utility.py 26.1 KB
Newer Older
R
ruri 已提交
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
R
ruri 已提交
18

19 20
import distutils.util
import numpy as np
R
root 已提交
21
import six
R
ruri 已提交
22 23 24 25 26 27 28
import argparse
import functools
import logging
import sys
import os
import warnings
import signal
29
import json
R
ruri 已提交
30 31 32

import paddle
import paddle.fluid as fluid
33 34 35
from paddle.fluid.wrapped_decorator import signature_safe_contextmanager
from paddle.fluid.framework import Program, program_guard, name_scope, default_main_program
from paddle.fluid import unique_name, layers
36
from utils import dist_utils
37

38

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
def print_arguments(args):
    """Print argparse's arguments.

    Usage:

    .. code-block:: python

        parser = argparse.ArgumentParser()
        parser.add_argument("name", default="Jonh", type=str, help="User name.")
        args = parser.parse_args()
        print_arguments(args)

    :param args: Input argparse.Namespace for printing.
    :type args: argparse.Namespace
    """
54
    print("-------------  Configuration Arguments -------------")
R
root 已提交
55
    for arg, value in sorted(six.iteritems(vars(args))):
56 57
        print("%25s : %s" % (arg, value))
    print("----------------------------------------------------")
58 59 60


def add_arguments(argname, type, default, help, argparser, **kwargs):
R
ruri 已提交
61
    """Add argparse's argument. 
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

    Usage:

    .. code-block:: python

        parser = argparse.ArgumentParser()
        add_argument("name", str, "Jonh", "User name.", parser)
        args = parser.parse_args()
    """
    type = distutils.util.strtobool if type == bool else type
    argparser.add_argument(
        "--" + argname,
        default=default,
        type=type,
        help=help + ' Default: %(default)s.',
        **kwargs)
R
ruri 已提交
78

R
ruri 已提交
79 80 81 82 83 84

def parse_args():
    """Add arguments

    Returns: 
        all training args
R
ruri 已提交
85
    """
R
ruri 已提交
86 87 88 89 90 91 92 93 94 95 96
    parser = argparse.ArgumentParser(description=__doc__)
    add_arg = functools.partial(add_arguments, argparser=parser)
    # yapf: disable

    # ENV
    add_arg('use_gpu',                  bool,   True,                   "Whether to use GPU.")
    add_arg('model_save_dir',           str,    "./output",        "The directory path to save model.")
    add_arg('data_dir',                 str,    "./data/ILSVRC2012/",   "The ImageNet dataset root directory.")
    add_arg('pretrained_model',         str,    None,                   "Whether to load pretrained model.")
    add_arg('checkpoint',               str,    None,                   "Whether to resume checkpoint.")
    add_arg('print_step',               int,    10,                     "The steps interval to print logs")
97
    add_arg('save_step',                int,    1,                      "The steps interval to save checkpoints")
R
ruri 已提交
98 99 100 101

    # SOLVER AND HYPERPARAMETERS
    add_arg('model',                    str,    "ResNet50",   "The name of network.")
    add_arg('total_images',             int,    1281167,                "The number of total training images.")
R
ruri 已提交
102
    parser.add_argument('--image_shape', nargs='+', type=int, default=[3, 224, 224], help="The shape of image")
R
ruri 已提交
103 104
    add_arg('num_epochs',               int,    120,                    "The number of total epochs.")
    add_arg('class_dim',                int,    1000,                   "The number of total classes.")
105 106
    add_arg('batch_size',               int,    8,                      "Minibatch size on all devices.")
    add_arg('test_batch_size',          int,    16,                     "Test batch size on all devices.")
R
ruri 已提交
107 108 109 110
    add_arg('lr',                       float,  0.1,                    "The learning rate.")
    add_arg('lr_strategy',              str,    "piecewise_decay",      "The learning rate decay strategy.")
    add_arg('l2_decay',                 float,  1e-4,                   "The l2_decay parameter.")
    add_arg('momentum_rate',            float,  0.9,                    "The value of momentum_rate.")
111 112 113 114
    add_arg('warm_up_epochs',           float,  5.0,                    "The value of warm up epochs")
    add_arg('decay_epochs',             float,  2.4,                    "Decay epochs of exponential decay learning rate scheduler")
    add_arg('decay_rate',               float,  0.97,                   "Decay rate of exponential decay learning rate scheduler")
    add_arg('drop_connect_rate',        float,  0.2,                    "The value of drop connect rate")
R
ruri 已提交
115
    parser.add_argument('--step_epochs', nargs='+', type=int, default=[30, 60, 90], help="piecewise decay step")
116

R
ruri 已提交
117
    # READER AND PREPROCESS
118
    add_arg('use_dali',                 bool,   False,                  "Whether to use nvidia DALI for preprocessing")
R
ruri 已提交
119 120 121 122 123 124 125 126 127
    add_arg('lower_scale',              float,  0.08,                   "The value of lower_scale in ramdom_crop")
    add_arg('lower_ratio',              float,  3./4.,                  "The value of lower_ratio in ramdom_crop")
    add_arg('upper_ratio',              float,  4./3.,                  "The value of upper_ratio in ramdom_crop")
    add_arg('resize_short_size',        int,    256,                    "The value of resize_short_size")
    add_arg('use_mixup',                bool,   False,                  "Whether to use mixup")
    add_arg('mixup_alpha',              float,  0.2,                    "The value of mixup_alpha")
    add_arg('reader_thread',            int,    8,                      "The number of multi thread reader")
    add_arg('reader_buf_size',          int,    2048,                   "The buf size of multi thread reader")
    add_arg('interpolation',            int,    None,                   "The interpolation mode")
128
    add_arg('use_aa',                   bool,   False,                  "Whether to use auto augment")
R
ruri 已提交
129 130 131 132
    parser.add_argument('--image_mean', nargs='+', type=float, default=[0.485, 0.456, 0.406], help="The mean of input image data")
    parser.add_argument('--image_std', nargs='+', type=float, default=[0.229, 0.224, 0.225], help="The std of input image data")

    # SWITCH
133
    add_arg('validate',                 bool,   True,                   "whether to validate when training.")
R
ruri 已提交
134 135 136 137
    #NOTE: (2019/08/08) FP16 is moving to PaddlePaddle/Fleet now
    #add_arg('use_fp16',                 bool,   False,                  "Whether to enable half precision training with fp16." )
    #add_arg('scale_loss',               float,  1.0,                    "The value of scale_loss for fp16." )
    add_arg('use_label_smoothing',      bool,   False,                  "Whether to use label_smoothing")
138
    add_arg('label_smoothing_epsilon',  float,  0.1,                    "The value of label_smoothing_epsilon parameter")
R
ruri 已提交
139 140
    #NOTE: (2019/08/08) temporary disable use_distill
    #add_arg('use_distill',              bool,   False,                  "Whether to use distill")
141 142 143
    add_arg('use_ema',                  bool,   False,                  "Whether to use ExponentialMovingAverage.")
    add_arg('ema_decay',                float,  0.9999,                 "The value of ema decay rate")
    add_arg('padding_type',             str,    "SAME",                 "Padding type of convolution")
144
    add_arg('use_se',                   bool,   True,                   "Whether to use Squeeze-and-Excitation module for EfficientNet.")
145

146
    #NOTE: args for profiler
147 148 149 150 151
    add_arg("enable_ce",                bool,   False,                  "Whether to enable ce")
    add_arg('random_seed',              int,    None,                   "random seed")
    add_arg('is_profiler',              bool,   False,                  "Whether to start the profiler")
    add_arg('profiler_path',            str,    './profilier_files',                   "the profiler output file path")
    add_arg('max_iter',                 int,    0,                      "the max train batch num")
R
ruri 已提交
152
    add_arg('same_feed',                int,    0,                      "whether to feed same images")
R
ruri 已提交
153 154 155


    # yapf: enable
R
ruri 已提交
156 157 158 159 160 161 162
    args = parser.parse_args()

    return args


def check_gpu():
    """   
R
ruri 已提交
163
    Log error and exit when set use_gpu=true in paddlepaddle
R
ruri 已提交
164
    cpu ver sion.
R
ruri 已提交
165
    """
R
ruri 已提交
166
    logger = logging.getLogger(__name__)
R
ruri 已提交
167
    err = "Config use_gpu cannot be set as true while you are " \
R
ruri 已提交
168 169 170 171
                "using paddlepaddle cpu version ! \nPlease try: \n" \
                "\t1. Install paddlepaddle-gpu to run model on GPU \n" \
                "\t2. Set use_gpu as false in config file to run " \
                "model on CPU"
R
ruri 已提交
172

173
    try:
R
ruri 已提交
174 175
        if args.use_gpu and not fluid.is_compiled_with_cuda():
            print(err)
R
ruri 已提交
176 177 178
            sys.exit(1)
    except Exception as e:
        pass
R
ruri 已提交
179 180


181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
def check_version():
    """
    Log error and exit when the installed version of paddlepaddle is
    not satisfied.
    """
    err = "PaddlePaddle version 1.6 or higher is required, " \
          "or a suitable develop version is satisfied as well. \n" \
          "Please make sure the version is good with your code." \

    try:
        fluid.require_version('1.6.0')
    except Exception as e:
        print(err)
        sys.exit(1)


R
ruri 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
def check_args(args):
    """check arguments before running

    Args:
        all arguments
    """

    # check models name
    sys.path.append("..")
    import models
    model_list = [m for m in dir(models) if "__" not in m]
    assert args.model in model_list, "{} is not in lists: {}, please check the model name".format(
        args.model, model_list)

    # check learning rate strategy
    lr_strategy_list = [
213 214
        "piecewise_decay", "cosine_decay", "linear_decay",
        "cosine_decay_warmup", "exponential_decay_warmup"
R
ruri 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
    ]
    if args.lr_strategy not in lr_strategy_list:
        warnings.warn(
            "\n{} is not in lists: {}, \nUse default learning strategy now.".
            format(args.lr_strategy, lr_strategy_list))
        args.lr_strategy = "default_decay"
    # check confict of GoogLeNet and mixup
    if args.model == "GoogLeNet":
        assert args.use_mixup == False, "Cannot use mixup processing in GoogLeNet, please set use_mixup = False."

    if args.interpolation:
        assert args.interpolation in [
            0, 1, 2, 3, 4
        ], "Wrong interpolation, please set:\n0: cv2.INTER_NEAREST\n1: cv2.INTER_LINEAR\n2: cv2.INTER_CUBIC\n3: cv2.INTER_AREA\n4: cv2.INTER_LANCZOS4"

230 231 232 233 234
    if args.padding_type:
        assert args.padding_type in [
            "SAME", "VALID", "DYNAMIC"
        ], "Wrong padding_type, please set:\nSAME\nVALID\nDYNAMIC"

R
ruri 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
    assert args.checkpoint is None or args.pretrained_model is None, "Do not init model by checkpoint and pretrained_model both."

    # check pretrained_model path for loading
    if args.pretrained_model is not None:
        assert isinstance(args.pretrained_model, str)
        assert os.path.isdir(
            args.
            pretrained_model), "please support available pretrained_model path."

    #FIXME: check checkpoint path for saving
    if args.checkpoint is not None:
        assert isinstance(args.checkpoint, str)
        assert os.path.isdir(
            args.checkpoint
        ), "please support available checkpoint path for initing model."

    # check params for loading
    """
    if args.save_params:
        assert isinstance(args.save_params, str)
        assert os.path.isdir(
            args.save_params), "please support available save_params path."
    """

    # check gpu: when using gpu, the number of visible cards should divide batch size
    if args.use_gpu:
        assert args.batch_size % fluid.core.get_cuda_device_count(
        ) == 0, "please support correct batch_size({}), which can be divided by available cards({}), you can change the number of cards by indicating: export CUDA_VISIBLE_DEVICES= ".format(
            args.batch_size, fluid.core.get_cuda_device_count())

    # check data directory
    assert os.path.isdir(
        args.data_dir
    ), "Data doesn't exist in {}, please load right path".format(args.data_dir)

R
ruri 已提交
270 271 272 273
    if args.enable_ce:
        args.random_seed = 0
        print("CE is running now!")

274
    assert args.class_dim > 1, "class_dim must greater than 1"
R
ruri 已提交
275

276
    #check gpu
R
ruri 已提交
277
    check_gpu()
278
    check_version()
R
ruri 已提交
279 280 281


def init_model(exe, args, program):
282 283 284
    """load model from checkpoint or pretrained model
    """

R
ruri 已提交
285 286 287 288 289 290
    if args.checkpoint:
        fluid.io.load_persistables(exe, args.checkpoint, main_program=program)
        print("Finish initing model from %s" % (args.checkpoint))

    if args.pretrained_model:

291 292 293 294
        def is_parameter(var):
            return isinstance(var, fluid.framework.Parameter) and (
                not ("fc_0" in var.name)) and os.path.exists(
                    os.path.join(args.pretrained_model, var.name))
R
ruri 已提交
295

296 297 298
        print("Load pretrain weights from {}, exclude fc layer.".format(
            args.pretrained_model))
        vars = filter(is_parameter, program.list_vars())
R
ruri 已提交
299
        fluid.io.load_vars(
300
            exe, args.pretrained_model, vars=vars, main_program=program)
R
ruri 已提交
301 302 303


def save_model(args, exe, train_prog, info):
304 305 306
    """save model in model_path
    """

R
ruri 已提交
307 308 309 310 311 312 313
    model_path = os.path.join(args.model_save_dir, args.model, str(info))
    if not os.path.isdir(model_path):
        os.makedirs(model_path)
    fluid.io.save_persistables(exe, model_path, main_program=train_prog)
    print("Already save model in %s" % (model_path))


314 315 316 317 318 319 320
def save_json(info, path):
    """ save eval result or infer result to file as json format.
    """
    with open(path, 'a') as f:
        json.dump(info, f)


321 322
def create_data_loader(is_train, args):
    """create data_loader
R
ruri 已提交
323 324

    Usage:
325
        Using mixup process in training, it will return 5 results, include data_loader, image, y_a(label), y_b(label) and lamda, or it will return 3 results, include data_loader, image, and label.
R
ruri 已提交
326 327 328 329 330 331

    Args: 
        is_train: mode
        args: arguments

    Returns:
332
        data_loader and the input data of net, 
R
ruri 已提交
333
    """
R
ruri 已提交
334
    image_shape = args.image_shape
335 336 337 338 339
    feed_image = fluid.data(
        name="feed_image",
        shape=[None] + image_shape,
        dtype="float32",
        lod_level=0)
R
ruri 已提交
340

341 342 343 344
    feed_label = fluid.data(
        name="feed_label", shape=[None, 1], dtype="int64", lod_level=0)
    feed_y_a = fluid.data(
        name="feed_y_a", shape=[None, 1], dtype="int64", lod_level=0)
R
ruri 已提交
345 346

    if is_train and args.use_mixup:
347 348 349 350
        feed_y_b = fluid.data(
            name="feed_y_b", shape=[None, 1], dtype="int64", lod_level=0)
        feed_lam = fluid.data(
            name="feed_lam", shape=[None, 1], dtype="float32", lod_level=0)
R
ruri 已提交
351

352
        data_loader = fluid.io.DataLoader.from_generator(
R
ruri 已提交
353 354 355
            feed_list=[feed_image, feed_y_a, feed_y_b, feed_lam],
            capacity=64,
            use_double_buffer=True,
356
            iterable=True)
357
        return data_loader, [feed_image, feed_y_a, feed_y_b, feed_lam]
R
ruri 已提交
358
    else:
359 360 361
        if args.use_dali:
            return None, [feed_image, feed_label]

362
        data_loader = fluid.io.DataLoader.from_generator(
R
ruri 已提交
363 364 365
            feed_list=[feed_image, feed_label],
            capacity=64,
            use_double_buffer=True,
366
            iterable=True)
R
ruri 已提交
367

368
        return data_loader, [feed_image, feed_label]
R
ruri 已提交
369 370


R
ruri 已提交
371 372 373 374 375 376
def print_info(info_mode,
               metrics,
               time_info,
               pass_id=0,
               batch_id=0,
               print_step=1,
377 378
               device_num=1,
               class_dim=5):
R
ruri 已提交
379 380 381 382 383 384 385 386 387 388
    """print function

    Args:
        pass_id: epoch index
        batch_id: batch index
        print_step: the print_step arguments
        metrics: message to print
        time_info: time infomation
        info_mode: mode
    """
R
ruri 已提交
389
    #XXX: Use specific name to choose pattern, not the length of metrics. 
R
ruri 已提交
390 391 392 393 394 395 396 397 398
    if info_mode == "batch":
        if batch_id % print_step == 0:
            #if isinstance(metrics,np.ndarray):
            # train and mixup output
            if len(metrics) == 2:
                loss, lr = metrics
                print(
                    "[Pass {0}, train batch {1}] \tloss {2}, lr {3}, elapse {4}".
                    format(pass_id, batch_id, "%.5f" % loss, "%.5f" % lr,
399
                           "%2.4f sec" % time_info))
R
ruri 已提交
400 401 402 403
            # train and no mixup output
            elif len(metrics) == 4:
                loss, acc1, acc5, lr = metrics
                print(
404
                    "[Pass {0}, train batch {1}] \tloss {2}, acc1 {3}, acc{7} {4}, lr {5}, elapse {6}".
R
ruri 已提交
405
                    format(pass_id, batch_id, "%.5f" % loss, "%.5f" % acc1,
406 407
                           "%.5f" % acc5, "%.5f" % lr, "%2.4f sec" % time_info,
                           min(class_dim, 5)))
R
ruri 已提交
408 409 410 411
            # test output
            elif len(metrics) == 3:
                loss, acc1, acc5 = metrics
                print(
412
                    "[Pass {0}, test  batch {1}] \tloss {2}, acc1 {3}, acc{6} {4}, elapse {5}".
R
ruri 已提交
413
                    format(pass_id, batch_id, "%.5f" % loss, "%.5f" % acc1,
414 415
                           "%.5f" % acc5, "%2.4f sec" % time_info,
                           min(class_dim, 5)))
R
ruri 已提交
416 417 418 419 420 421 422 423 424 425 426
            else:
                raise Exception(
                    "length of metrics {} is not implemented, It maybe caused by wrong format of build_program_output".
                    format(len(metrics)))
            sys.stdout.flush()

    elif info_mode == "epoch":
        ## TODO add time elapse
        if len(metrics) == 5:
            train_loss, _, test_loss, test_acc1, test_acc5 = metrics
            print(
427
                "[End pass {0}]\ttrain_loss {1}, test_loss {2}, test_acc1 {3}, test_acc{5} {4}".
R
ruri 已提交
428
                format(pass_id, "%.5f" % train_loss, "%.5f" % test_loss, "%.5f"
429
                       % test_acc1, "%.5f" % test_acc5, min(class_dim, 5)))
R
ruri 已提交
430 431 432
        elif len(metrics) == 7:
            train_loss, train_acc1, train_acc5, _, test_loss, test_acc1, test_acc5 = metrics
            print(
433
                "[End pass {0}]\ttrain_loss {1}, train_acc1 {2}, train_acc{7} {3},test_loss {4}, test_acc1 {5}, test_acc{7} {6}".
R
ruri 已提交
434 435
                format(pass_id, "%.5f" % train_loss, "%.5f" % train_acc1, "%.5f"
                       % train_acc5, "%.5f" % test_loss, "%.5f" % test_acc1,
436
                       "%.5f" % test_acc5, min(class_dim, 5)))
R
ruri 已提交
437 438
        sys.stdout.flush()
    elif info_mode == "ce":
R
ruri 已提交
439 440 441 442 443 444 445 446
        assert len(
            metrics
        ) == 7, "Enable CE: The Metrics should contain train_loss, train_acc1, train_acc5, test_loss, test_acc1, test_acc5, and train_speed"
        assert len(
            time_info
        ) > 10, "0~9th batch statistics will drop when doing benchmark or ce, because it might be mixed with startup time, so please make sure training at least 10 batches."
        print_ce(device_num, metrics, time_info)
        #raise Warning("CE code is not ready")
R
ruri 已提交
447 448 449 450
    else:
        raise Exception("Illegal info_mode")


R
ruri 已提交
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
def print_ce(device_num, metrics, time_info):
    """ Print log for CE(for internal test).
    """
    train_loss, train_acc1, train_acc5, _, test_loss, test_acc1, test_acc5 = metrics

    train_speed = np.mean(np.array(time_info[10:]))

    print("kpis\ttrain_cost_card{}\t{}".format(device_num, train_loss))
    print("kpis\ttrain_acc1_card{}\t{}".format(device_num, train_acc1))
    print("kpis\ttrain_acc5_card{}\t{}".format(device_num, train_acc5))
    print("kpis\ttest_loss_card{}\t{}".format(device_num, test_loss))
    print("kpis\ttest_acc1_card{}\t{}".format(device_num, test_acc1))
    print("kpis\ttest_acc5_card{}\t{}".format(device_num, test_acc5))
    print("kpis\ttrain_speed_card{}\t{}".format(device_num, train_speed))


467 468 469 470 471 472
def best_strategy_compiled(args,
                           program,
                           loss,
                           exe,
                           mode="train",
                           share_prog=None):
R
ruri 已提交
473 474 475 476 477 478 479 480 481
    """make a program which wrapped by a compiled program
    """

    if os.getenv('FLAGS_use_ngraph'):
        return program
    else:
        build_strategy = fluid.compiler.BuildStrategy()

        exec_strategy = fluid.ExecutionStrategy()
R
ruri 已提交
482 483 484 485

        if args.use_gpu:
            exec_strategy.num_threads = fluid.core.get_cuda_device_count()

R
ruri 已提交
486 487
        exec_strategy.num_iteration_per_drop_scope = 10

488 489 490 491 492 493 494
        num_trainers = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))
        if num_trainers > 1 and args.use_gpu:
            dist_utils.prepare_for_multi_process(exe, build_strategy, program)
            # NOTE: the process is fast when num_threads is 1
            # for multi-process training.
            exec_strategy.num_threads = 1

R
ruri 已提交
495
        compiled_program = fluid.CompiledProgram(program).with_data_parallel(
496 497
            loss_name=loss.name if mode == "train" else loss,
            share_vars_from=share_prog if mode == "val" else None,
R
ruri 已提交
498 499 500 501
            build_strategy=build_strategy,
            exec_strategy=exec_strategy)

        return compiled_program
502 503 504


class ExponentialMovingAverage(object):
505 506 507 508 509
    def __init__(self,
                 decay=0.999,
                 thres_steps=None,
                 zero_debias=False,
                 name=None):
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
        self._decay = decay
        self._thres_steps = thres_steps
        self._name = name if name is not None else ''
        self._decay_var = self._get_ema_decay()

        self._params_tmps = []
        for param in default_main_program().global_block().all_parameters():
            if param.do_model_average != False:
                tmp = param.block.create_var(
                    name=unique_name.generate(".".join(
                        [self._name + param.name, 'ema_tmp'])),
                    dtype=param.dtype,
                    persistable=False,
                    stop_gradient=True)
                self._params_tmps.append((param, tmp))

        self._ema_vars = {}
        for param, tmp in self._params_tmps:
            with param.block.program._optimized_guard(
529
                [param, tmp]), name_scope('moving_average'):
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
                self._ema_vars[param.name] = self._create_ema_vars(param)

        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            decay_pow = self._get_decay_pow(block)
            for param, tmp in self._params_tmps:
                param = block._clone_variable(param)
                tmp = block._clone_variable(tmp)
                ema = block._clone_variable(self._ema_vars[param.name])
                layers.assign(input=param, output=tmp)
                # bias correction
                if zero_debias:
                    ema = ema / (1.0 - decay_pow)
                layers.assign(input=ema, output=param)

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param, tmp in self._params_tmps:
                tmp = block._clone_variable(tmp)
                param = block._clone_variable(param)
                layers.assign(input=tmp, output=param)

    def _get_ema_decay(self):
        with default_main_program()._lr_schedule_guard():
            decay_var = layers.tensor.create_global_var(
                shape=[1],
                value=self._decay,
                dtype='float32',
                persistable=True,
                name="scheduled_ema_decay_rate")

            if self._thres_steps is not None:
                decay_t = (self._thres_steps + 1.0) / (self._thres_steps + 10.0)
                with layers.control_flow.Switch() as switch:
                    with switch.case(decay_t < self._decay):
                        layers.tensor.assign(decay_t, decay_var)
                    with switch.default():
                        layers.tensor.assign(
                            np.array(
                                [self._decay], dtype=np.float32),
                            decay_var)
        return decay_var

    def _get_decay_pow(self, block):
        global_steps = layers.learning_rate_scheduler._decay_step_counter()
        decay_var = block._clone_variable(self._decay_var)
        decay_pow_acc = layers.elementwise_pow(decay_var, global_steps + 1)
        return decay_pow_acc

    def _create_ema_vars(self, param):
        param_ema = layers.create_global_var(
            name=unique_name.generate(self._name + param.name + '_ema'),
            shape=param.shape,
            value=0.0,
            dtype=param.dtype,
            persistable=True)

        return param_ema

    def update(self):
        """
        Update Exponential Moving Average. Should only call this method in
        train program.
        """
        param_master_emas = []
        for param, tmp in self._params_tmps:
            with param.block.program._optimized_guard(
599
                [param, tmp]), name_scope('moving_average'):
600 601 602 603 604 605
                param_ema = self._ema_vars[param.name]
                if param.name + '.master' in self._ema_vars:
                    master_ema = self._ema_vars[param.name + '.master']
                    param_master_emas.append([param_ema, master_ema])
                else:
                    ema_t = param_ema * self._decay_var + param * (
606
                        1 - self._decay_var)
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
                    layers.assign(input=ema_t, output=param_ema)

        # for fp16 params
        for param_ema, master_ema in param_master_emas:
            default_main_program().global_block().append_op(
                type="cast",
                inputs={"X": master_ema},
                outputs={"Out": param_ema},
                attrs={
                    "in_dtype": master_ema.dtype,
                    "out_dtype": param_ema.dtype
                })

    @signature_safe_contextmanager
    def apply(self, executor, need_restore=True):
        """
        Apply moving average to parameters for evaluation.

        Args:
            executor (Executor): The Executor to execute applying.
            need_restore (bool): Whether to restore parameters after applying.
        """
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)

    def restore(self, executor):
        """Restore parameters.

        Args:
            executor (Executor): The Executor to execute restoring.
        """
        executor.run(self.restore_program)