utility.py 22.1 KB
Newer Older
R
ruri 已提交
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
R
ruri 已提交
18

19 20
import distutils.util
import numpy as np
R
root 已提交
21
import six
R
ruri 已提交
22 23 24 25 26 27 28 29 30 31
import argparse
import functools
import logging
import sys
import os
import warnings
import signal

import paddle
import paddle.fluid as fluid
32 33 34
from paddle.fluid.wrapped_decorator import signature_safe_contextmanager
from paddle.fluid.framework import Program, program_guard, name_scope, default_main_program
from paddle.fluid import unique_name, layers
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

def print_arguments(args):
    """Print argparse's arguments.

    Usage:

    .. code-block:: python

        parser = argparse.ArgumentParser()
        parser.add_argument("name", default="Jonh", type=str, help="User name.")
        args = parser.parse_args()
        print_arguments(args)

    :param args: Input argparse.Namespace for printing.
    :type args: argparse.Namespace
    """
51
    print("-------------  Configuration Arguments -------------")
R
root 已提交
52
    for arg, value in sorted(six.iteritems(vars(args))):
53 54
        print("%25s : %s" % (arg, value))
    print("----------------------------------------------------")
55 56 57


def add_arguments(argname, type, default, help, argparser, **kwargs):
R
ruri 已提交
58
    """Add argparse's argument. 
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

    Usage:

    .. code-block:: python

        parser = argparse.ArgumentParser()
        add_argument("name", str, "Jonh", "User name.", parser)
        args = parser.parse_args()
    """
    type = distutils.util.strtobool if type == bool else type
    argparser.add_argument(
        "--" + argname,
        default=default,
        type=type,
        help=help + ' Default: %(default)s.',
        **kwargs)
R
ruri 已提交
75

R
ruri 已提交
76 77 78 79 80 81

def parse_args():
    """Add arguments

    Returns: 
        all training args
R
ruri 已提交
82
    """
R
ruri 已提交
83 84 85 86 87 88 89 90 91 92 93
    parser = argparse.ArgumentParser(description=__doc__)
    add_arg = functools.partial(add_arguments, argparser=parser)
    # yapf: disable

    # ENV
    add_arg('use_gpu',                  bool,   True,                   "Whether to use GPU.")
    add_arg('model_save_dir',           str,    "./output",        "The directory path to save model.")
    add_arg('data_dir',                 str,    "./data/ILSVRC2012/",   "The ImageNet dataset root directory.")
    add_arg('pretrained_model',         str,    None,                   "Whether to load pretrained model.")
    add_arg('checkpoint',               str,    None,                   "Whether to resume checkpoint.")
    add_arg('print_step',               int,    10,                     "The steps interval to print logs")
94
    add_arg('save_step',                int,    1,                      "The steps interval to save checkpoints")
R
ruri 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107

    # SOLVER AND HYPERPARAMETERS
    add_arg('model',                    str,    "ResNet50",   "The name of network.")
    add_arg('total_images',             int,    1281167,                "The number of total training images.")
    add_arg('num_epochs',               int,    120,                    "The number of total epochs.")
    add_arg('class_dim',                int,    1000,                   "The number of total classes.")
    add_arg('image_shape',              str,    "3,224,224",            "The size of Input image, order: [channels, height, weidth] ")
    add_arg('batch_size',               int,    8,                      "Minibatch size on a device.")
    add_arg('test_batch_size',          int,    16,                     "Test batch size on a deveice.")
    add_arg('lr',                       float,  0.1,                    "The learning rate.")
    add_arg('lr_strategy',              str,    "piecewise_decay",      "The learning rate decay strategy.")
    add_arg('l2_decay',                 float,  1e-4,                   "The l2_decay parameter.")
    add_arg('momentum_rate',            float,  0.9,                    "The value of momentum_rate.")
108 109 110 111
    add_arg('warm_up_epochs',           float,  5.0,                    "The value of warm up epochs")
    add_arg('decay_epochs',             float,  2.4,                    "Decay epochs of exponential decay learning rate scheduler")
    add_arg('decay_rate',               float,  0.97,                   "Decay rate of exponential decay learning rate scheduler")
    add_arg('drop_connect_rate',        float,  0.2,                    "The value of drop connect rate")
R
ruri 已提交
112
    parser.add_argument('--step_epochs', nargs='+', type=int, default=[30, 60, 90], help="piecewise decay step")
113

R
ruri 已提交
114 115 116 117 118 119 120 121 122 123 124
    # READER AND PREPROCESS
    add_arg('lower_scale',              float,  0.08,                   "The value of lower_scale in ramdom_crop")
    add_arg('lower_ratio',              float,  3./4.,                  "The value of lower_ratio in ramdom_crop")
    add_arg('upper_ratio',              float,  4./3.,                  "The value of upper_ratio in ramdom_crop")
    add_arg('resize_short_size',        int,    256,                    "The value of resize_short_size")
    add_arg('crop_size',                int,    224,                    "The value of crop size")
    add_arg('use_mixup',                bool,   False,                  "Whether to use mixup")
    add_arg('mixup_alpha',              float,  0.2,                    "The value of mixup_alpha")
    add_arg('reader_thread',            int,    8,                      "The number of multi thread reader")
    add_arg('reader_buf_size',          int,    2048,                   "The buf size of multi thread reader")
    add_arg('interpolation',            int,    None,                   "The interpolation mode")
125
    add_arg('use_aa',                   bool,   False,                  "Whether to use auto augment")
R
ruri 已提交
126 127 128 129 130 131 132 133
    parser.add_argument('--image_mean', nargs='+', type=float, default=[0.485, 0.456, 0.406], help="The mean of input image data")
    parser.add_argument('--image_std', nargs='+', type=float, default=[0.229, 0.224, 0.225], help="The std of input image data")

    # SWITCH
    #NOTE: (2019/08/08) FP16 is moving to PaddlePaddle/Fleet now
    #add_arg('use_fp16',                 bool,   False,                  "Whether to enable half precision training with fp16." )
    #add_arg('scale_loss',               float,  1.0,                    "The value of scale_loss for fp16." )
    add_arg('use_label_smoothing',      bool,   False,                  "Whether to use label_smoothing")
134
    add_arg('label_smoothing_epsilon',  float,  0.1,                    "The value of label_smoothing_epsilon parameter")
R
ruri 已提交
135 136 137
    #NOTE: (2019/08/08) temporary disable use_distill
    #add_arg('use_distill',              bool,   False,                  "Whether to use distill")
    add_arg('random_seed',              int,    None,                   "random seed")
138 139 140
    add_arg('use_ema',                  bool,   False,                  "Whether to use ExponentialMovingAverage.")
    add_arg('ema_decay',                float,  0.9999,                 "The value of ema decay rate")
    add_arg('padding_type',             str,    "SAME",                 "Padding type of convolution")
R
ruri 已提交
141 142 143 144 145 146 147 148 149
    # yapf: enable

    args = parser.parse_args()

    return args


def check_gpu():
    """   
R
ruri 已提交
150
    Log error and exit when set use_gpu=true in paddlepaddle
R
ruri 已提交
151
    cpu ver sion.
R
ruri 已提交
152
    """
R
ruri 已提交
153
    logger = logging.getLogger(__name__)
R
ruri 已提交
154
    err = "Config use_gpu cannot be set as true while you are " \
R
ruri 已提交
155 156 157 158
                "using paddlepaddle cpu version ! \nPlease try: \n" \
                "\t1. Install paddlepaddle-gpu to run model on GPU \n" \
                "\t2. Set use_gpu as false in config file to run " \
                "model on CPU"
R
ruri 已提交
159

160
    try:
R
ruri 已提交
161 162
        if args.use_gpu and not fluid.is_compiled_with_cuda():
            print(err)
R
ruri 已提交
163 164 165
            sys.exit(1)
    except Exception as e:
        pass
R
ruri 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183


def check_args(args):
    """check arguments before running

    Args:
        all arguments
    """

    # check models name
    sys.path.append("..")
    import models
    model_list = [m for m in dir(models) if "__" not in m]
    assert args.model in model_list, "{} is not in lists: {}, please check the model name".format(
        args.model, model_list)

    # check learning rate strategy
    lr_strategy_list = [
184
        "piecewise_decay", "cosine_decay", "linear_decay", "cosine_decay_warmup", "exponential_decay_warmup"
R
ruri 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
    ]
    if args.lr_strategy not in lr_strategy_list:
        warnings.warn(
            "\n{} is not in lists: {}, \nUse default learning strategy now.".
            format(args.lr_strategy, lr_strategy_list))
        args.lr_strategy = "default_decay"
    # check confict of GoogLeNet and mixup
    if args.model == "GoogLeNet":
        assert args.use_mixup == False, "Cannot use mixup processing in GoogLeNet, please set use_mixup = False."

    if args.interpolation:
        assert args.interpolation in [
            0, 1, 2, 3, 4
        ], "Wrong interpolation, please set:\n0: cv2.INTER_NEAREST\n1: cv2.INTER_LINEAR\n2: cv2.INTER_CUBIC\n3: cv2.INTER_AREA\n4: cv2.INTER_LANCZOS4"

200 201 202 203 204
    if args.padding_type:
        assert args.padding_type in [
            "SAME", "VALID", "DYNAMIC"
        ], "Wrong padding_type, please set:\nSAME\nVALID\nDYNAMIC"

R
ruri 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
    assert args.checkpoint is None or args.pretrained_model is None, "Do not init model by checkpoint and pretrained_model both."

    # check pretrained_model path for loading
    if args.pretrained_model is not None:
        assert isinstance(args.pretrained_model, str)
        assert os.path.isdir(
            args.
            pretrained_model), "please support available pretrained_model path."

    #FIXME: check checkpoint path for saving
    if args.checkpoint is not None:
        assert isinstance(args.checkpoint, str)
        assert os.path.isdir(
            args.checkpoint
        ), "please support available checkpoint path for initing model."

    # check params for loading
    """
    if args.save_params:
        assert isinstance(args.save_params, str)
        assert os.path.isdir(
            args.save_params), "please support available save_params path."
    """

    # check gpu: when using gpu, the number of visible cards should divide batch size
    if args.use_gpu:
        assert args.batch_size % fluid.core.get_cuda_device_count(
        ) == 0, "please support correct batch_size({}), which can be divided by available cards({}), you can change the number of cards by indicating: export CUDA_VISIBLE_DEVICES= ".format(
            args.batch_size, fluid.core.get_cuda_device_count())

    # check data directory
    assert os.path.isdir(
        args.data_dir
    ), "Data doesn't exist in {}, please load right path".format(args.data_dir)

    #check gpu

    check_gpu()


def init_model(exe, args, program):
    if args.checkpoint:
        fluid.io.load_persistables(exe, args.checkpoint, main_program=program)
        print("Finish initing model from %s" % (args.checkpoint))

    if args.pretrained_model:

        def if_exist(var):
            return os.path.exists(os.path.join(args.pretrained_model, var.name))

        fluid.io.load_vars(
            exe,
            args.pretrained_model,
            main_program=program,
            predicate=if_exist)


def save_model(args, exe, train_prog, info):
    model_path = os.path.join(args.model_save_dir, args.model, str(info))
    if not os.path.isdir(model_path):
        os.makedirs(model_path)
    fluid.io.save_persistables(exe, model_path, main_program=train_prog)
    print("Already save model in %s" % (model_path))


def create_pyreader(is_train, args):
    """create PyReader

    Usage:
        Using mixup process in training, it will return 5 results, include py_reader, image, y_a(label), y_b(label) and lamda, or it will return 3 results, include py_reader, image, and label.

    Args: 
        is_train: mode
        args: arguments

    Returns:
        py_reader and the input data of net, 
    """
    image_shape = [int(m) for m in args.image_shape.split(",")]

    feed_image = fluid.layers.data(
        name="feed_image", shape=image_shape, dtype="float32", lod_level=0)

    feed_label = fluid.layers.data(
        name="feed_label", shape=[1], dtype="int64", lod_level=0)
    feed_y_a = fluid.layers.data(
        name="feed_y_a", shape=[1], dtype="int64", lod_level=0)

    if is_train and args.use_mixup:
        feed_y_b = fluid.layers.data(
            name="feed_y_b", shape=[1], dtype="int64", lod_level=0)
        feed_lam = fluid.layers.data(
            name="feed_lam", shape=[1], dtype="float32", lod_level=0)

        py_reader = fluid.io.PyReader(
            feed_list=[feed_image, feed_y_a, feed_y_b, feed_lam],
            capacity=64,
            use_double_buffer=True,
            iterable=False)
        return py_reader, [feed_image, feed_y_a, feed_y_b, feed_lam]
    else:
        py_reader = fluid.io.PyReader(
            feed_list=[feed_image, feed_label],
            capacity=64,
            use_double_buffer=True,
            iterable=False)

        return py_reader, [feed_image, feed_label]


def print_info(pass_id, batch_id, print_step, metrics, time_info, info_mode):
    """print function

    Args:
        pass_id: epoch index
        batch_id: batch index
        print_step: the print_step arguments
        metrics: message to print
        time_info: time infomation
        info_mode: mode
    """
    if info_mode == "batch":
        if batch_id % print_step == 0:
            #if isinstance(metrics,np.ndarray):
            # train and mixup output
            if len(metrics) == 2:
                loss, lr = metrics
                print(
                    "[Pass {0}, train batch {1}] \tloss {2}, lr {3}, elapse {4}".
                    format(pass_id, batch_id, "%.5f" % loss, "%.5f" % lr,
335
                           "%2.4f sec" % time_info))
R
ruri 已提交
336 337 338 339 340 341
            # train and no mixup output
            elif len(metrics) == 4:
                loss, acc1, acc5, lr = metrics
                print(
                    "[Pass {0}, train batch {1}] \tloss {2}, acc1 {3}, acc5 {4}, lr {5}, elapse {6}".
                    format(pass_id, batch_id, "%.5f" % loss, "%.5f" % acc1,
342
                           "%.5f" % acc5, "%.5f" % lr, "%2.4f sec" % time_info))
R
ruri 已提交
343 344 345 346 347 348
            # test output
            elif len(metrics) == 3:
                loss, acc1, acc5 = metrics
                print(
                    "[Pass {0}, test  batch {1}] \tloss {2}, acc1 {3}, acc5 {4}, elapse {5}".
                    format(pass_id, batch_id, "%.5f" % loss, "%.5f" % acc1,
349
                           "%.5f" % acc5, "%2.4f sec" % time_info))
R
ruri 已提交
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
            else:
                raise Exception(
                    "length of metrics {} is not implemented, It maybe caused by wrong format of build_program_output".
                    format(len(metrics)))
            sys.stdout.flush()

    elif info_mode == "epoch":
        ## TODO add time elapse
        #if isinstance(metrics,np.ndarray):
        if len(metrics) == 5:
            train_loss, _, test_loss, test_acc1, test_acc5 = metrics
            print(
                "[End pass {0}]\ttrain_loss {1}, test_loss {2}, test_acc1 {3}, test_acc5 {4}".
                format(pass_id, "%.5f" % train_loss, "%.5f" % test_loss, "%.5f"
                       % test_acc1, "%.5f" % test_acc5))
        elif len(metrics) == 7:
            train_loss, train_acc1, train_acc5, _, test_loss, test_acc1, test_acc5 = metrics
            print(
                "[End pass {0}]\ttrain_loss {1}, train_acc1 {2}, train_acc5 {3},test_loss {4}, test_acc1 {5}, test_acc5 {6}".
                format(pass_id, "%.5f" % train_loss, "%.5f" % train_acc1, "%.5f"
                       % train_acc5, "%.5f" % test_loss, "%.5f" % test_acc1,
                       "%.5f" % test_acc5))
        sys.stdout.flush()
    elif info_mode == "ce":
        raise Warning("CE code is not ready")
    else:
        raise Exception("Illegal info_mode")


def best_strategy_compiled(args, program, loss):
    """make a program which wrapped by a compiled program
    """

    if os.getenv('FLAGS_use_ngraph'):
        return program
    else:
        build_strategy = fluid.compiler.BuildStrategy()
R
ruri 已提交
387 388
        #Feature will be supported in Fluid v1.6
        #build_strategy.enable_inplace = True
R
ruri 已提交
389 390 391 392 393 394 395 396 397 398 399

        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = fluid.core.get_cuda_device_count()
        exec_strategy.num_iteration_per_drop_scope = 10

        compiled_program = fluid.CompiledProgram(program).with_data_parallel(
            loss_name=loss.name,
            build_strategy=build_strategy,
            exec_strategy=exec_strategy)

        return compiled_program
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537


class ExponentialMovingAverage(object):

    def __init__(self, decay=0.999, thres_steps=None, zero_debias=False, name=None):
        self._decay = decay
        self._thres_steps = thres_steps
        self._name = name if name is not None else ''
        self._decay_var = self._get_ema_decay()

        self._params_tmps = []
        for param in default_main_program().global_block().all_parameters():
            if param.do_model_average != False:
                tmp = param.block.create_var(
                    name=unique_name.generate(".".join(
                        [self._name + param.name, 'ema_tmp'])),
                    dtype=param.dtype,
                    persistable=False,
                    stop_gradient=True)
                self._params_tmps.append((param, tmp))

        self._ema_vars = {}
        for param, tmp in self._params_tmps:
            with param.block.program._optimized_guard(
                    [param, tmp]), name_scope('moving_average'):
                self._ema_vars[param.name] = self._create_ema_vars(param)

        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            decay_pow = self._get_decay_pow(block)
            for param, tmp in self._params_tmps:
                param = block._clone_variable(param)
                tmp = block._clone_variable(tmp)
                ema = block._clone_variable(self._ema_vars[param.name])
                layers.assign(input=param, output=tmp)
                # bias correction
                if zero_debias:
                    ema = ema / (1.0 - decay_pow)
                layers.assign(input=ema, output=param)

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param, tmp in self._params_tmps:
                tmp = block._clone_variable(tmp)
                param = block._clone_variable(param)
                layers.assign(input=tmp, output=param)

    def _get_ema_decay(self):
        with default_main_program()._lr_schedule_guard():
            decay_var = layers.tensor.create_global_var(
                shape=[1],
                value=self._decay,
                dtype='float32',
                persistable=True,
                name="scheduled_ema_decay_rate")

            if self._thres_steps is not None:
                decay_t = (self._thres_steps + 1.0) / (self._thres_steps + 10.0)
                with layers.control_flow.Switch() as switch:
                    with switch.case(decay_t < self._decay):
                        layers.tensor.assign(decay_t, decay_var)
                    with switch.default():
                        layers.tensor.assign(
                            np.array(
                                [self._decay], dtype=np.float32),
                            decay_var)
        return decay_var

    def _get_decay_pow(self, block):
        global_steps = layers.learning_rate_scheduler._decay_step_counter()
        decay_var = block._clone_variable(self._decay_var)
        decay_pow_acc = layers.elementwise_pow(decay_var, global_steps + 1)
        return decay_pow_acc

    def _create_ema_vars(self, param):
        param_ema = layers.create_global_var(
            name=unique_name.generate(self._name + param.name + '_ema'),
            shape=param.shape,
            value=0.0,
            dtype=param.dtype,
            persistable=True)

        return param_ema

    def update(self):
        """
        Update Exponential Moving Average. Should only call this method in
        train program.
        """
        param_master_emas = []
        for param, tmp in self._params_tmps:
            with param.block.program._optimized_guard(
                    [param, tmp]), name_scope('moving_average'):
                param_ema = self._ema_vars[param.name]
                if param.name + '.master' in self._ema_vars:
                    master_ema = self._ema_vars[param.name + '.master']
                    param_master_emas.append([param_ema, master_ema])
                else:
                    ema_t = param_ema * self._decay_var + param * (
                            1 - self._decay_var)
                    layers.assign(input=ema_t, output=param_ema)

        # for fp16 params
        for param_ema, master_ema in param_master_emas:
            default_main_program().global_block().append_op(
                type="cast",
                inputs={"X": master_ema},
                outputs={"Out": param_ema},
                attrs={
                    "in_dtype": master_ema.dtype,
                    "out_dtype": param_ema.dtype
                })

    @signature_safe_contextmanager
    def apply(self, executor, need_restore=True):
        """
        Apply moving average to parameters for evaluation.

        Args:
            executor (Executor): The Executor to execute applying.
            need_restore (bool): Whether to restore parameters after applying.
        """
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)

    def restore(self, executor):
        """Restore parameters.

        Args:
            executor (Executor): The Executor to execute restoring.
        """
        executor.run(self.restore_program)