utility.py 15.6 KB
Newer Older
R
ruri 已提交
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
R
ruri 已提交
18

19 20
import distutils.util
import numpy as np
R
root 已提交
21
import six
R
ruri 已提交
22 23 24 25 26 27 28 29 30 31 32
import argparse
import functools
import logging
import sys
import os
import warnings
import signal

import paddle
import paddle.fluid as fluid

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

def print_arguments(args):
    """Print argparse's arguments.

    Usage:

    .. code-block:: python

        parser = argparse.ArgumentParser()
        parser.add_argument("name", default="Jonh", type=str, help="User name.")
        args = parser.parse_args()
        print_arguments(args)

    :param args: Input argparse.Namespace for printing.
    :type args: argparse.Namespace
    """
49
    print("-------------  Configuration Arguments -------------")
R
root 已提交
50
    for arg, value in sorted(six.iteritems(vars(args))):
51 52
        print("%25s : %s" % (arg, value))
    print("----------------------------------------------------")
53 54 55


def add_arguments(argname, type, default, help, argparser, **kwargs):
R
ruri 已提交
56
    """Add argparse's argument. 
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

    Usage:

    .. code-block:: python

        parser = argparse.ArgumentParser()
        add_argument("name", str, "Jonh", "User name.", parser)
        args = parser.parse_args()
    """
    type = distutils.util.strtobool if type == bool else type
    argparser.add_argument(
        "--" + argname,
        default=default,
        type=type,
        help=help + ' Default: %(default)s.',
        **kwargs)
R
ruri 已提交
73

R
ruri 已提交
74 75 76 77 78 79

def parse_args():
    """Add arguments

    Returns: 
        all training args
R
ruri 已提交
80
    """
R
ruri 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
    parser = argparse.ArgumentParser(description=__doc__)
    add_arg = functools.partial(add_arguments, argparser=parser)
    # yapf: disable

    # ENV
    add_arg('use_gpu',                  bool,   True,                   "Whether to use GPU.")
    add_arg('model_save_dir',           str,    "./output",        "The directory path to save model.")
    add_arg('data_dir',                 str,    "./data/ILSVRC2012/",   "The ImageNet dataset root directory.")
    add_arg('pretrained_model',         str,    None,                   "Whether to load pretrained model.")
    add_arg('checkpoint',               str,    None,                   "Whether to resume checkpoint.")
    add_arg('save_params',              str,    "./output",                   "Whether to save params.")

    add_arg('print_step',               int,    10,                     "The steps interval to print logs")
    add_arg('save_step',                int,    100,                    "The steps interval to save checkpoints")

    # SOLVER AND HYPERPARAMETERS
    add_arg('model',                    str,    "ResNet50",   "The name of network.")
    add_arg('total_images',             int,    1281167,                "The number of total training images.")
    add_arg('num_epochs',               int,    120,                    "The number of total epochs.")
    add_arg('class_dim',                int,    1000,                   "The number of total classes.")
    add_arg('image_shape',              str,    "3,224,224",            "The size of Input image, order: [channels, height, weidth] ")
    add_arg('batch_size',               int,    8,                      "Minibatch size on a device.")
    add_arg('test_batch_size',          int,    16,                     "Test batch size on a deveice.")
    add_arg('lr',                       float,  0.1,                    "The learning rate.")
    add_arg('lr_strategy',              str,    "piecewise_decay",      "The learning rate decay strategy.")
    add_arg('l2_decay',                 float,  1e-4,                   "The l2_decay parameter.")
    add_arg('momentum_rate',            float,  0.9,                    "The value of momentum_rate.")
    parser.add_argument('--step_epochs', nargs='+', type=int, default=[30, 60, 90], help="piecewise decay step")
    # READER AND PREPROCESS
    add_arg('lower_scale',              float,  0.08,                   "The value of lower_scale in ramdom_crop")
    add_arg('lower_ratio',              float,  3./4.,                  "The value of lower_ratio in ramdom_crop")
    add_arg('upper_ratio',              float,  4./3.,                  "The value of upper_ratio in ramdom_crop")
    add_arg('resize_short_size',        int,    256,                    "The value of resize_short_size")
    add_arg('crop_size',                int,    224,                    "The value of crop size")
    add_arg('use_mixup',                bool,   False,                  "Whether to use mixup")
    add_arg('mixup_alpha',              float,  0.2,                    "The value of mixup_alpha")
    add_arg('reader_thread',            int,    8,                      "The number of multi thread reader")
    add_arg('reader_buf_size',          int,    2048,                   "The buf size of multi thread reader")
    add_arg('interpolation',            int,    None,                   "The interpolation mode")
    parser.add_argument('--image_mean', nargs='+', type=float, default=[0.485, 0.456, 0.406], help="The mean of input image data")
    parser.add_argument('--image_std', nargs='+', type=float, default=[0.229, 0.224, 0.225], help="The std of input image data")

    # SWITCH
    add_arg('use_inplace',              bool,   True,                   "Whether to use inplace memory optimization.")
    #NOTE: (2019/08/08) FP16 is moving to PaddlePaddle/Fleet now
    #add_arg('use_fp16',                 bool,   False,                  "Whether to enable half precision training with fp16." )
    #add_arg('scale_loss',               float,  1.0,                    "The value of scale_loss for fp16." )
    add_arg('use_label_smoothing',      bool,   False,                  "Whether to use label_smoothing")
    add_arg('label_smoothing_epsilon',  float,  0.2,                    "The value of label_smoothing_epsilon parameter")
    #NOTE: (2019/08/08) temporary disable use_distill
    #add_arg('use_distill',              bool,   False,                  "Whether to use distill")
    add_arg('random_seed',              int,    None,                   "random seed")
    # yapf: enable

    args = parser.parse_args()

    return args


def check_gpu():
    """   
R
ruri 已提交
142
    Log error and exit when set use_gpu=true in paddlepaddle
R
ruri 已提交
143
    cpu ver sion.
R
ruri 已提交
144
    """
R
ruri 已提交
145
    logger = logging.getLogger(__name__)
R
ruri 已提交
146
    err = "Config use_gpu cannot be set as true while you are " \
R
ruri 已提交
147 148 149 150
                "using paddlepaddle cpu version ! \nPlease try: \n" \
                "\t1. Install paddlepaddle-gpu to run model on GPU \n" \
                "\t2. Set use_gpu as false in config file to run " \
                "model on CPU"
R
ruri 已提交
151

152
    try:
R
ruri 已提交
153 154
        if args.use_gpu and not fluid.is_compiled_with_cuda():
            print(err)
R
ruri 已提交
155 156 157
            sys.exit(1)
    except Exception as e:
        pass
R
ruri 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385


def check_args(args):
    """check arguments before running

    Args:
        all arguments
    """

    # check models name
    sys.path.append("..")
    import models
    model_list = [m for m in dir(models) if "__" not in m]
    assert args.model in model_list, "{} is not in lists: {}, please check the model name".format(
        args.model, model_list)

    # check learning rate strategy
    lr_strategy_list = [
        "piecewise_decay", "cosine_decay", "linear_decay", "cosine_decay_warmup"
    ]
    if args.lr_strategy not in lr_strategy_list:
        warnings.warn(
            "\n{} is not in lists: {}, \nUse default learning strategy now.".
            format(args.lr_strategy, lr_strategy_list))
        args.lr_strategy = "default_decay"
    # check confict of GoogLeNet and mixup
    if args.model == "GoogLeNet":
        assert args.use_mixup == False, "Cannot use mixup processing in GoogLeNet, please set use_mixup = False."

    if args.interpolation:
        assert args.interpolation in [
            0, 1, 2, 3, 4
        ], "Wrong interpolation, please set:\n0: cv2.INTER_NEAREST\n1: cv2.INTER_LINEAR\n2: cv2.INTER_CUBIC\n3: cv2.INTER_AREA\n4: cv2.INTER_LANCZOS4"

    assert args.checkpoint is None or args.pretrained_model is None, "Do not init model by checkpoint and pretrained_model both."

    # check pretrained_model path for loading
    if args.pretrained_model is not None:
        assert isinstance(args.pretrained_model, str)
        assert os.path.isdir(
            args.
            pretrained_model), "please support available pretrained_model path."

    #FIXME: check checkpoint path for saving
    if args.checkpoint is not None:
        assert isinstance(args.checkpoint, str)
        assert os.path.isdir(
            args.checkpoint
        ), "please support available checkpoint path for initing model."

    # check params for loading
    """
    if args.save_params:
        assert isinstance(args.save_params, str)
        assert os.path.isdir(
            args.save_params), "please support available save_params path."
    """

    # check gpu: when using gpu, the number of visible cards should divide batch size
    if args.use_gpu:
        assert args.batch_size % fluid.core.get_cuda_device_count(
        ) == 0, "please support correct batch_size({}), which can be divided by available cards({}), you can change the number of cards by indicating: export CUDA_VISIBLE_DEVICES= ".format(
            args.batch_size, fluid.core.get_cuda_device_count())

    # check data directory
    assert os.path.isdir(
        args.data_dir
    ), "Data doesn't exist in {}, please load right path".format(args.data_dir)

    #check gpu

    check_gpu()


def init_model(exe, args, program):
    if args.checkpoint:
        fluid.io.load_persistables(exe, args.checkpoint, main_program=program)
        print("Finish initing model from %s" % (args.checkpoint))

    if args.pretrained_model:

        def if_exist(var):
            return os.path.exists(os.path.join(args.pretrained_model, var.name))

        fluid.io.load_vars(
            exe,
            args.pretrained_model,
            main_program=program,
            predicate=if_exist)


def save_model(args, exe, train_prog, info):
    model_path = os.path.join(args.model_save_dir, args.model, str(info))
    if not os.path.isdir(model_path):
        os.makedirs(model_path)
    fluid.io.save_persistables(exe, model_path, main_program=train_prog)
    print("Already save model in %s" % (model_path))


def create_pyreader(is_train, args):
    """create PyReader

    Usage:
        Using mixup process in training, it will return 5 results, include py_reader, image, y_a(label), y_b(label) and lamda, or it will return 3 results, include py_reader, image, and label.

    Args: 
        is_train: mode
        args: arguments

    Returns:
        py_reader and the input data of net, 
    """
    image_shape = [int(m) for m in args.image_shape.split(",")]

    feed_image = fluid.layers.data(
        name="feed_image", shape=image_shape, dtype="float32", lod_level=0)

    feed_label = fluid.layers.data(
        name="feed_label", shape=[1], dtype="int64", lod_level=0)
    feed_y_a = fluid.layers.data(
        name="feed_y_a", shape=[1], dtype="int64", lod_level=0)

    if is_train and args.use_mixup:
        feed_y_b = fluid.layers.data(
            name="feed_y_b", shape=[1], dtype="int64", lod_level=0)
        feed_lam = fluid.layers.data(
            name="feed_lam", shape=[1], dtype="float32", lod_level=0)

        py_reader = fluid.io.PyReader(
            feed_list=[feed_image, feed_y_a, feed_y_b, feed_lam],
            capacity=64,
            use_double_buffer=True,
            iterable=False)
        return py_reader, [feed_image, feed_y_a, feed_y_b, feed_lam]
    else:
        py_reader = fluid.io.PyReader(
            feed_list=[feed_image, feed_label],
            capacity=64,
            use_double_buffer=True,
            iterable=False)

        return py_reader, [feed_image, feed_label]


def print_info(pass_id, batch_id, print_step, metrics, time_info, info_mode):
    """print function

    Args:
        pass_id: epoch index
        batch_id: batch index
        print_step: the print_step arguments
        metrics: message to print
        time_info: time infomation
        info_mode: mode
    """
    if info_mode == "batch":
        if batch_id % print_step == 0:
            #if isinstance(metrics,np.ndarray):
            # train and mixup output
            if len(metrics) == 2:
                loss, lr = metrics
                print(
                    "[Pass {0}, train batch {1}] \tloss {2}, lr {3}, elapse {4}".
                    format(pass_id, batch_id, "%.5f" % loss, "%.5f" % lr,
                           "%2.2f sec" % time_info))
            # train and no mixup output
            elif len(metrics) == 4:
                loss, acc1, acc5, lr = metrics
                print(
                    "[Pass {0}, train batch {1}] \tloss {2}, acc1 {3}, acc5 {4}, lr {5}, elapse {6}".
                    format(pass_id, batch_id, "%.5f" % loss, "%.5f" % acc1,
                           "%.5f" % acc5, "%.5f" % lr, "%2.2f sec" % time_info))
            # test output
            elif len(metrics) == 3:
                loss, acc1, acc5 = metrics
                print(
                    "[Pass {0}, test  batch {1}] \tloss {2}, acc1 {3}, acc5 {4}, elapse {5}".
                    format(pass_id, batch_id, "%.5f" % loss, "%.5f" % acc1,
                           "%.5f" % acc5, "%2.2f sec" % time_info))
            else:
                raise Exception(
                    "length of metrics {} is not implemented, It maybe caused by wrong format of build_program_output".
                    format(len(metrics)))
            sys.stdout.flush()

    elif info_mode == "epoch":
        ## TODO add time elapse
        #if isinstance(metrics,np.ndarray):
        if len(metrics) == 5:
            train_loss, _, test_loss, test_acc1, test_acc5 = metrics
            print(
                "[End pass {0}]\ttrain_loss {1}, test_loss {2}, test_acc1 {3}, test_acc5 {4}".
                format(pass_id, "%.5f" % train_loss, "%.5f" % test_loss, "%.5f"
                       % test_acc1, "%.5f" % test_acc5))
        elif len(metrics) == 7:
            train_loss, train_acc1, train_acc5, _, test_loss, test_acc1, test_acc5 = metrics
            print(
                "[End pass {0}]\ttrain_loss {1}, train_acc1 {2}, train_acc5 {3},test_loss {4}, test_acc1 {5}, test_acc5 {6}".
                format(pass_id, "%.5f" % train_loss, "%.5f" % train_acc1, "%.5f"
                       % train_acc5, "%.5f" % test_loss, "%.5f" % test_acc1,
                       "%.5f" % test_acc5))
        sys.stdout.flush()
    elif info_mode == "ce":
        raise Warning("CE code is not ready")
    else:
        raise Exception("Illegal info_mode")


def best_strategy_compiled(args, program, loss):
    """make a program which wrapped by a compiled program
    """

    if os.getenv('FLAGS_use_ngraph'):
        return program
    else:
        build_strategy = fluid.compiler.BuildStrategy()
        build_strategy.enable_inplace = args.use_inplace

        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = fluid.core.get_cuda_device_count()
        exec_strategy.num_iteration_per_drop_scope = 10

        compiled_program = fluid.CompiledProgram(program).with_data_parallel(
            loss_name=loss.name,
            build_strategy=build_strategy,
            exec_strategy=exec_strategy)

        return compiled_program