeated[0])
assert idx < len(repeated)
# Extract the value for the given spatial dimension
return repeated[idx]
if default is None:
raise ValueError('Unable to determine kernel parameter!')
return default
@property
def kernel_parameters(self):
assert self.kind in (NodeKind.Convolution, NodeKind.Pooling)
params = self.parameters
k_h = self.get_kernel_value(params.kernel_h, params.kernel_size, 0)
k_w = self.get_kernel_value(params.kernel_w, params.kernel_size, 1)
s_h = self.get_kernel_value(
params.stride_h, params.stride, 0, default=1)
s_w = self.get_kernel_value(
params.stride_w, params.stride, 1, default=1)
p_h = self.get_kernel_value(params.pad_h, params.pad, 0, default=0)
p_w = self.get_kernel_value(params.pad_h, params.pad, 1, default=0)
return KernelParameters(k_h, k_w, s_h, s_w, p_h, p_w)
KernelParameters = namedtuple('KernelParameters', [
'kernel_h', 'kernel_w', 'stride_h', 'stride_w', 'pad_h', 'pad_w'
])
from .transformer import Transformer
from .network import Network
import math
import os
import numpy as np
def import_fluid():
import paddle.v2.fluid as fluid
return fluid
def layer(op):
'''Decorator for composable network layers.'''
def layer_decorated(self, *args, **kwargs):
# Automatically set a name if not provided.
name = kwargs.setdefault('name', self.get_unique_name(op.__name__))
# Figure out the layer inputs.
if len(self.terminals) == 0:
raise RuntimeError('No input variables found for layer %s.' % name)
elif len(self.terminals) == 1:
layer_input = self.terminals[0]
else:
layer_input = list(self.terminals)
# Perform the operation and get the output.
layer_output = op(self, layer_input, *args, **kwargs)
# Add to layer LUT.
self.layers[name] = layer_output
# This output is now the input for the next layer.
self.feed(layer_output)
# Return self for chained calls.
return self
return layer_decorated
class Network(object):
def __init__(self, inputs, trainable=True):
# The input nodes for this network
self.inputs = inputs
# The current list of terminal nodes
self.terminals = []
# Mapping from layer names to layers
self.layers = dict(inputs)
# If true, the resulting variables are set as trainable
self.trainable = trainable
# Switch variable for dropout
self.paddle_env = None
self.setup()
def setup(self):
'''Construct the network. '''
raise NotImplementedError('Must be implemented by the subclass.')
def load(self, data_path, exe=None, place=None, ignore_missing=False):
'''Load network weights.
data_path: The path to the numpy-serialized network weights
ignore_missing: If true, serialized weights for missing layers are ignored.
'''
fluid = import_fluid()
#load fluid mode directly
if os.path.isdir(data_path):
assert (exe is not None), \
'must provide a executor to load fluid model'
fluid.io.load_persistables_if_exist(executor=exe, dirname=data_path)
return True
#load model from a npy file
if exe is None or place is None:
if self.paddle_env is None:
place = fluid.CPUPlace()
exe = fluid.Executor(place)
self.paddle_env = {'place': place, 'exe': exe}
exe = exe.run(fluid.default_startup_program())
else:
place = self.paddle_env['place']
exe = self.paddle_env['exe']
data_dict = np.load(data_path).item()
for op_name in data_dict:
layer = self.layers[op_name]
for param_name, data in data_dict[op_name].iteritems():
try:
name = '%s_%s' % (op_name, param_name)
v = fluid.global_scope().find_var(name)
w = v.get_tensor()
w.set(data, place)
except ValueError:
if not ignore_missing:
raise
return True
def feed(self, *args):
'''Set the input(s) for the next operation by replacing the terminal nodes.
The arguments can be either layer names or the actual layers.
'''
assert len(args) != 0
self.terminals = []
for fed_layer in args:
if isinstance(fed_layer, basestring):
try:
fed_layer = self.layers[fed_layer]
except KeyError:
raise KeyError('Unknown layer name fed: %s' % fed_layer)
self.terminals.append(fed_layer)
return self
def get_output(self):
'''Returns the current network output.'''
return self.terminals[-1]
def get_unique_name(self, prefix):
'''Returns an index-suffixed unique name for the given prefix.
This is used for auto-generating layer names based on the type-prefix.
'''
ident = sum(t.startswith(prefix) for t, _ in self.layers.items()) + 1
return '%s_%d' % (prefix, ident)
@layer
def conv(self,
input,
k_h,
k_w,
c_o,
s_h,
s_w,
name,
relu=True,
padding=None,
group=1,
biased=True):
if padding is None:
padding = [0, 0]
# Get the number of channels in the input
c_i, h_i, w_i = input.shape[1:]
# Verify that the grouping parameter is valid
assert c_i % group == 0
assert c_o % group == 0
fluid = import_fluid()
prefix = name + '_'
output = fluid.layers.conv2d(
input=input,
filter_size=[k_h, k_w],
num_filters=c_o,
stride=[s_h, s_w],
padding=padding,
groups=group,
param_attr=fluid.ParamAttr(name=prefix + "weights"),
bias_attr=fluid.ParamAttr(name=prefix + "biases"),
act="relu" if relu is True else None)
return output
@layer
def relu(self, input, name):
fluid = import_fluid()
output = fluid.layers.relu(x=input)
return output
@layer
def max_pool(self, input, k_h, k_w, s_h, s_w, name, padding=None):
if padding is None:
padding = [0, 0]
# Get the number of channels in the input
h_i, w_i = input.shape[2:]
fluid = import_fluid()
output = fluid.layers.pool2d(
input=input,
pool_size=[k_h, k_w],
pool_stride=[s_h, s_w],
pool_padding=padding,
pool_type='max')
return output
@layer
def avg_pool(self, input, k_h, k_w, s_h, s_w, name, padding=None):
if padding is None:
padding = [0, 0]
# Get the number of channels in the input
h_i, w_i = input.shape[2:]
fluid = import_fluid()
output = fluid.layers.pool2d(
input=input,
pool_size=[k_h, k_w],
pool_stride=[s_h, s_w],
pool_padding=padding,
pool_type='avg')
return output
@layer
def lrn(self, input, radius, alpha, beta, name, bias=1.0):
raise Exception('lrn() not implemented yet')
@layer
def concat(self, inputs, axis, name):
fluid = import_fluid()
output = fluid.layers.concat(input=inputs, axis=axis)
return output
@layer
def add(self, inputs, name):
fluid = import_fluid()
output = inputs[0]
for i in inputs[1:]:
output = fluid.layers.elementwise_add(x=output, y=i)
return output
@layer
def fc(self, input, num_out, name, relu=True, act=None):
fluid = import_fluid()
if act is None:
act = 'relu' if relu is True else None
prefix = name + '_'
output = fluid.layers.fc(
name=name,
input=input,
size=num_out,
act=act,
param_attr=fluid.ParamAttr(name=prefix + 'weights'),
bias_attr=fluid.ParamAttr(name=prefix + 'biases'))
return output
@layer
def softmax(self, input, name):
fluid = import_fluid()
output = fluid.layers.softmax(x=input, name=name)
return output
@layer
def batch_normalization(self, input, name, scale_offset=True, relu=False):
# NOTE: Currently, only inference is supported
fluid = import_fluid()
prefix = name + '_'
param_attr = None if scale_offset is False else fluid.ParamAttr(
name=prefix + 'scale')
bias_attr = None if scale_offset is False else fluid.ParamAttr(
name=prefix + 'offset')
mean_name = prefix + 'mean'
variance_name = prefix + 'variance'
output = fluid.layers.batch_norm(
name=name,
input=input,
is_test=True,
param_attr=param_attr,
bias_attr=bias_attr,
moving_mean_name=mean_name,
moving_variance_name=variance_name,
epsilon=1e-5,
act='relu' if relu is True else None)
return output
@layer
def dropout(self, input, keep_prob, name):
raise Exception('dropout() not implemented yet')
import numpy as np
from ..errors import KaffeError, print_stderr
from ..graph import GraphBuilder, NodeMapper
from ..layers import NodeKind
from ..transformers import (DataInjector, DataReshaper, NodeRenamer, ReLUFuser,
BatchNormScaleBiasFuser, BatchNormPreprocessor,
ParameterNamer)
from . import network
def get_padding_type(kernel_params, input_shape, output_shape):
'''Translates Caffe's numeric padding to one of ('SAME', 'VALID').
Caffe supports arbitrary padding values, while TensorFlow only
supports 'SAME' and 'VALID' modes. So, not all Caffe paddings
can be translated to TensorFlow. There are some subtleties to
how the padding edge-cases are handled. These are described here:
https://github.com/Yangqing/caffe2/blob/master/caffe2/proto/caffe2_legacy.proto
'''
k_h, k_w, s_h, s_w, p_h, p_w = kernel_params
if p_h * p_w > 0:
return [p_h, p_w]
else:
return None
class TensorFlowNode(object):
'''An intermediate representation for TensorFlow operations.'''
def __init__(self, op, *args, **kwargs):
# A string corresponding to the TensorFlow operation
self.op = op
# Positional arguments for the operation
self.args = args
# Keyword arguments for the operation
self.kwargs = list(kwargs.items())
# The source Caffe node
self.node = None
def format(self, arg):
'''Returns a string representation for the given value.'''
return "'%s'" % arg if isinstance(arg, basestring) else str(arg)
def pair(self, key, value):
'''Returns key=formatted(value).'''
return '%s=%s' % (key, self.format(value))
def emit(self):
'''Emits the Python source for this node.'''
# Format positional arguments
args = map(self.format, self.args)
# Format any keyword arguments
if self.kwargs:
args += [self.pair(k, v) for k, v in self.kwargs]
# Set the node name
args.append(self.pair('name', self.node.name))
args = ', '.join(args)
return '%s(%s)' % (self.op, args)
class MaybeActivated(object):
def __init__(self, node, default=True):
self.inject_kwargs = {}
if node.metadata.get('relu', False) != default:
self.inject_kwargs['relu'] = not default
def __call__(self, *args, **kwargs):
kwargs.update(self.inject_kwargs)
return TensorFlowNode(*args, **kwargs)
class TensorFlowMapper(NodeMapper):
def get_kernel_params(self, node):
kernel_params = node.layer.kernel_parameters
input_shape = node.get_only_parent().output_shape
padding = get_padding_type(kernel_params, input_shape,
node.output_shape)
# Only emit the padding if it's not the default value.
padding = {'padding': padding} if padding is not None else {}
return (kernel_params, padding)
def map_convolution(self, node):
(kernel_params, kwargs) = self.get_kernel_params(node)
h = kernel_params.kernel_h
w = kernel_params.kernel_w
c_o = node.output_shape[1]
c_i = node.parents[0].output_shape[1]
group = node.parameters.group
if group != 1:
kwargs['group'] = group
if not node.parameters.bias_term:
kwargs['biased'] = False
assert kernel_params.kernel_h == h
assert kernel_params.kernel_w == w
return MaybeActivated(node)(
'conv', kernel_params.kernel_h, kernel_params.kernel_w, c_o,
kernel_params.stride_h, kernel_params.stride_w, **kwargs)
def map_relu(self, node):
return TensorFlowNode('relu')
def map_pooling(self, node):
pool_type = node.parameters.pool
if pool_type == 0:
pool_op = 'max_pool'
elif pool_type == 1:
pool_op = 'avg_pool'
else:
# Stochastic pooling, for instance.
raise KaffeError('Unsupported pooling type.')
(kernel_params, padding) = self.get_kernel_params(node)
return TensorFlowNode(pool_op, kernel_params.kernel_h,
kernel_params.kernel_w, kernel_params.stride_h,
kernel_params.stride_w, **padding)
def map_inner_product(self, node):
#TODO: Axis
assert node.parameters.axis == 1
#TODO: Unbiased
assert node.parameters.bias_term == True
return MaybeActivated(node)('fc', node.parameters.num_output)
def map_softmax(self, node):
return TensorFlowNode('softmax')
def map_lrn(self, node):
params = node.parameters
# The window size must be an odd value. For a window
# size of (2*n+1), TensorFlow defines depth_radius = n.
assert params.local_size % 2 == 1
# Caffe scales by (alpha/(2*n+1)), whereas TensorFlow
# just scales by alpha (as does Krizhevsky's paper).
# We'll account for that here.
alpha = params.alpha / float(params.local_size)
return TensorFlowNode('lrn',
int(params.local_size / 2), alpha, params.beta)
def map_concat(self, node):
return TensorFlowNode('concat', node.parameters.axis)
def map_dropout(self, node):
return TensorFlowNode('dropout', node.parameters.dropout_ratio)
def map_batch_norm(self, node):
scale_offset = len(node.data) == 4
kwargs = {} if scale_offset else {'scale_offset': False}
return MaybeActivated(
node, default=False)('batch_normalization', **kwargs)
def map_eltwise(self, node):
operations = {0: 'multiply', 1: 'add', 2: 'max'}
op_code = node.parameters.operation
try:
return TensorFlowNode(operations[op_code])
except KeyError:
raise KaffeError('Unknown elementwise operation: {}'.format(
op_code))
def commit(self, chains):
return chains
class TensorFlowEmitter(object):
def __init__(self, tab=None):
self.tab = tab or ' ' * 4
self.prefix = ''
self.net_name = ''
def indent(self):
self.prefix += self.tab
def outdent(self):
self.prefix = self.prefix[:-len(self.tab)]
def statement(self, s):
return self.prefix + s + '\n'
def emit_imports(self):
import inspect
codes = []
codes.append(
'### generated by caffe2fluid, your net is in class "%s" ###\n' %
(self.net_name))
network_source = inspect.getsource(network)
codes.append(network_source + '\n')
return self.statement('\n'.join(codes))
def emit_class_def(self, name):
return self.statement('class %s(Network):' % (name))
def emit_setup_def(self):
return self.statement('def setup(self):')
def emit_convert_def(self, input_nodes):
def data_layer_def(name, shape, dtype=None):
if dtype is None:
dtype = 'float32'
layer_var = name + '_layer'
shape = [str(s) for s in shape[1:]]
layer_def = '%s = fluid.layers.data(name="%s", shape=[%s], dtype="%s")'\
% (layer_var, name, ','.join(shape), dtype)
return layer_var, layer_def
codes = []
inputs = {}
for n in input_nodes:
name = n.name
layer_var, layer_def = data_layer_def(n.name, n.output_shape)
codes.append(layer_def)
inputs[name] = layer_var
input_dict = ','.join(['"%s": %s' % (n, l) for n, l in inputs.items()])
codes.append('feed_data = {' + input_dict + '}')
codes.append('net = cls(feed_data)')
codes.append("place = fluid.CPUPlace()")
codes.append("exe = fluid.Executor(place)")
codes.append("exe.run(fluid.default_startup_program())")
codes.append("net.load(data_path=npy_model, exe=exe, place=place)")
codes.append(
"fluid.io.save_persistables(executor=exe, dirname=fluid_path)")
self.outdent()
func_def = self.statement('@classmethod')
func_def += self.statement('def convert(cls, npy_model, fluid_path):')
self.indent()
func_def += self.statement('import paddle.v2.fluid as fluid')
for l in codes:
func_def += self.statement(l)
return '\n\n' + func_def
def emit_main_def(self, name):
if name is None:
return ''
self.prefix = ''
main_def = self.statement('if __name__ == "__main__":')
self.indent()
main_def += self.statement("#usage: python xxxnet.py xxx.npy ./model\n")
main_def += self.statement("import sys")
main_def += self.statement("npy_weight = sys.argv[1]")
main_def += self.statement("fluid_model = sys.argv[2]")
main_def += self.statement("%s.convert(npy_weight, fluid_model)" %
(name))
main_def += self.statement("exit(0)")
return '\n\n' + main_def
def emit_parents(self, chain):
assert len(chain)
s = 'self.feed('
sep = ', \n' + self.prefix + (' ' * len(s))
s += sep.join(
["'%s'" % parent.name for parent in chain[0].node.parents])
return self.statement(s + ')')
def emit_node(self, node):
return self.statement('self.' + node.emit())
def emit(self, name, chains, input_nodes=None):
self.net_name = name
s = self.emit_imports()
s += self.emit_class_def(name)
self.indent()
s += self.emit_setup_def()
self.indent()
blocks = []
for chain in chains:
b = ''
b += self.emit_parents(chain)
for node in chain:
b += self.emit_node(node)
blocks.append(b[:-1])
s = s + '\n\n'.join(blocks)
s += self.emit_convert_def(input_nodes)
s += self.emit_main_def(name)
return s
class Transformer(object):
def __init__(self, def_path, data_path, verbose=True, phase='test'):
self.verbose = verbose
self.phase = phase
self.load(def_path, data_path, phase)
self.params = None
self.source = None
def load(self, def_path, data_path, phase):
# Build the graph
graph = GraphBuilder(def_path, phase).build()
if data_path is not None:
# Load and associate learned parameters
graph = DataInjector(def_path, data_path)(graph)
# Transform the graph
transformers = [
# Fuse split batch normalization layers
BatchNormScaleBiasFuser(),
# Fuse ReLUs
# TODO: Move non-linearity application to layer wrapper, allowing
# any arbitrary operation to be optionally activated.
ReLUFuser(allowed_parent_types=[
NodeKind.Convolution, NodeKind.InnerProduct, NodeKind.BatchNorm
]),
# Rename nodes
# Slashes are used for scoping in TensorFlow. Replace slashes
# in node names with underscores.
# (Caffe's GoogLeNet implementation uses slashes)
NodeRenamer(lambda node: node.name.replace('/', '_'))
]
self.graph = graph.transformed(transformers)
# Display the graph
if self.verbose:
print_stderr(self.graph)
def transform_data(self):
if self.params is None:
transformers = [
# Reshape the parameters to TensorFlow's ordering
DataReshaper({
# (c_o, c_i, h, w) -> (h, w, c_i, c_o) for TF
NodeKind.Convolution: (0, 1, 2, 3),
# (c_o, c_i) -> (c_i, c_o)
NodeKind.InnerProduct: (1, 0)
}),
# Pre-process batch normalization data
BatchNormPreprocessor(),
# Convert parameters to dictionaries
ParameterNamer(),
]
self.graph = self.graph.transformed(transformers)
self.params = {
node.name: node.data
for node in self.graph.nodes if node.data
}
return self.params
def transform_source(self):
if self.source is None:
mapper = TensorFlowMapper(self.graph)
chains = mapper.map()
emitter = TensorFlowEmitter()
input_nodes = self.graph.get_input_nodes()
self.source = emitter.emit(self.graph.name, chains, input_nodes)
return self.source
import math
from collections import namedtuple
from .errors import KaffeError
TensorShape = namedtuple('TensorShape',
['batch_size', 'channels', 'height', 'width'])
def get_filter_output_shape(i_h, i_w, params, round_func):
o_h = (i_h + 2 * params.pad_h - params.kernel_h
) / float(params.stride_h) + 1
o_w = (i_w + 2 * params.pad_w - params.kernel_w
) / float(params.stride_w) + 1
return (int(round_func(o_h)), int(round_func(o_w)))
def get_strided_kernel_output_shape(node, round_func):
assert node.layer is not None
input_shape = node.get_only_parent().output_shape
o_h, o_w = get_filter_output_shape(input_shape.height, input_shape.width,
node.layer.kernel_parameters, round_func)
params = node.layer.parameters
has_c_o = hasattr(params, 'num_output')
c = params.num_output if has_c_o else input_shape.channels
return TensorShape(input_shape.batch_size, c, o_h, o_w)
def shape_not_implemented(node):
raise NotImplementedError
def shape_identity(node):
assert len(node.parents) > 0
return node.parents[0].output_shape
def shape_scalar(node):
return TensorShape(1, 1, 1, 1)
def shape_data(node):
if node.output_shape:
# Old-style input specification
return node.output_shape
try:
# New-style input specification
return map(int, node.parameters.shape[0].dim)
except:
# We most likely have a data layer on our hands. The problem is,
# Caffe infers the dimensions of the data from the source (eg: LMDB).
# We want to avoid reading datasets here. Fail for now.
# This can be temporarily fixed by transforming the data layer to
# Caffe's "input" layer (as is usually used in the "deploy" version).
# TODO: Find a better solution for this.
raise KaffeError('Cannot determine dimensions of data layer.\n'
'See comments in function shape_data for more info.')
def shape_mem_data(node):
params = node.parameters
return TensorShape(params.batch_size, params.channels, params.height,
params.width)
def shape_concat(node):
axis = node.layer.parameters.axis
output_shape = None
for parent in node.parents:
if output_shape is None:
output_shape = list(parent.output_shape)
else:
output_shape[axis] += parent.output_shape[axis]
return tuple(output_shape)
def shape_convolution(node):
return get_strided_kernel_output_shape(node, math.floor)
def shape_pool(node):
return get_strided_kernel_output_shape(node, math.ceil)
def shape_inner_product(node):
input_shape = node.get_only_parent().output_shape
return TensorShape(input_shape.batch_size, node.layer.parameters.num_output,
1, 1)
'''
A collection of graph transforms.
A transformer is a callable that accepts a graph and returns a transformed version.
'''
import os
import numpy as np
from .caffe import get_caffe_resolver, has_pycaffe
from .errors import KaffeError, debug, notice, warn
from .layers import NodeKind
class DataInjector(object):
'''
Associates parameters loaded from a .caffemodel file with their corresponding nodes.
'''
def __init__(self, def_path, data_path):
# The .prototxt file defining the graph
self.def_path = def_path
# The .caffemodel file containing the learned parameters
self.data_path = data_path
# Set to true if the fallback protocol-buffer based backend was used
self.did_use_pb = False
# A list containing (layer name, parameters) tuples
self.params = None
# Load the parameters
self.load()
def load(self):
if has_pycaffe():
self.load_using_caffe()
else:
self.load_using_pb()
def load_using_caffe(self):
caffe = get_caffe_resolver().caffe
net = caffe.Net(self.def_path, self.data_path, caffe.TEST)
data = lambda blob: blob.data
self.params = [(k, map(data, v)) for k, v in net.params.items()]
def load_using_pb(self):
data = get_caffe_resolver().NetParameter()
data.MergeFromString(open(self.data_path, 'rb').read())
pair = lambda layer: (layer.name, self.normalize_pb_data(layer))
layers = data.layers or data.layer
self.params = [pair(layer) for layer in layers if layer.blobs]
self.did_use_pb = True
def normalize_pb_data(self, layer):
transformed = []
for blob in layer.blobs:
if len(blob.shape.dim):
dims = blob.shape.dim
c_o, c_i, h, w = map(int, [1] * (4 - len(dims)) + list(dims))
else:
c_o = blob.num
c_i = blob.channels
h = blob.height
w = blob.width
data = np.array(blob.data, dtype=np.float32).reshape(c_o, c_i, h, w)
transformed.append(data)
return transformed
def adjust_parameters(self, node, data):
if not self.did_use_pb:
return data
# When using the protobuf-backend, each parameter initially has four dimensions.
# In certain cases (like FC layers), we want to eliminate the singleton dimensions.
# This implementation takes care of the common cases. However, it does leave the
# potential for future issues.
# The Caffe-backend does not suffer from this problem.
data = list(data)
squeeze_indices = [1] # Squeeze biases.
if node.kind == NodeKind.InnerProduct:
squeeze_indices.append(0) # Squeeze FC.
for idx in squeeze_indices:
if idx >= len(data):
continue
shape_old = data[idx].shape
data[idx] = np.squeeze(data[idx])
shape_new = data[idx].shape
if len(shape_old) != shape_new:
debug('squeeze idx:%d, with kind:%s,name:%s' % \
(idx, node.kind, node.name))
return data
def __call__(self, graph):
for layer_name, data in self.params:
if layer_name in graph:
node = graph.get_node(layer_name)
node.data = self.adjust_parameters(node, data)
else:
notice('Ignoring parameters for non-existent layer: %s' % \
layer_name)
return graph
class DataReshaper(object):
def __init__(self, mapping, replace=True):
# A dictionary mapping NodeKind to the transposed order.
self.mapping = mapping
# The node kinds eligible for reshaping
self.reshaped_node_types = self.mapping.keys()
# If true, the reshaped data will replace the old one.
# Otherwise, it's set to the reshaped_data attribute.
self.replace = replace
def has_spatial_parent(self, node):
try:
parent = node.get_only_parent()
s = parent.output_shape
return s.height > 1 or s.width > 1
except KaffeError:
return False
def map(self, node_kind):
try:
return self.mapping[node_kind]
except KeyError:
raise
#raise KaffeError('Ordering not found for node kind: {}'.format(node_kind))
def __call__(self, graph):
for node in graph.nodes:
if node.data is None:
continue
if node.kind not in self.reshaped_node_types:
# Check for 2+ dimensional data
if any(len(tensor.shape) > 1 for tensor in node.data):
notice('parmaters not reshaped for node: {}'.format(node))
continue
transpose_order = self.map(node.kind)
weights = node.data[0]
if (node.kind == NodeKind.InnerProduct
) and self.has_spatial_parent(node):
# The FC layer connected to the spatial layer needs to be
# re-wired to match the new spatial ordering.
in_shape = node.get_only_parent().output_shape
fc_shape = weights.shape
output_channels = fc_shape[0]
weights = weights.reshape((output_channels, -1))
weights = weights.transpose(transpose_order)
node.reshaped_data = weights
else:
node.reshaped_data = weights.transpose(transpose_order)
if self.replace:
for node in graph.nodes:
if hasattr(node, 'reshaped_data'):
# Set the weights
node.data[0] = node.reshaped_data
del node.reshaped_data
return graph
class SubNodeFuser(object):
'''
An abstract helper for merging a single-child with its single-parent.
'''
def __call__(self, graph):
nodes = graph.nodes
fused_nodes = []
for node in nodes:
if len(node.parents) != 1:
# We're only fusing nodes with single parents
continue
parent = node.get_only_parent()
if len(parent.children) != 1:
# We can only fuse a node if its parent's
# value isn't used by any other node.
continue
if not self.is_eligible_pair(parent, node):
continue
# Rewrite the fused node's children to its parent.
for child in node.children:
child.parents.remove(node)
parent.add_child(child)
# Disconnect the fused node from the graph.
parent.children.remove(node)
fused_nodes.append(node)
# Let the sub-class merge the fused node in any arbitrary way.
self.merge(parent, node)
transformed_nodes = [node for node in nodes if node not in fused_nodes]
return graph.replaced(transformed_nodes)
def is_eligible_pair(self, parent, child):
'''Returns true if this parent/child pair is eligible for fusion.'''
raise NotImplementedError('Must be implemented by subclass.')
def merge(self, parent, child):
'''Merge the child node into the parent.'''
raise NotImplementedError('Must be implemented by subclass')
class ReLUFuser(SubNodeFuser):
'''
Fuses rectified linear units with their parent nodes.
'''
def __init__(self, allowed_parent_types=None):
# Fuse ReLUs when the parent node is one of the given types.
# If None, all node types are eligible.
self.allowed_parent_types = allowed_parent_types
def is_eligible_pair(self, parent, child):
return ((self.allowed_parent_types is None or \
parent.kind in self.allowed_parent_types) and \
child.kind == NodeKind.ReLU)
def merge(self, parent, _):
parent.metadata['relu'] = True
class BatchNormScaleBiasFuser(SubNodeFuser):
'''
The original batch normalization paper includes two learned
parameters: a scaling factor \gamma and a bias \beta.
Caffe's implementation does not include these two. However, it is commonly
replicated by adding a scaling+bias layer immidiately after the batch norm.
This fuser merges the scaling+bias layer with the batch norm.
'''
def is_eligible_pair(self, parent, child):
return (parent.kind == NodeKind.BatchNorm and \
child.kind == NodeKind.Scale and \
child.parameters.axis == 1 and \
child.parameters.bias_term == True)
def merge(self, parent, child):
parent.scale_bias_node = child
class BatchNormPreprocessor(object):
'''
Prescale batch normalization parameters.
Concatenate gamma (scale) and beta (bias) terms if set.
'''
def __call__(self, graph):
for node in graph.nodes:
if node.kind != NodeKind.BatchNorm:
continue
assert node.data is not None
assert len(node.data) == 3
node.data = [np.squeeze(i) for i in node.data]
mean, variance, scale = node.data
# Prescale the stats
scaling_factor = 1.0 / scale if scale != 0 else 0
mean *= scaling_factor
variance *= scaling_factor
# Replace with the updated values
node.data = [mean, variance]
if hasattr(node, 'scale_bias_node'):
# Include the scale and bias terms
gamma, beta = node.scale_bias_node.data
node.data += [np.squeeze(i) for i in [gamma, beta]]
return graph
class NodeRenamer(object):
'''
Renames nodes in the graph using a given unary function that
accepts a node and returns its new name.
'''
def __init__(self, renamer):
self.renamer = renamer
def __call__(self, graph):
for node in graph.nodes:
node.name = self.renamer(node)
return graph
class ParameterNamer(object):
'''
Convert layer data arrays to a dictionary mapping parameter names to their values.
'''
def __call__(self, graph):
for node in graph.nodes:
if node.data is None:
continue
if node.kind in (NodeKind.Convolution, NodeKind.InnerProduct):
names = ('weights', )
if node.parameters.bias_term:
names += ('biases', )
elif node.kind == NodeKind.BatchNorm:
names = ('mean', 'variance')
if len(node.data) == 4:
names += ('scale', 'offset')
else:
warn('Unhandled parameters: {}'.format(node.kind))
continue
assert len(names) == len(node.data)
node.data = dict(zip(names, node.data))
return graph
#!/bin/bash
#function:
# script used to generate caffepb.py from caffe.proto using protoc
#
PROTOC=`which protoc`
if [[ -z $PROTOC ]];then
echo "not found protoc, you should first install it following this[https://github.com/google/protobuf/releases]"
exit 1
fi
WORK_ROOT=$(dirname `readlink -f "$BASH_SOURCE[0]"`)
PY_NAME="$WORK_ROOT/caffepb.py"
$PROTOC --proto_path=$WORK_ROOT --python_out=$WORK_ROOT $WORK_ROOT/caffe.proto
ret=$?
if [ $ret -eq 0 ];then
mv $WORK_ROOT/caffe_pb2.py $PY_NAME
fi
if [ -e "$PY_NAME" ];then
echo "succeed to generate [$PY_NAME]"
exit 0
else
echo "failed to generate [$PY_NAME]"
fi
exit $ret
### convert lenet model from caffe format into paddle format(fluid api)
### howto
1, download a lenet caffe-model
lenet_iter_10000.caffemodel
download address: https://github.com/ethereon/caffe-tensorflow/raw/master/examples/mnist/lenet_iter_10000.caffemodel
md5: cbec75c1c374b6c1981c4a1eb024ae01
lenet.prototxt
download address: https://raw.githubusercontent.com/BVLC/caffe/master/examples/mnist/lenet.prototxt
md5: 27384af843338ab90b00c8d1c81de7d5
2, convert this model(make sure caffepb.py is ready in ../../proto)
* convert to npy format
bash ./convert.sh lenet.prototxt lenet.caffemodel lenet.py lenet.npy
* save to fluid format(optional)
bash ./convert.sh lenet.prototxt lenet.caffemodel lenet.py lenet.npy && python ./lenet.py ./lenet.npy ./fluid.model
4, use this new model(paddle installed in this python)
* use fluid format
python ./predict.py ./fluid.model
* use npy format
python ./predict.py ./lenet.npy
#!/bin/bash
#function:
# convert a caffe model
if [[ $# -ne 4 ]];then
echo "usage:"
echo " bash $0 [PROTOTXT] [CAFFEMODEL] [PY_NAME] [WEIGHT_NAME]"
echo " eg: bash $0 lenet.prototxt lenet.caffemodel lenet.py lenet.npy"
exit 1
fi
WORK_ROOT=$(dirname `readlink -f ${BASH_SOURCE[0]}`)
if [[ -z $PYTHON ]];then
PYTHON=`which python`
fi
PROTOTXT=$1
CAFFEMODEL=$2
PY_NAME=$3
WEIGHT_NAME=$4
CONVERTER_PY="$WORK_ROOT/../../convert.py"
$PYTHON $CONVERTER_PY $PROTOTXT --caffemodel $CAFFEMODEL --code-output-path=$PY_NAME --data-output-path=$WEIGHT_NAME
ret=$?
if [[ $ret -eq 0 ]];then
echo "succeed to convert caffe model[$CAFFEMODEL, $PROTOTXT] to paddle model[$PY_NAME, $WEIGHT_NAME]"
else
echo "failed to convert caffe model[$CAFFEMODEL, $PROTOTXT]"
fi
exit $ret
### generated by caffe2fluid, your net is in class "LeNet" ###
import math
import os
import numpy as np
def import_fluid():
import paddle.v2.fluid as fluid
return fluid
def layer(op):
'''Decorator for composable network layers.'''
def layer_decorated(self, *args, **kwargs):
# Automatically set a name if not provided.
name = kwargs.setdefault('name', self.get_unique_name(op.__name__))
# Figure out the layer inputs.
if len(self.terminals) == 0:
raise RuntimeError('No input variables found for layer %s.' % name)
elif len(self.terminals) == 1:
layer_input = self.terminals[0]
else:
layer_input = list(self.terminals)
# Perform the operation and get the output.
layer_output = op(self, layer_input, *args, **kwargs)
# Add to layer LUT.
self.layers[name] = layer_output
# This output is now the input for the next layer.
self.feed(layer_output)
# Return self for chained calls.
return self
return layer_decorated
class Network(object):
def __init__(self, inputs, trainable=True):
# The input nodes for this network
self.inputs = inputs
# The current list of terminal nodes
self.terminals = []
# Mapping from layer names to layers
self.layers = dict(inputs)
# If true, the resulting variables are set as trainable
self.trainable = trainable
# Switch variable for dropout
self.paddle_env = None
self.setup()
def setup(self):
'''Construct the network. '''
raise NotImplementedError('Must be implemented by the subclass.')
def load(self, data_path, exe=None, place=None, ignore_missing=False):
'''Load network weights.
data_path: The path to the numpy-serialized network weights
ignore_missing: If true, serialized weights for missing layers are ignored.
'''
fluid = import_fluid()
#load fluid mode directly
if os.path.isdir(data_path):
assert (
exe is not None), 'must provide a executor to load fluid model'
fluid.io.load_persistables_if_exist(executor=exe, dirname=data_path)
return True
#load model from a npy file
if exe is None or place is None:
if self.paddle_env is None:
place = fluid.CPUPlace()
exe = fluid.Executor(place)
self.paddle_env = {'place': place, 'exe': exe}
exe = exe.run(fluid.default_startup_program())
else:
place = self.paddle_env['place']
exe = self.paddle_env['exe']
data_dict = np.load(data_path).item()
for op_name in data_dict:
layer = self.layers[op_name]
for param_name, data in data_dict[op_name].iteritems():
try:
name = '%s_%s' % (op_name, param_name)
v = fluid.global_scope().find_var(name)
w = v.get_tensor()
w.set(data, place)
except ValueError:
if not ignore_missing:
raise
return True
def feed(self, *args):
'''Set the input(s) for the next operation by replacing the terminal nodes.
The arguments can be either layer names or the actual layers.
'''
assert len(args) != 0
self.terminals = []
for fed_layer in args:
if isinstance(fed_layer, basestring):
try:
fed_layer = self.layers[fed_layer]
except KeyError:
raise KeyError('Unknown layer name fed: %s' % fed_layer)
self.terminals.append(fed_layer)
return self
def get_output(self):
'''Returns the current network output.'''
return self.terminals[-1]
def get_unique_name(self, prefix):
'''Returns an index-suffixed unique name for the given prefix.
This is used for auto-generating layer names based on the type-prefix.
'''
ident = sum(t.startswith(prefix) for t, _ in self.layers.items()) + 1
return '%s_%d' % (prefix, ident)
@layer
def conv(self,
input,
k_h,
k_w,
c_o,
s_h,
s_w,
name,
relu=True,
padding=None,
group=1,
biased=True):
if padding is None:
padding = [0, 0]
# Get the number of channels in the input
c_i, h_i, w_i = input.shape[1:]
# Verify that the grouping parameter is valid
assert c_i % group == 0
assert c_o % group == 0
fluid = import_fluid()
prefix = name + '_'
output = fluid.layers.conv2d(
input=input,
filter_size=[k_h, k_w],
num_filters=c_o,
stride=[s_h, s_w],
padding=padding,
groups=group,
param_attr=fluid.ParamAttr(name=prefix + "weights"),
bias_attr=fluid.ParamAttr(name=prefix + "biases"),
act="relu" if relu is True else None)
return output
@layer
def relu(self, input, name):
fluid = import_fluid()
output = fluid.layers.relu(x=input)
return output
@layer
def max_pool(self, input, k_h, k_w, s_h, s_w, name, padding=None):
if padding is None:
padding = [0, 0]
# Get the number of channels in the input
h_i, w_i = input.shape[2:]
fluid = import_fluid()
output = fluid.layers.pool2d(
input=input,
pool_size=[k_h, k_w],
pool_stride=[s_h, s_w],
pool_padding=padding,
pool_type='max')
return output
@layer
def avg_pool(self, input, k_h, k_w, s_h, s_w, name, padding=None):
if padding is None:
padding = [0, 0]
# Get the number of channels in the input
h_i, w_i = input.shape[2:]
fluid = import_fluid()
output = fluid.layers.pool2d(
input=input,
pool_size=[k_h, k_w],
pool_stride=[s_h, s_w],
pool_padding=padding,
pool_type='avg')
return output
@layer
def lrn(self, input, radius, alpha, beta, name, bias=1.0):
raise Exception('lrn() not implemented yet')
@layer
def concat(self, inputs, axis, name):
fluid = import_fluid()
output = fluid.layers.concat(input=inputs, axis=axis)
return output
@layer
def add(self, inputs, name):
fluid = import_fluid()
output = inputs[0]
for i in inputs[1:]:
output = fluid.layers.elementwise_add(x=output, y=i)
return output
@layer
def fc(self, input, num_out, name, relu=True, act=None):
fluid = import_fluid()
if act is None:
act = 'relu' if relu is True else None
prefix = name + '_'
output = fluid.layers.fc(
name=name,
input=input,
size=num_out,
act=act,
param_attr=fluid.ParamAttr(name=prefix + 'weights'),
bias_attr=fluid.ParamAttr(name=prefix + 'biases'))
return output
@layer
def softmax(self, input, name):
fluid = import_fluid()
output = fluid.layers.softmax(x=input, name=name)
return output
@layer
def batch_normalization(self, input, name, scale_offset=True, relu=False):
# NOTE: Currently, only inference is supported
fluid = import_fluid()
prefix = name + '_'
param_attr = None if scale_offset is False else fluid.ParamAttr(
name=prefix + 'scale')
bias_attr = None if scale_offset is False else fluid.ParamAttr(
name=prefix + 'offset')
mean_name = prefix + 'mean'
variance_name = prefix + 'variance'
output = fluid.layers.batch_norm(
name=name,
input=input,
is_test=True,
param_attr=param_attr,
bias_attr=bias_attr,
moving_mean_name=mean_name,
moving_variance_name=variance_name,
epsilon=1e-5,
act='relu' if relu is True else None)
return output
@layer
def dropout(self, input, keep_prob, name):
raise Exception('dropout() not implemented yet')
class LeNet(Network):
def setup(self):
self.feed('data')
self.conv(5, 5, 20, 1, 1, relu=False, name='conv1')
self.max_pool(2, 2, 2, 2, name='pool1')
self.conv(5, 5, 50, 1, 1, relu=False, name='conv2')
self.max_pool(2, 2, 2, 2, name='pool2')
self.fc(500, name='ip1')
self.fc(10, relu=False, name='ip2')
self.softmax(name='prob')
@classmethod
def convert(cls, npy_model, fluid_path):
import paddle.v2.fluid as fluid
data_layer = fluid.layers.data(
name="data", shape=[1, 28, 28], dtype="float32")
feed_data = {"data": data_layer}
net = cls(feed_data)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
net.load(data_path=npy_model, exe=exe, place=place)
fluid.io.save_persistables(executor=exe, dirname=fluid_path)
if __name__ == "__main__":
#usage: python xxxnet.py xxx.npy ./model
import sys
npy_weight = sys.argv[1]
fluid_model = sys.argv[2]
LeNet.convert(npy_weight, fluid_model)
exit(0)
#!/bin/env python
#function:
# demo to show how to use converted model using caffe2fluid
#
import numpy as np
import paddle.v2 as paddle
import paddle.v2.fluid as fluid
from lenet import LeNet as MyNet
def test_model(exe, test_program, fetch_list, test_reader, feeder):
acc_set = []
for data in test_reader():
acc_np, pred = exe.run(program=test_program,
feed=feeder.feed(data),
fetch_list=fetch_list)
acc_set.append(float(acc_np))
acc_val = np.array(acc_set).mean()
return float(acc_val)
def main(model_path):
""" main
"""
print('load fluid model in %s' % (model_path))
with_gpu = False
paddle.init(use_gpu=with_gpu)
#1, define network topology
images = fluid.layers.data(name='image', shape=[1, 28, 28], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
net = MyNet({'data': images})
prediction = net.layers['prob']
acc = fluid.layers.accuracy(input=prediction, label=label)
place = fluid.CUDAPlace(0) if with_gpu is True else fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
#2, load weights
if model_path.find('.npy') > 0:
net.load(data_path=model_path, exe=exe, place=place)
else:
net.load(data_path=model_path, exe=exe)
#3, test this model
test_program = fluid.default_main_program().clone()
test_reader = paddle.batch(paddle.dataset.mnist.test(), batch_size=128)
feeder = fluid.DataFeeder(feed_list=[images, label], place=place)
fetch_list = [acc, prediction]
print('go to test model using test set')
acc_val = test_model(exe, test_program, \
fetch_list, test_reader, feeder)
print('test accuracy is [%.4f], expected value[0.919]' % (acc_val))
if __name__ == "__main__":
import sys
if len(sys.argv) == 2:
fluid_model_path = sys.argv[1]
else:
fluid_model_path = './model.fluid'
main(fluid_model_path)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册