simple_seq2seq.py 8.0 KB
Newer Older
Y
yangyaming 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
16 17 18 19 20 21
import paddle.v2
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.framework as framework
import paddle.fluid.layers as pd
from paddle.fluid.executor import Executor
Y
yangyaming 已提交
22
from beam_search_api import *
Y
yangyaming 已提交
23 24 25

dict_size = 30000
source_dict_dim = target_dict_dim = dict_size
26
src_dict, trg_dict = paddle.v2.dataset.wmt14.get_dict(dict_size)
Y
yangyaming 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
hidden_dim = 32
word_dim = 16
IS_SPARSE = True
batch_size = 2
max_length = 8
topk_size = 50
trg_dic_size = 10000
beam_size = 2

decoder_size = hidden_dim

place = core.CPUPlace()


def encoder():
    # encoder
    src_word_id = pd.data(
        name="src_word_id", shape=[1], dtype='int64', lod_level=1)
    src_embedding = pd.embedding(
        input=src_word_id,
        size=[dict_size, word_dim],
        dtype='float32',
        is_sparse=IS_SPARSE,
        param_attr=fluid.ParamAttr(name='vemb'))

    fc1 = pd.fc(input=src_embedding, size=hidden_dim * 4, act='tanh')
    lstm_hidden0, lstm_0 = pd.dynamic_lstm(input=fc1, size=hidden_dim * 4)
    encoder_out = pd.sequence_last_step(input=lstm_hidden0)
    return encoder_out


58 59 60 61 62 63 64
def updater(state_cell):
    current_word = state_cell.get_input('x')
    prev_h = state_cell.get_state('h')
    h = pd.fc(input=[current_word, prev_h], size=decoder_size, act='tanh')
    state_cell.set_state('h', h)


Y
yangyaming 已提交
65
def decoder_train(context):
Y
yangyaming 已提交
66 67 68
    h = InitState(init=context)
    state_cell = StateCell(
        cell_size=decoder_size, inputs={'x': None}, states={'h': h})
69
    state_cell.register_updater(updater)
Y
yangyaming 已提交
70

Y
yangyaming 已提交
71 72 73 74 75 76 77 78 79 80
    # decoder
    trg_language_word = pd.data(
        name="target_language_word", shape=[1], dtype='int64', lod_level=1)
    trg_embedding = pd.embedding(
        input=trg_language_word,
        size=[dict_size, word_dim],
        dtype='float32',
        is_sparse=IS_SPARSE,
        param_attr=fluid.ParamAttr(name='vemb'))

81
    decoder = TrainingDecoder(state_cell)
Y
yangyaming 已提交
82

83
    with decoder.block():
Y
yangyaming 已提交
84 85
        current_word = decoder.step_input(trg_embedding)
        decoder.state_cell.compute_state(inputs={'x': current_word})
86
        current_score = pd.fc(input=decoder.state_cell.get_state('h'),
Y
yangyaming 已提交
87 88
                              size=target_dict_dim,
                              act='softmax')
89
        decoder.state_cell.update_states()
Y
yangyaming 已提交
90
        decoder.output(current_score)
Y
yangyaming 已提交
91 92 93 94 95

    return decoder()


def decoder_decode(context):
96 97 98 99 100
    h = InitState(init=context)
    state_cell = StateCell(
        cell_size=decoder_size, inputs={'x': None}, states={'h': h})
    state_cell.register_updater(updater)

Y
yangyaming 已提交
101 102 103 104 105 106 107 108 109 110 111
    init_ids = pd.data(name="init_ids", shape=[1], dtype="int64", lod_level=2)
    init_scores = pd.data(
        name="init_scores", shape=[1], dtype="float32", lod_level=2)

    def embedding(input):
        return pd.embedding(
            input=input,
            size=[dict_size, word_dim],
            dtype='float32',
            is_sparse=IS_SPARSE)

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
    decoder = BeamSearchDecoder(state_cell, max_len=max_length)

    with decoder.block():
        prev_ids = decoder.read_array(init=init_ids, is_ids=True)
        prev_scores = decoder.read_array(init=init_scores, is_scores=True)
        prev_ids_embedding = embedding(prev_ids)
        prev_state = decoder.state_cell.get_state('h')
        prev_state_expanded = pd.sequence_expand(prev_state, prev_scores)
        decoder.state_cell.set_state('h', prev_state_expanded)
        decoder.state_cell.compute_state(inputs={'x': prev_ids_embedding})
        current_state = decoder.state_cell.get_state('h')
        scores = pd.fc(input=current_state, size=target_dict_dim, act='softmax')
        topk_scores, topk_indices = pd.topk(scores, k=50)
        selected_ids, selected_scores = pd.beam_search(
            prev_ids, topk_indices, topk_scores, beam_size, end_id=10, level=0)
        decoder.state_cell.update_states()
        decoder.update_array(prev_ids, selected_ids)
        decoder.update_array(prev_scores, selected_scores)
Y
yangyaming 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168

    translation_ids, translation_scores = decoder()

    return translation_ids, translation_scores


def set_init_lod(data, lod, place):
    res = core.LoDTensor()
    res.set(data, place)
    res.set_lod(lod)
    return res


def to_lodtensor(data, place):
    seq_lens = [len(seq) for seq in data]
    cur_len = 0
    lod = [cur_len]
    for l in seq_lens:
        cur_len += l
        lod.append(cur_len)
    flattened_data = np.concatenate(data, axis=0).astype("int64")
    flattened_data = flattened_data.reshape([len(flattened_data), 1])
    res = core.LoDTensor()
    res.set(flattened_data, place)
    res.set_lod([lod])
    return res


def train_main():
    context = encoder()
    rnn_out = decoder_train(context)
    label = pd.data(
        name="target_language_next_word", shape=[1], dtype='int64', lod_level=1)
    cost = pd.cross_entropy(input=rnn_out, label=label)
    avg_cost = pd.mean(x=cost)

    optimizer = fluid.optimizer.Adagrad(learning_rate=1e-4)
    optimizer.minimize(avg_cost)

169 170 171
    train_data = paddle.v2.batch(
        paddle.v2.reader.shuffle(
            paddle.v2.dataset.wmt14.train(dict_size), buf_size=1000),
Y
yangyaming 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
        batch_size=batch_size)

    exe = Executor(place)

    exe.run(framework.default_startup_program())

    batch_id = 0
    for pass_id in xrange(1):
        for data in train_data():
            word_data = to_lodtensor(map(lambda x: x[0], data), place)
            trg_word = to_lodtensor(map(lambda x: x[1], data), place)
            trg_word_next = to_lodtensor(map(lambda x: x[2], data), place)
            outs = exe.run(framework.default_main_program(),
                           feed={
                               'src_word_id': word_data,
                               'target_language_word': trg_word,
                               'target_language_next_word': trg_word_next
                           },
                           fetch_list=[avg_cost])
            avg_cost_val = np.array(outs[0])
            print('pass_id=' + str(pass_id) + ' batch=' + str(batch_id) +
                  " avg_cost=" + str(avg_cost_val))
194
            if batch_id > 3000:
Y
yangyaming 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
                break
            batch_id += 1


def decode_main():
    context = encoder()
    translation_ids, translation_scores = decoder_decode(context)

    exe = Executor(place)
    exe.run(framework.default_startup_program())

    init_ids_data = np.array([1 for _ in range(batch_size)], dtype='int64')
    init_scores_data = np.array(
        [1. for _ in range(batch_size)], dtype='float32')
    init_ids_data = init_ids_data.reshape((batch_size, 1))
    init_scores_data = init_scores_data.reshape((batch_size, 1))
    init_lod = [i for i in range(batch_size)] + [batch_size]
    init_lod = [init_lod, init_lod]

    train_data = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.wmt14.train(dict_size), buf_size=1000),
        batch_size=batch_size)
    for _, data in enumerate(train_data()):
        init_ids = set_init_lod(init_ids_data, init_lod, place)
        init_scores = set_init_lod(init_scores_data, init_lod, place)

        src_word_data = to_lodtensor(map(lambda x: x[0], data), place)

        result_ids, result_scores = exe.run(
            framework.default_main_program(),
            feed={
                'src_word_id': src_word_data,
                'init_ids': init_ids,
                'init_scores': init_scores
            },
            fetch_list=[translation_ids, translation_scores],
            return_numpy=False)
        print result_ids.lod()
234
        #break
Y
yangyaming 已提交
235 236 237


if __name__ == '__main__':
238 239
    train_main()
    #decode_main()