Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
2b022f0b
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
2b022f0b
编写于
3月 09, 2018
作者:
Y
yangyaming
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add attention_seq2seq.py and training can run.
上级
a4ecb69f
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
379 addition
and
18 deletion
+379
-18
fluid/rnn_beam_search/attention_seq2seq.py
fluid/rnn_beam_search/attention_seq2seq.py
+356
-0
fluid/rnn_beam_search/beam_search_api.py
fluid/rnn_beam_search/beam_search_api.py
+11
-6
fluid/rnn_beam_search/simple_seq2seq.py
fluid/rnn_beam_search/simple_seq2seq.py
+12
-12
未找到文件。
fluid/rnn_beam_search/attention_seq2seq.py
0 → 100644
浏览文件 @
2b022f0b
"""seq2seq model for fluid."""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
numpy
as
np
import
argparse
import
time
import
distutils.util
import
paddle.v2
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
import
paddle.fluid.framework
as
framework
from
paddle.fluid.executor
import
Executor
from
beam_search_api
import
*
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
parser
.
add_argument
(
"--embedding_dim"
,
type
=
int
,
default
=
512
,
help
=
"The dimension of embedding table. (default: %(default)d)"
)
parser
.
add_argument
(
"--encoder_size"
,
type
=
int
,
default
=
512
,
help
=
"The size of encoder bi-rnn unit. (default: %(default)d)"
)
parser
.
add_argument
(
"--decoder_size"
,
type
=
int
,
default
=
512
,
help
=
"The size of decoder rnn unit. (default: %(default)d)"
)
parser
.
add_argument
(
"--batch_size"
,
type
=
int
,
default
=
16
,
help
=
"The sequence number of a mini-batch data. (default: %(default)d)"
)
parser
.
add_argument
(
"--dict_size"
,
type
=
int
,
default
=
30000
,
help
=
"The dictionary capacity. Dictionaries of source sequence and "
"target dictionary have same capacity. (default: %(default)d)"
)
parser
.
add_argument
(
"--pass_num"
,
type
=
int
,
default
=
2
,
help
=
"The pass number to train. (default: %(default)d)"
)
parser
.
add_argument
(
"--learning_rate"
,
type
=
float
,
default
=
0.0002
,
help
=
"Learning rate used to train the model. (default: %(default)f)"
)
parser
.
add_argument
(
"--infer_only"
,
action
=
'store_true'
,
help
=
"If set, run forward only."
)
parser
.
add_argument
(
"--beam_size"
,
type
=
int
,
default
=
3
,
help
=
"The width for beam searching. (default: %(default)d)"
)
parser
.
add_argument
(
"--use_gpu"
,
type
=
distutils
.
util
.
strtobool
,
default
=
False
,
help
=
"Whether to use gpu. (default: %(default)d)"
)
parser
.
add_argument
(
"--max_length"
,
type
=
int
,
default
=
250
,
help
=
"The maximum length of sequence when doing generation. "
"(default: %(default)d)"
)
def
lstm_step
(
x_t
,
hidden_t_prev
,
cell_t_prev
,
size
):
def
linear
(
inputs
):
return
fluid
.
layers
.
fc
(
input
=
inputs
,
size
=
size
,
bias_attr
=
True
)
forget_gate
=
fluid
.
layers
.
sigmoid
(
x
=
linear
([
hidden_t_prev
,
x_t
]))
input_gate
=
fluid
.
layers
.
sigmoid
(
x
=
linear
([
hidden_t_prev
,
x_t
]))
output_gate
=
fluid
.
layers
.
sigmoid
(
x
=
linear
([
hidden_t_prev
,
x_t
]))
cell_tilde
=
fluid
.
layers
.
tanh
(
x
=
linear
([
hidden_t_prev
,
x_t
]))
cell_t
=
fluid
.
layers
.
sums
(
input
=
[
fluid
.
layers
.
elementwise_mul
(
x
=
forget_gate
,
y
=
cell_t_prev
),
fluid
.
layers
.
elementwise_mul
(
x
=
input_gate
,
y
=
cell_tilde
)
])
hidden_t
=
fluid
.
layers
.
elementwise_mul
(
x
=
output_gate
,
y
=
fluid
.
layers
.
tanh
(
x
=
cell_t
))
return
hidden_t
,
cell_t
def
seq_to_seq_net
(
embedding_dim
,
encoder_size
,
decoder_size
,
source_dict_dim
,
target_dict_dim
,
is_generating
,
beam_size
,
max_length
):
"""Construct a seq2seq network."""
def
bi_lstm_encoder
(
input_seq
,
gate_size
):
# Linear transformation part for input gate, output gate, forget gate
# and cell activation vectors need be done outside of dynamic_lstm.
# So the output size is 4 times of gate_size.
input_forward_proj
=
fluid
.
layers
.
fc
(
input
=
input_seq
,
size
=
gate_size
*
4
,
act
=
None
,
bias_attr
=
False
)
forward
,
_
=
fluid
.
layers
.
dynamic_lstm
(
input
=
input_forward_proj
,
size
=
gate_size
*
4
,
use_peepholes
=
False
)
input_reversed_proj
=
fluid
.
layers
.
fc
(
input
=
input_seq
,
size
=
gate_size
*
4
,
act
=
None
,
bias_attr
=
False
)
reversed
,
_
=
fluid
.
layers
.
dynamic_lstm
(
input
=
input_reversed_proj
,
size
=
gate_size
*
4
,
is_reverse
=
True
,
use_peepholes
=
False
)
return
forward
,
reversed
src_word_idx
=
fluid
.
layers
.
data
(
name
=
'source_sequence'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
src_embedding
=
fluid
.
layers
.
embedding
(
input
=
src_word_idx
,
size
=
[
source_dict_dim
,
embedding_dim
],
dtype
=
'float32'
)
src_forward
,
src_reversed
=
bi_lstm_encoder
(
input_seq
=
src_embedding
,
gate_size
=
encoder_size
)
encoded_vector
=
fluid
.
layers
.
concat
(
input
=
[
src_forward
,
src_reversed
],
axis
=
1
)
encoded_proj
=
fluid
.
layers
.
fc
(
input
=
encoded_vector
,
size
=
decoder_size
,
bias_attr
=
False
)
backward_first
=
fluid
.
layers
.
sequence_pool
(
input
=
src_reversed
,
pool_type
=
'first'
)
decoder_boot
=
fluid
.
layers
.
fc
(
input
=
backward_first
,
size
=
decoder_size
,
bias_attr
=
False
,
act
=
'tanh'
)
cell_init
=
fluid
.
layers
.
fill_constant_batch_size_like
(
input
=
decoder_boot
,
value
=
0.0
,
shape
=
[
-
1
,
decoder_size
],
dtype
=
'float32'
)
cell_init
.
stop_gradient
=
False
h
=
InitState
(
init
=
decoder_boot
,
need_reorder
=
True
)
c
=
InitState
(
init
=
cell_init
)
state_cell
=
StateCell
(
cell_size
=
decoder_size
,
inputs
=
{
'x'
:
None
,
'encoder_vec'
:
None
,
'encoder_proj'
:
None
},
states
=
{
'h'
:
h
,
'c'
:
c
})
def
simple_attention
(
encoder_vec
,
encoder_proj
,
decoder_state
):
decoder_state_proj
=
fluid
.
layers
.
fc
(
input
=
decoder_state
,
size
=
decoder_size
,
bias_attr
=
False
)
decoder_state_expand
=
fluid
.
layers
.
sequence_expand
(
x
=
decoder_state_proj
,
y
=
encoder_proj
)
concated
=
fluid
.
layers
.
concat
(
input
=
[
decoder_state_expand
,
encoder_proj
],
axis
=
1
)
attention_weights
=
fluid
.
layers
.
fc
(
input
=
concated
,
size
=
1
,
act
=
'tanh'
,
bias_attr
=
False
)
attention_weights
=
fluid
.
layers
.
sequence_softmax
(
x
=
attention_weights
)
weigths_reshape
=
fluid
.
layers
.
reshape
(
x
=
attention_weights
,
shape
=
[
-
1
])
scaled
=
fluid
.
layers
.
elementwise_mul
(
x
=
encoder_vec
,
y
=
weigths_reshape
,
axis
=
0
)
context
=
fluid
.
layers
.
sequence_pool
(
input
=
scaled
,
pool_type
=
'sum'
)
return
context
def
updater
(
state_cell
):
current_word
=
state_cell
.
get_input
(
'x'
)
encoder_vec
=
state_cell
.
get_input
(
'encoder_vec'
)
encoder_proj
=
state_cell
.
get_input
(
'encoder_proj'
)
prev_h
=
state_cell
.
get_state
(
'h'
)
prev_c
=
state_cell
.
get_state
(
'c'
)
context
=
simple_attention
(
encoder_vec
,
encoder_proj
,
prev_h
)
decoder_inputs
=
fluid
.
layers
.
concat
(
input
=
[
context
,
current_word
],
axis
=
1
)
h
,
c
=
lstm_step
(
decoder_inputs
,
prev_h
,
prev_c
,
decoder_size
)
state_cell
.
set_state
(
'h'
,
h
)
state_cell
.
set_state
(
'c'
,
c
)
state_cell
.
register_updater
(
updater
)
if
not
is_generating
:
trg_word_idx
=
fluid
.
layers
.
data
(
name
=
'target_sequence'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
trg_embedding
=
fluid
.
layers
.
embedding
(
input
=
trg_word_idx
,
size
=
[
target_dict_dim
,
embedding_dim
],
dtype
=
'float32'
)
decoder
=
TrainingDecoder
(
state_cell
)
with
decoder
.
block
():
current_word
=
decoder
.
step_input
(
trg_embedding
)
encoder_vec
=
decoder
.
static_input
(
encoded_vector
)
encoder_proj
=
decoder
.
static_input
(
encoded_proj
)
decoder
.
state_cell
.
compute_state
(
inputs
=
{
'x'
:
current_word
,
'encoder_vec'
:
encoder_vec
,
'encoder_proj'
:
encoder_proj
})
h
=
decoder
.
state_cell
.
get_state
(
'h'
)
decoder
.
state_cell
.
update_states
()
out
=
fluid
.
layers
.
fc
(
input
=
h
,
size
=
target_dict_dim
,
bias_attr
=
True
,
act
=
'softmax'
)
decoder
.
output
(
out
)
label
=
fluid
.
layers
.
data
(
name
=
'label_sequence'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
decoder
(),
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
feeding_list
=
[
"source_sequence"
,
"target_sequence"
,
"label_sequence"
]
return
avg_cost
,
feeding_list
else
:
pass
def
to_lodtensor
(
data
,
place
):
seq_lens
=
[
len
(
seq
)
for
seq
in
data
]
cur_len
=
0
lod
=
[
cur_len
]
for
l
in
seq_lens
:
cur_len
+=
l
lod
.
append
(
cur_len
)
flattened_data
=
np
.
concatenate
(
data
,
axis
=
0
).
astype
(
"int64"
)
flattened_data
=
flattened_data
.
reshape
([
len
(
flattened_data
),
1
])
lod_t
=
core
.
LoDTensor
()
lod_t
.
set
(
flattened_data
,
place
)
lod_t
.
set_lod
([
lod
])
return
lod_t
,
lod
[
-
1
]
def
lodtensor_to_ndarray
(
lod_tensor
):
dims
=
lod_tensor
.
get_dims
()
ndarray
=
np
.
zeros
(
shape
=
dims
).
astype
(
'float32'
)
for
i
in
xrange
(
np
.
product
(
dims
)):
ndarray
.
ravel
()[
i
]
=
lod_tensor
.
get_float_element
(
i
)
return
ndarray
def
train
():
avg_cost
,
feeding_list
=
seq_to_seq_net
(
args
.
embedding_dim
,
args
.
encoder_size
,
args
.
decoder_size
,
args
.
dict_size
,
args
.
dict_size
,
False
,
beam_size
=
args
.
beam_size
,
max_length
=
args
.
max_length
)
# clone from default main program
inference_program
=
fluid
.
default_main_program
().
clone
()
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
args
.
learning_rate
)
optimizer
.
minimize
(
avg_cost
)
fluid
.
memory_optimize
(
fluid
.
default_main_program
(),
print_log
=
False
)
train_batch_generator
=
paddle
.
v2
.
batch
(
paddle
.
v2
.
reader
.
shuffle
(
paddle
.
v2
.
dataset
.
wmt14
.
train
(
args
.
dict_size
),
buf_size
=
1000
),
batch_size
=
args
.
batch_size
)
test_batch_generator
=
paddle
.
v2
.
batch
(
paddle
.
v2
.
reader
.
shuffle
(
paddle
.
v2
.
dataset
.
wmt14
.
test
(
args
.
dict_size
),
buf_size
=
1000
),
batch_size
=
args
.
batch_size
)
place
=
core
.
CUDAPlace
(
0
)
if
args
.
use_gpu
else
core
.
CPUPlace
()
exe
=
Executor
(
place
)
exe
.
run
(
framework
.
default_startup_program
())
def
do_validation
():
total_loss
=
0.0
count
=
0
for
batch_id
,
data
in
enumerate
(
test_batch_generator
()):
src_seq
=
to_lodtensor
(
map
(
lambda
x
:
x
[
0
],
data
),
place
)[
0
]
trg_seq
=
to_lodtensor
(
map
(
lambda
x
:
x
[
1
],
data
),
place
)[
0
]
lbl_seq
=
to_lodtensor
(
map
(
lambda
x
:
x
[
2
],
data
),
place
)[
0
]
fetch_outs
=
exe
.
run
(
inference_program
,
feed
=
{
feeding_list
[
0
]:
src_seq
,
feeding_list
[
1
]:
trg_seq
,
feeding_list
[
2
]:
lbl_seq
},
fetch_list
=
[
avg_cost
],
return_numpy
=
False
)
total_loss
+=
lodtensor_to_ndarray
(
fetch_outs
[
0
])[
0
]
count
+=
1
return
total_loss
/
count
for
pass_id
in
xrange
(
args
.
pass_num
):
pass_start_time
=
time
.
time
()
words_seen
=
0
for
batch_id
,
data
in
enumerate
(
train_batch_generator
()):
src_seq
,
word_num
=
to_lodtensor
(
map
(
lambda
x
:
x
[
0
],
data
),
place
)
words_seen
+=
word_num
trg_seq
,
word_num
=
to_lodtensor
(
map
(
lambda
x
:
x
[
1
],
data
),
place
)
words_seen
+=
word_num
lbl_seq
,
_
=
to_lodtensor
(
map
(
lambda
x
:
x
[
2
],
data
),
place
)
fetch_outs
=
exe
.
run
(
framework
.
default_main_program
(),
feed
=
{
feeding_list
[
0
]:
src_seq
,
feeding_list
[
1
]:
trg_seq
,
feeding_list
[
2
]:
lbl_seq
},
fetch_list
=
[
avg_cost
])
avg_cost_val
=
np
.
array
(
fetch_outs
[
0
])
print
(
'pass_id=%d, batch_id=%d, train_loss: %f'
%
(
pass_id
,
batch_id
,
avg_cost_val
))
pass_end_time
=
time
.
time
()
test_loss
=
do_validation
()
time_consumed
=
pass_end_time
-
pass_start_time
words_per_sec
=
words_seen
/
time_consumed
print
(
"pass_id=%d, test_loss: %f, words/s: %f, sec/pass: %f"
%
(
pass_id
,
test_loss
,
words_per_sec
,
time_consumed
))
def
infer
():
pass
if
__name__
==
'__main__'
:
args
=
parser
.
parse_args
()
if
args
.
infer_only
:
infer
()
else
:
train
()
fluid/rnn_beam_search/beam_search_api.py
浏览文件 @
2b022f0b
import
paddle.
v2.
fluid
as
fluid
import
paddle.
v2.
fluid.layers
as
layers
from
paddle.
v2.
fluid.framework
import
Variable
import
paddle.fluid
as
fluid
import
paddle.fluid.layers
as
layers
from
paddle.fluid.framework
import
Variable
import
contextlib
from
paddle.
v2.
fluid.layer_helper
import
LayerHelper
,
unique_name
import
paddle.
v2.
fluid.core
as
core
from
paddle.fluid.layer_helper
import
LayerHelper
,
unique_name
import
paddle.fluid.core
as
core
class
DecoderType
:
...
...
@@ -28,12 +28,17 @@ class InitState(object):
def
value
(
self
):
return
self
.
_init
# may create a LoDTensor
@
property
def
need_reorder
(
self
):
return
self
.
_need_reorder
class
MemoryState
(
object
):
def
__init__
(
self
,
state_name
,
rnn_obj
,
init_state
):
self
.
_state_name
=
state_name
# each is a rnn.memory
self
.
_rnn_obj
=
rnn_obj
self
.
_state_mem
=
self
.
_rnn_obj
.
memory
(
init
=
init_state
.
value
)
self
.
_state_mem
=
self
.
_rnn_obj
.
memory
(
init
=
init_state
.
value
,
need_reorder
=
init_state
.
need_reorder
)
def
get_state
(
self
):
return
self
.
_state_mem
...
...
fluid/rnn_beam_search/simple_seq2seq.py
浏览文件 @
2b022f0b
...
...
@@ -13,17 +13,17 @@
# limitations under the License.
import
numpy
as
np
import
paddle.v2
as
paddle
import
paddle.
v2.
fluid
as
fluid
import
paddle.
v2.
fluid.core
as
core
import
paddle.
v2.
fluid.framework
as
framework
import
paddle.
v2.
fluid.layers
as
pd
from
paddle.
v2.
fluid.executor
import
Executor
import
paddle.v2
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
import
paddle.fluid.framework
as
framework
import
paddle.fluid.layers
as
pd
from
paddle.fluid.executor
import
Executor
from
beam_search_api
import
*
dict_size
=
30000
source_dict_dim
=
target_dict_dim
=
dict_size
src_dict
,
trg_dict
=
paddle
.
dataset
.
wmt14
.
get_dict
(
dict_size
)
src_dict
,
trg_dict
=
paddle
.
v2
.
dataset
.
wmt14
.
get_dict
(
dict_size
)
hidden_dim
=
32
word_dim
=
16
IS_SPARSE
=
True
...
...
@@ -166,9 +166,9 @@ def train_main():
optimizer
=
fluid
.
optimizer
.
Adagrad
(
learning_rate
=
1e-4
)
optimizer
.
minimize
(
avg_cost
)
train_data
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
wmt14
.
train
(
dict_size
),
buf_size
=
1000
),
train_data
=
paddle
.
v2
.
batch
(
paddle
.
v2
.
reader
.
shuffle
(
paddle
.
v2
.
dataset
.
wmt14
.
train
(
dict_size
),
buf_size
=
1000
),
batch_size
=
batch_size
)
exe
=
Executor
(
place
)
...
...
@@ -235,5 +235,5 @@ def decode_main():
if
__name__
==
'__main__'
:
#
train_main()
decode_main
()
train_main
()
#
decode_main()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录