Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
6e2b7874
M
models
项目概览
PaddlePaddle
/
models
接近 2 年 前同步成功
通知
230
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6e2b7874
编写于
3月 08, 2018
作者:
Y
yangyaming
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Refine api design for beam search.
上级
ebacc5e7
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
221 addition
and
9 deletion
+221
-9
fluid/rnn_beam_search/beam_search_api.py
fluid/rnn_beam_search/beam_search_api.py
+195
-0
fluid/rnn_beam_search/simple_seq2seq.py
fluid/rnn_beam_search/simple_seq2seq.py
+26
-9
未找到文件。
fluid/rnn_beam_search/beam_search_api.py
0 → 100644
浏览文件 @
6e2b7874
import
paddle.v2.fluid
as
fluid
import
paddle.v2.fluid.layers
as
layers
import
contextlib
from
paddle.v2.fluid.layer_helper
import
LayerHelper
,
unique_name
import
paddle.v2.fluid.core
as
core
class
DecoderType
:
TRAINING
=
1
BEAM_SEARCH
=
2
class
InitState
(
object
):
def
__init__
(
self
,
init
=
None
,
shape
=
None
,
value
=
0.0
,
need_reorder
=
False
,
dtype
=
'float32'
):
self
.
_init
=
init
self
.
_shape
=
shape
self
.
_value
=
value
self
.
_need_reorder
=
need_reorder
self
.
_dtype
=
dtype
@
property
def
value
(
self
):
return
self
.
_init
# may create a LoDTensor
class
MemoryState
(
object
):
def
__init__
(
self
,
state_name
,
rnn_obj
,
init_state
):
self
.
_state_name
=
state_name
# each is a rnn.memory
self
.
_rnn_obj
=
rnn_obj
self
.
_state_mem
=
self
.
_rnn_obj
.
memory
(
init
=
init_state
.
value
)
def
get_state
(
self
):
return
self
.
_state_mem
def
update_state
(
self
,
state
):
self
.
_rnn_obj
.
update_memory
(
self
.
_state_mem
,
state
)
class
ArrayState
(
object
):
def
__init__
(
self
,
state_name
,
init_state
):
self
.
_state_name
=
state_name
self
.
_counter
=
layers
.
zeros
(
shape
=
[
1
],
dtype
=
'int64'
)
self
.
_state_array
=
layers
.
create_array
(
'int64'
)
# write initial state
layers
.
array_write
(
init_state
.
value
,
array
=
self
.
_state_array
,
i
=
self
.
_decoder_obj
.
counter
)
def
get_state
(
self
):
state
=
layers
.
array_read
(
array
=
self
.
_state_array
,
i
=
self
.
_counter
)
return
state
def
update_state
(
self
,
state
):
layers
.
increment
(
x
=
self
.
_counter
,
value
=
1
,
in_place
=
True
)
layers
.
array_write
(
state
,
array
=
self
.
_state_array
,
i
=
self
.
_counter
)
class
StateCell
(
object
):
def
__init__
(
self
,
cell_size
,
inputs
,
states
,
name
=
None
):
self
.
_helper
=
LayerHelper
(
"state_cell"
,
name
=
name
)
self
.
_cur_states
=
{}
self
.
_state_names
=
[]
for
state_name
,
state
in
states
.
items
():
if
not
isinstance
(
state
,
InitState
):
raise
ValueError
(
"State must be an InitState object."
)
self
.
_cur_states
[
state_name
]
=
state
self
.
_state_names
.
append
(
state_name
)
self
.
_inputs
=
inputs
# inputs is place holder here
self
.
_states_holder
=
{}
self
.
_cur_decoder_obj
=
None
def
switch_decoder
(
self
,
decoder_obj
):
self
.
_cur_decoder_obj
=
decoder_obj
for
state_name
in
self
.
_state_names
:
if
state_name
not
in
self
.
_states_holder
:
state
=
self
.
_cur_states
[
state_name
]
if
not
isinstance
(
state
,
InitState
):
raise
ValueError
(
"Current type of state is %s, should be "
"an InitState object."
%
type
(
state
))
if
decoder_obj
.
type
==
DecoderType
.
TRAINING
:
self
.
_states_holder
[
state_name
][
decoder_obj
]
=
\
MemoryState
(
state_name
,
decoder_obj
.
dynamic_rnn
,
state
)
elif
decoder_obj
.
type
==
DecoderType
.
BEAM_SEARCH
:
self
.
_states_holder
[
state_name
][
decoder_obj
]
=
\
ArrayState
(
state_name
,
state
)
else
:
raise
ValueError
(
"Unknown decoder type, only support "
"[TRAINING, BEAM_SEARCH]"
)
# Read back, since current state should be LoDTensor
self
.
_cur_states
[
state_name
]
=
\
self
.
_states_holder
[
state_name
][
decoder_obj
].
get_state
()
def
get_state
(
self
,
state_name
):
if
state_name
not
in
self
.
_cur_states
:
raise
ValueError
(
'Unknown state %s. Please make sure switch_decoder '
'invoked.'
%
state_name
)
return
self
.
_cur_states
[
state_name
]
def
get_input
(
self
,
input_name
):
if
input_name
not
in
self
.
_inputs
or
self
.
_inputs
[
input_name
]
is
None
:
raise
ValueError
(
"Invalid input %s."
%
input_name
)
def
set_state
(
self
,
state_name
,
state_value
):
self
.
_cur_states
[
state_name
]
=
state_value
def
register_updater
(
self
,
state_updater
):
self
.
_state_updater
=
state_updater
def
compute_state
(
self
,
inputs
):
for
input_name
,
input_value
in
inputs
.
items
():
if
input_name
not
in
self
.
_inputs
:
raise
ValueError
(
'Unknown input %s. '
'Please make sure %s in input '
'place holder.'
%
(
input_name
,
input_name
))
self
.
_inputs
[
input_name
]
=
input_value
self
.
_state_updater
()
def
update_state
(
self
):
for
_
,
decoder_state
in
self
.
_states_holder
.
items
():
if
self
.
_cur_decoder_obj
not
in
decoder_state
:
raise
ValueError
(
"Unknown decoder object, please make sure "
"switch_decoder been invoked."
)
decoder_state
[
self
.
_cur_decoder_obj
].
update_state
(
self
.
_cur_states
[
state_name
])
class
TrainingDecoder
(
object
):
BEFORE_DECODER
=
0
IN_DECODER
=
1
AFTER_DECODER
=
2
def
__init__
(
self
,
state_cell
,
name
=
None
):
self
.
_helper
=
LayerHelper
(
'training_decoder'
,
name
=
name
)
self
.
_status
=
TrainingDecoder
.
BEFORE_DECODER
self
.
_dynamic_rnn
=
layers
.
DynamicRNN
()
self
.
_type
=
DecoderType
.
TRAINING
self
.
_state_cell
=
state_cell
@
contextlib
.
contextmanager
def
block
(
self
):
if
self
.
_status
!=
TrainingDecoder
.
BEFORE_DECODER
:
raise
ValueError
(
"decoder.block() can only be invoked once"
)
self
.
_status
=
TrainingDecoder
.
IN_DECODER
with
self
.
_dynamic_rnn
.
block
():
self
.
_state_cell
.
switch_decoder
(
self
)
yield
self
.
_status
=
TrainingDecoder
.
AFTER_DECODER
@
property
def
state_cell
(
self
):
self
.
_assert_in_decoder_block
(
"state_cell"
)
return
self
.
_state_cell
@
property
def
dynamic_rnn
(
self
):
return
self
.
_dynamic_rnn
@
property
def
type
(
self
):
return
self
.
_type
def
step_input
(
self
,
x
):
self
.
_assert_in_decoder_block
(
"step_input"
)
return
self
.
_dynamic_rnn
.
step_input
(
x
)
def
static_input
(
self
,
x
):
self
.
_assert_in_decoder_block
(
"static_input"
)
return
self
.
_dynamic_rnn
.
static_input
(
x
)
def
__call__
(
self
,
*
args
,
**
kwargs
):
return
self
.
_dynamic_rnn
(
*
args
,
**
kwargs
)
def
output
(
self
,
*
outputs
):
self
.
_assert_in_decoder_block
(
"output"
)
self
.
_dynamic_rnn
(
output
)
def
_assert_in_decoder_block
(
self
,
method
):
if
self
.
_status
!=
TrainingDecoder
.
IN_DECODER
:
raise
ValueError
(
"%s should be invoked inside training "
"decoder."
%
method
)
class
BeamSearchDecoder
(
object
):
def
__init__
(
self
,
state_cell
):
pass
fluid/rnn_beam_search/simple_seq2seq.py
浏览文件 @
6e2b7874
...
...
@@ -19,7 +19,7 @@ import paddle.v2.fluid.core as core
import
paddle.v2.fluid.framework
as
framework
import
paddle.v2.fluid.layers
as
pd
from
paddle.v2.fluid.executor
import
Executor
from
beam_search
import
BasicRNNCell
,
TrainingDecoder
,
BeamSearchDecoder
from
beam_search
_api
import
*
dict_size
=
30000
source_dict_dim
=
target_dict_dim
=
dict_size
...
...
@@ -56,6 +56,19 @@ def encoder():
def
decoder_train
(
context
):
h
=
InitState
(
init
=
context
)
state_cell
=
StateCell
(
cell_size
=
decoder_size
,
inputs
=
{
'x'
:
None
},
states
=
{
'h'
:
h
})
from
functools
import
partial
def
updater
(
state_cell
):
current_word
=
state_cell
.
get_input
(
'x'
)
prev_h
=
state_cell
.
get_state
(
'h'
)
h
=
pd
.
fc
(
input
=
[
current_word
,
prev_h
],
size
=
decoder_size
,
act
=
'tanh'
)
state_cell
.
set_state
(
'h'
,
h
)
state_cell
.
register_updater
(
partial
(
updater
,
state_cell
))
# decoder
trg_language_word
=
pd
.
data
(
name
=
"target_language_word"
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
...
...
@@ -66,12 +79,16 @@ def decoder_train(context):
is_sparse
=
IS_SPARSE
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'vemb'
))
rnn_cell
=
BasicRNNCell
(
cell_size
=
decoder_size
)
decoder
=
TrainingDecoder
(
rnn_cell
,
step_inputs
=
[
trg_embedding
],
label_dim
=
target_dict_dim
,
init_states
=
[
context
])
training_decoder
=
TrainingDecoder
(
state_cell
)
with
training_decoder
.
block
()
as
decoder
:
current_word
=
decoder
.
step_input
(
trg_embedding
)
decoder
.
state_cell
.
compute_state
(
inputs
=
{
'x'
:
current_word
})
current_score
=
pd
.
fc
(
input
=
decoder
.
state_cell
.
state
(
'h'
),
size
=
target_dict_dim
,
act
=
'softmax'
)
decoder
.
state_cell
.
update_state
()
decoder
.
output
(
current_score
)
return
decoder
()
...
...
@@ -207,5 +224,5 @@ def decode_main():
if
__name__
==
'__main__'
:
#
train_main()
decode_main
()
train_main
()
#
decode_main()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录