simple_seq2seq.py 7.2 KB
Newer Older
Y
yangyaming 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import paddle.v2 as paddle
import paddle.v2.fluid as fluid
import paddle.v2.fluid.core as core
import paddle.v2.fluid.framework as framework
import paddle.v2.fluid.layers as pd
from paddle.v2.fluid.executor import Executor
Y
yangyaming 已提交
22
from beam_search_api import *
Y
yangyaming 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

dict_size = 30000
source_dict_dim = target_dict_dim = dict_size
src_dict, trg_dict = paddle.dataset.wmt14.get_dict(dict_size)
hidden_dim = 32
word_dim = 16
IS_SPARSE = True
batch_size = 2
max_length = 8
topk_size = 50
trg_dic_size = 10000
beam_size = 2

decoder_size = hidden_dim

place = core.CPUPlace()


def encoder():
    # encoder
    src_word_id = pd.data(
        name="src_word_id", shape=[1], dtype='int64', lod_level=1)
    src_embedding = pd.embedding(
        input=src_word_id,
        size=[dict_size, word_dim],
        dtype='float32',
        is_sparse=IS_SPARSE,
        param_attr=fluid.ParamAttr(name='vemb'))

    fc1 = pd.fc(input=src_embedding, size=hidden_dim * 4, act='tanh')
    lstm_hidden0, lstm_0 = pd.dynamic_lstm(input=fc1, size=hidden_dim * 4)
    encoder_out = pd.sequence_last_step(input=lstm_hidden0)
    return encoder_out


def decoder_train(context):
Y
yangyaming 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71
    h = InitState(init=context)
    state_cell = StateCell(
        cell_size=decoder_size, inputs={'x': None}, states={'h': h})
    from functools import partial

    def updater(state_cell):
        current_word = state_cell.get_input('x')
        prev_h = state_cell.get_state('h')
        h = pd.fc(input=[current_word, prev_h], size=decoder_size, act='tanh')
        state_cell.set_state('h', h)

    state_cell.register_updater(partial(updater, state_cell))

Y
yangyaming 已提交
72 73 74 75 76 77 78 79 80 81
    # decoder
    trg_language_word = pd.data(
        name="target_language_word", shape=[1], dtype='int64', lod_level=1)
    trg_embedding = pd.embedding(
        input=trg_language_word,
        size=[dict_size, word_dim],
        dtype='float32',
        is_sparse=IS_SPARSE,
        param_attr=fluid.ParamAttr(name='vemb'))

Y
yangyaming 已提交
82 83 84 85 86 87 88 89 90 91
    training_decoder = TrainingDecoder(state_cell)

    with training_decoder.block() as decoder:
        current_word = decoder.step_input(trg_embedding)
        decoder.state_cell.compute_state(inputs={'x': current_word})
        current_score = pd.fc(input=decoder.state_cell.state('h'),
                              size=target_dict_dim,
                              act='softmax')
        decoder.state_cell.update_state()
        decoder.output(current_score)
Y
yangyaming 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226

    return decoder()


def decoder_decode(context):
    rnn_cell = BasicRNNCell(cell_size=decoder_size)
    init_ids = pd.data(name="init_ids", shape=[1], dtype="int64", lod_level=2)
    init_scores = pd.data(
        name="init_scores", shape=[1], dtype="float32", lod_level=2)

    def embedding(input):
        return pd.embedding(
            input=input,
            size=[dict_size, word_dim],
            dtype='float32',
            is_sparse=IS_SPARSE)

    decoder = BeamSearchDecoder(
        cell_obj=rnn_cell,
        init_ids=init_ids,
        init_scores=init_scores,
        init_states=context,
        max_length=max_length,
        label_dim=trg_dic_size,
        eos_token=10,
        beam_width=beam_size,
        embedding_layer=embedding)

    translation_ids, translation_scores = decoder()

    return translation_ids, translation_scores


def set_init_lod(data, lod, place):
    res = core.LoDTensor()
    res.set(data, place)
    res.set_lod(lod)
    return res


def to_lodtensor(data, place):
    seq_lens = [len(seq) for seq in data]
    cur_len = 0
    lod = [cur_len]
    for l in seq_lens:
        cur_len += l
        lod.append(cur_len)
    flattened_data = np.concatenate(data, axis=0).astype("int64")
    flattened_data = flattened_data.reshape([len(flattened_data), 1])
    res = core.LoDTensor()
    res.set(flattened_data, place)
    res.set_lod([lod])
    return res


def train_main():
    context = encoder()
    rnn_out = decoder_train(context)
    label = pd.data(
        name="target_language_next_word", shape=[1], dtype='int64', lod_level=1)
    cost = pd.cross_entropy(input=rnn_out, label=label)
    avg_cost = pd.mean(x=cost)

    optimizer = fluid.optimizer.Adagrad(learning_rate=1e-4)
    optimizer.minimize(avg_cost)

    train_data = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.wmt14.train(dict_size), buf_size=1000),
        batch_size=batch_size)

    exe = Executor(place)

    exe.run(framework.default_startup_program())

    batch_id = 0
    for pass_id in xrange(1):
        for data in train_data():
            word_data = to_lodtensor(map(lambda x: x[0], data), place)
            trg_word = to_lodtensor(map(lambda x: x[1], data), place)
            trg_word_next = to_lodtensor(map(lambda x: x[2], data), place)
            outs = exe.run(framework.default_main_program(),
                           feed={
                               'src_word_id': word_data,
                               'target_language_word': trg_word,
                               'target_language_next_word': trg_word_next
                           },
                           fetch_list=[avg_cost])
            avg_cost_val = np.array(outs[0])
            print('pass_id=' + str(pass_id) + ' batch=' + str(batch_id) +
                  " avg_cost=" + str(avg_cost_val))
            if batch_id > 3:
                break
            batch_id += 1


def decode_main():
    context = encoder()
    translation_ids, translation_scores = decoder_decode(context)

    exe = Executor(place)
    exe.run(framework.default_startup_program())

    init_ids_data = np.array([1 for _ in range(batch_size)], dtype='int64')
    init_scores_data = np.array(
        [1. for _ in range(batch_size)], dtype='float32')
    init_ids_data = init_ids_data.reshape((batch_size, 1))
    init_scores_data = init_scores_data.reshape((batch_size, 1))
    init_lod = [i for i in range(batch_size)] + [batch_size]
    init_lod = [init_lod, init_lod]

    train_data = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.wmt14.train(dict_size), buf_size=1000),
        batch_size=batch_size)
    for _, data in enumerate(train_data()):
        init_ids = set_init_lod(init_ids_data, init_lod, place)
        init_scores = set_init_lod(init_scores_data, init_lod, place)

        src_word_data = to_lodtensor(map(lambda x: x[0], data), place)

        result_ids, result_scores = exe.run(
            framework.default_main_program(),
            feed={
                'src_word_id': src_word_data,
                'init_ids': init_ids,
                'init_scores': init_scores
            },
            fetch_list=[translation_ids, translation_scores],
            return_numpy=False)
        print result_ids.lod()
        break


if __name__ == '__main__':
Y
yangyaming 已提交
227 228
    train_main()
    #decode_main()