提交 2b022f0b 编写于 作者: Y yangyaming

Add attention_seq2seq.py and training can run.

上级 a4ecb69f
"""seq2seq model for fluid."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import argparse
import time
import distutils.util
import paddle.v2
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.framework as framework
from paddle.fluid.executor import Executor
from beam_search_api import *
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"--embedding_dim",
type=int,
default=512,
help="The dimension of embedding table. (default: %(default)d)")
parser.add_argument(
"--encoder_size",
type=int,
default=512,
help="The size of encoder bi-rnn unit. (default: %(default)d)")
parser.add_argument(
"--decoder_size",
type=int,
default=512,
help="The size of decoder rnn unit. (default: %(default)d)")
parser.add_argument(
"--batch_size",
type=int,
default=16,
help="The sequence number of a mini-batch data. (default: %(default)d)")
parser.add_argument(
"--dict_size",
type=int,
default=30000,
help="The dictionary capacity. Dictionaries of source sequence and "
"target dictionary have same capacity. (default: %(default)d)")
parser.add_argument(
"--pass_num",
type=int,
default=2,
help="The pass number to train. (default: %(default)d)")
parser.add_argument(
"--learning_rate",
type=float,
default=0.0002,
help="Learning rate used to train the model. (default: %(default)f)")
parser.add_argument(
"--infer_only", action='store_true', help="If set, run forward only.")
parser.add_argument(
"--beam_size",
type=int,
default=3,
help="The width for beam searching. (default: %(default)d)")
parser.add_argument(
"--use_gpu",
type=distutils.util.strtobool,
default=False,
help="Whether to use gpu. (default: %(default)d)")
parser.add_argument(
"--max_length",
type=int,
default=250,
help="The maximum length of sequence when doing generation. "
"(default: %(default)d)")
def lstm_step(x_t, hidden_t_prev, cell_t_prev, size):
def linear(inputs):
return fluid.layers.fc(input=inputs, size=size, bias_attr=True)
forget_gate = fluid.layers.sigmoid(x=linear([hidden_t_prev, x_t]))
input_gate = fluid.layers.sigmoid(x=linear([hidden_t_prev, x_t]))
output_gate = fluid.layers.sigmoid(x=linear([hidden_t_prev, x_t]))
cell_tilde = fluid.layers.tanh(x=linear([hidden_t_prev, x_t]))
cell_t = fluid.layers.sums(input=[
fluid.layers.elementwise_mul(
x=forget_gate, y=cell_t_prev), fluid.layers.elementwise_mul(
x=input_gate, y=cell_tilde)
])
hidden_t = fluid.layers.elementwise_mul(
x=output_gate, y=fluid.layers.tanh(x=cell_t))
return hidden_t, cell_t
def seq_to_seq_net(embedding_dim, encoder_size, decoder_size, source_dict_dim,
target_dict_dim, is_generating, beam_size, max_length):
"""Construct a seq2seq network."""
def bi_lstm_encoder(input_seq, gate_size):
# Linear transformation part for input gate, output gate, forget gate
# and cell activation vectors need be done outside of dynamic_lstm.
# So the output size is 4 times of gate_size.
input_forward_proj = fluid.layers.fc(input=input_seq,
size=gate_size * 4,
act=None,
bias_attr=False)
forward, _ = fluid.layers.dynamic_lstm(
input=input_forward_proj, size=gate_size * 4, use_peepholes=False)
input_reversed_proj = fluid.layers.fc(input=input_seq,
size=gate_size * 4,
act=None,
bias_attr=False)
reversed, _ = fluid.layers.dynamic_lstm(
input=input_reversed_proj,
size=gate_size * 4,
is_reverse=True,
use_peepholes=False)
return forward, reversed
src_word_idx = fluid.layers.data(
name='source_sequence', shape=[1], dtype='int64', lod_level=1)
src_embedding = fluid.layers.embedding(
input=src_word_idx,
size=[source_dict_dim, embedding_dim],
dtype='float32')
src_forward, src_reversed = bi_lstm_encoder(
input_seq=src_embedding, gate_size=encoder_size)
encoded_vector = fluid.layers.concat(
input=[src_forward, src_reversed], axis=1)
encoded_proj = fluid.layers.fc(input=encoded_vector,
size=decoder_size,
bias_attr=False)
backward_first = fluid.layers.sequence_pool(
input=src_reversed, pool_type='first')
decoder_boot = fluid.layers.fc(input=backward_first,
size=decoder_size,
bias_attr=False,
act='tanh')
cell_init = fluid.layers.fill_constant_batch_size_like(
input=decoder_boot,
value=0.0,
shape=[-1, decoder_size],
dtype='float32')
cell_init.stop_gradient = False
h = InitState(init=decoder_boot, need_reorder=True)
c = InitState(init=cell_init)
state_cell = StateCell(
cell_size=decoder_size,
inputs={'x': None,
'encoder_vec': None,
'encoder_proj': None},
states={'h': h,
'c': c})
def simple_attention(encoder_vec, encoder_proj, decoder_state):
decoder_state_proj = fluid.layers.fc(input=decoder_state,
size=decoder_size,
bias_attr=False)
decoder_state_expand = fluid.layers.sequence_expand(
x=decoder_state_proj, y=encoder_proj)
concated = fluid.layers.concat(
input=[decoder_state_expand, encoder_proj], axis=1)
attention_weights = fluid.layers.fc(input=concated,
size=1,
act='tanh',
bias_attr=False)
attention_weights = fluid.layers.sequence_softmax(x=attention_weights)
weigths_reshape = fluid.layers.reshape(x=attention_weights, shape=[-1])
scaled = fluid.layers.elementwise_mul(
x=encoder_vec, y=weigths_reshape, axis=0)
context = fluid.layers.sequence_pool(input=scaled, pool_type='sum')
return context
def updater(state_cell):
current_word = state_cell.get_input('x')
encoder_vec = state_cell.get_input('encoder_vec')
encoder_proj = state_cell.get_input('encoder_proj')
prev_h = state_cell.get_state('h')
prev_c = state_cell.get_state('c')
context = simple_attention(encoder_vec, encoder_proj, prev_h)
decoder_inputs = fluid.layers.concat(
input=[context, current_word], axis=1)
h, c = lstm_step(decoder_inputs, prev_h, prev_c, decoder_size)
state_cell.set_state('h', h)
state_cell.set_state('c', c)
state_cell.register_updater(updater)
if not is_generating:
trg_word_idx = fluid.layers.data(
name='target_sequence', shape=[1], dtype='int64', lod_level=1)
trg_embedding = fluid.layers.embedding(
input=trg_word_idx,
size=[target_dict_dim, embedding_dim],
dtype='float32')
decoder = TrainingDecoder(state_cell)
with decoder.block():
current_word = decoder.step_input(trg_embedding)
encoder_vec = decoder.static_input(encoded_vector)
encoder_proj = decoder.static_input(encoded_proj)
decoder.state_cell.compute_state(inputs={
'x': current_word,
'encoder_vec': encoder_vec,
'encoder_proj': encoder_proj
})
h = decoder.state_cell.get_state('h')
decoder.state_cell.update_states()
out = fluid.layers.fc(input=h,
size=target_dict_dim,
bias_attr=True,
act='softmax')
decoder.output(out)
label = fluid.layers.data(
name='label_sequence', shape=[1], dtype='int64', lod_level=1)
cost = fluid.layers.cross_entropy(input=decoder(), label=label)
avg_cost = fluid.layers.mean(x=cost)
feeding_list = ["source_sequence", "target_sequence", "label_sequence"]
return avg_cost, feeding_list
else:
pass
def to_lodtensor(data, place):
seq_lens = [len(seq) for seq in data]
cur_len = 0
lod = [cur_len]
for l in seq_lens:
cur_len += l
lod.append(cur_len)
flattened_data = np.concatenate(data, axis=0).astype("int64")
flattened_data = flattened_data.reshape([len(flattened_data), 1])
lod_t = core.LoDTensor()
lod_t.set(flattened_data, place)
lod_t.set_lod([lod])
return lod_t, lod[-1]
def lodtensor_to_ndarray(lod_tensor):
dims = lod_tensor.get_dims()
ndarray = np.zeros(shape=dims).astype('float32')
for i in xrange(np.product(dims)):
ndarray.ravel()[i] = lod_tensor.get_float_element(i)
return ndarray
def train():
avg_cost, feeding_list = seq_to_seq_net(
args.embedding_dim,
args.encoder_size,
args.decoder_size,
args.dict_size,
args.dict_size,
False,
beam_size=args.beam_size,
max_length=args.max_length)
# clone from default main program
inference_program = fluid.default_main_program().clone()
optimizer = fluid.optimizer.Adam(learning_rate=args.learning_rate)
optimizer.minimize(avg_cost)
fluid.memory_optimize(fluid.default_main_program(), print_log=False)
train_batch_generator = paddle.v2.batch(
paddle.v2.reader.shuffle(
paddle.v2.dataset.wmt14.train(args.dict_size), buf_size=1000),
batch_size=args.batch_size)
test_batch_generator = paddle.v2.batch(
paddle.v2.reader.shuffle(
paddle.v2.dataset.wmt14.test(args.dict_size), buf_size=1000),
batch_size=args.batch_size)
place = core.CUDAPlace(0) if args.use_gpu else core.CPUPlace()
exe = Executor(place)
exe.run(framework.default_startup_program())
def do_validation():
total_loss = 0.0
count = 0
for batch_id, data in enumerate(test_batch_generator()):
src_seq = to_lodtensor(map(lambda x: x[0], data), place)[0]
trg_seq = to_lodtensor(map(lambda x: x[1], data), place)[0]
lbl_seq = to_lodtensor(map(lambda x: x[2], data), place)[0]
fetch_outs = exe.run(inference_program,
feed={
feeding_list[0]: src_seq,
feeding_list[1]: trg_seq,
feeding_list[2]: lbl_seq
},
fetch_list=[avg_cost],
return_numpy=False)
total_loss += lodtensor_to_ndarray(fetch_outs[0])[0]
count += 1
return total_loss / count
for pass_id in xrange(args.pass_num):
pass_start_time = time.time()
words_seen = 0
for batch_id, data in enumerate(train_batch_generator()):
src_seq, word_num = to_lodtensor(map(lambda x: x[0], data), place)
words_seen += word_num
trg_seq, word_num = to_lodtensor(map(lambda x: x[1], data), place)
words_seen += word_num
lbl_seq, _ = to_lodtensor(map(lambda x: x[2], data), place)
fetch_outs = exe.run(framework.default_main_program(),
feed={
feeding_list[0]: src_seq,
feeding_list[1]: trg_seq,
feeding_list[2]: lbl_seq
},
fetch_list=[avg_cost])
avg_cost_val = np.array(fetch_outs[0])
print('pass_id=%d, batch_id=%d, train_loss: %f' %
(pass_id, batch_id, avg_cost_val))
pass_end_time = time.time()
test_loss = do_validation()
time_consumed = pass_end_time - pass_start_time
words_per_sec = words_seen / time_consumed
print("pass_id=%d, test_loss: %f, words/s: %f, sec/pass: %f" %
(pass_id, test_loss, words_per_sec, time_consumed))
def infer():
pass
if __name__ == '__main__':
args = parser.parse_args()
if args.infer_only:
infer()
else:
train()
import paddle.v2.fluid as fluid
import paddle.v2.fluid.layers as layers
from paddle.v2.fluid.framework import Variable
import paddle.fluid as fluid
import paddle.fluid.layers as layers
from paddle.fluid.framework import Variable
import contextlib
from paddle.v2.fluid.layer_helper import LayerHelper, unique_name
import paddle.v2.fluid.core as core
from paddle.fluid.layer_helper import LayerHelper, unique_name
import paddle.fluid.core as core
class DecoderType:
......@@ -28,12 +28,17 @@ class InitState(object):
def value(self):
return self._init # may create a LoDTensor
@property
def need_reorder(self):
return self._need_reorder
class MemoryState(object):
def __init__(self, state_name, rnn_obj, init_state):
self._state_name = state_name # each is a rnn.memory
self._rnn_obj = rnn_obj
self._state_mem = self._rnn_obj.memory(init=init_state.value)
self._state_mem = self._rnn_obj.memory(
init=init_state.value, need_reorder=init_state.need_reorder)
def get_state(self):
return self._state_mem
......
......@@ -13,17 +13,17 @@
# limitations under the License.
import numpy as np
import paddle.v2 as paddle
import paddle.v2.fluid as fluid
import paddle.v2.fluid.core as core
import paddle.v2.fluid.framework as framework
import paddle.v2.fluid.layers as pd
from paddle.v2.fluid.executor import Executor
import paddle.v2
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.framework as framework
import paddle.fluid.layers as pd
from paddle.fluid.executor import Executor
from beam_search_api import *
dict_size = 30000
source_dict_dim = target_dict_dim = dict_size
src_dict, trg_dict = paddle.dataset.wmt14.get_dict(dict_size)
src_dict, trg_dict = paddle.v2.dataset.wmt14.get_dict(dict_size)
hidden_dim = 32
word_dim = 16
IS_SPARSE = True
......@@ -166,9 +166,9 @@ def train_main():
optimizer = fluid.optimizer.Adagrad(learning_rate=1e-4)
optimizer.minimize(avg_cost)
train_data = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.wmt14.train(dict_size), buf_size=1000),
train_data = paddle.v2.batch(
paddle.v2.reader.shuffle(
paddle.v2.dataset.wmt14.train(dict_size), buf_size=1000),
batch_size=batch_size)
exe = Executor(place)
......@@ -235,5 +235,5 @@ def decode_main():
if __name__ == '__main__':
#train_main()
decode_main()
train_main()
#decode_main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册